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ABSTRACT 

This study aims defining the best predictors of biophysical parameters and yield with veg-

etation indices derived from Landsat 8 OLI surface reflectance data. The study was conducted in 

2015 at five crop fields in Kulavat canal irrigation system in Khorezm province, Uzbekistan. The 

Environment for Visualizing Images (ENVI) ver. 4.5 and R programming software ver. 1.0.143 

were used to process, calculate seven vegetation indices (VIs) and predict biophysical parameters 

and yield of cotton.  

The trend analysis show that in-situ measured biophysical parameters for the whole growth 

stage of cotton follows the 3rd order polinomial curve (R² = 0.96−0.99). The NDVI, SAVI, TVI and 

RVI had linear interrelationship between each other with strong positive correlation of R2>0.9 

(highly significant with p-value=0). The VIs showed a logarithmic function relationship with crop 

height (crht), power function relationship with green biomass (gbm) and leaf area index (LAI), and 

linear function relationship with the fraction of photosyntetically active radiation below the plant 

canopy (FPAR) during the entire growing period of cotton. Among seven VIs tested in this study, 

the NDVI/SAVI and GCI explained 88 and 91 % of variation in crht, respectively. These three 

indices also well explained gbm variation (R2=0.86). The TVI was slightly better explained FPAR 

than NDVI and SAVI (all R2>0.87). The NDVI, SAVI and TCG explained 82 % of variation in LAI. 

Among all VIs, GCI, NDGI and RVI were found to be the best predictor of cotton yield during 

August, explaining 76-79% variability (p<0.001).  

Based on spectro-biophysical analysis, VIs derived from RS data on July and August (an-

thesis and peak growth stages of cotton) is more reliable to use for modeling cotton yield (seed 

and lint yields together). Therefore, field data collection is recommended to perform during these 

months taking into account in-field crop condition and remotely sensed data acquisition date. In 

addition, September 5-20 is the second important period (i.e., cotton pick-up) to conduct yield data 

collection for establishment of relationships between cotton yields with VIs (July-August). 
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INTRODUCTION 

Population growth and climate variability necessitate using available land and water re-

sources effectively to maintain sustainable agricultural production in the Central Asian countries, 

especially in lowlands of the Amudarya and Syrdarya Rivers. Socio-economic transformation 
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leaded to the intensification of agriculture and expansion of irrigation and melioration infrastruc-

ture since 1960s. Whereas mismanagement of land and especially water resources caused land 

degradation and yield loss. In addition, climate change (extreme events) becoming a major obsta-

cle that decline food production, water contamination, and economic damages. 

During the last 40 years, the expansion of cropland in Uzbekistan has slackened, but land 

is now used much more intensively (Goscomstat. Uzbekistan in figures. The State Committee of 

Republic Uzbekistan on statistics, 2015); [Djanibekov, 2008]: in the 1980s, on average a hectare 

of cropland produced 1.8 tn., but now it produces 2.2 tn. (e.g., 18 % more). To understand land 

use dynamics and to be able to predict possible future developments, constant monitoring is 

needed. In this context, in-situ phenological observation of crop development and growth is very 

important. Based on proper and in-time phenology observations, more stable crop yields and qual-

ity can be recommended for land users, which can facilitate future improvement of crop, water 

and land management. Keeping aforementioned statements, the main goal of the research is to 

assess usability of remote sensing derived vegetation indices as predictors of in-situ observed cot-

ton biomass, leaf area index (LAI), fraction photosynthetically active radiation — (PAR) and yield. 

 

MATERIALS AND METHODS OF RESEARCHES 

Study area 

The study was conducted in Kulavat canal irrigation command area (ICA) in Khorezm 

province, located in the north-western part of Uzbekistan (fig. 1 a, b). Cotton, winter wheat, rice, 

maize, sorghum, watermelons, and alfalfa are cultivated in irrigated lands of 42 000 ha within the 

study area that have regularly shaped fields [Löw, Duveiller, 2014]. In the region, multiple crop-

ping practices are common, e.g., a double cropping sequences with a summer crop (rice, maize, 

vegetables etc.) following harvest of winter wheat. 

 

 

 
 

 

Fig. 1. Location of study area in north-western part of Uzbekistan:  

(a) showing boundary of Kulavat canal,  

irrigation command area (b) and sampling sites (c) 
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Field selection and in-situ measurements 

As generally applied in agriculture, conventional (RS) methodology is based on qualitative 

analysis of information derived from “training areas” (e.g. ground-truthing, GT). This training 

areas should provide quantification within and between field variability and thus has to be repre-

sentative for the given region in further up-scaling (mapping) of agricultural crop types, their bio-

physical characteristics (height, leaf area index, biomass etc.), and yield using near-real-time and 

historical (archival) satellite images. However, vegetation status is affected by variable environ-

mental conditions (soil type, fertility, water availability etc.) and agricultural management (sow-

ing, time and amount of irrigation and fertilization, tillage, pesticide application, etc.). Keeping 

this statement in mind, field measurements were performed at different parts of the study area (fig. 

1c). For detailed biophysical measurements, three test sites within each five fields cultivated by 

cotton were established depending on access to the fields and per agreement by farmers (table 1). 

In total six field trips were conducted during April-October, 2015 in order to measure farm-by-

farm (or pixel-by-pixel) crop biophysical parameters such as plant density, aboveground plant 

height, wet biomass/crop yield, fPAR and LAI values. 

 

Table 1. The main characteristics of the selected fields in study area 

 

 

No 

 

Farm name 

 

Crop type 

Field 

area (ha) 

 

Field ID 

ID coordinates (dd. mm. ss) 

latitude (N) longitude (E) 

1 Polvon mexanik cotton 6 C1L3KV 41°33'36.70" 60°30'12.20" 

C1L2KV 41°33'38.70" 60°30'16.90" 

C1L1KV 41°33'40.80" 60°30'21.30" 

2 A. Karimov cotton 18 С2H1KV 41o32'39.9" 60o27'46.9" 

C2H2KV 41°32'38.60" 60°27'56.00" 

C2H3KV 41°32'37.80" 60°28'2.00" 

3 Iroda-Ogiljon cotton 7.5 C3M1KV 41o31'04.3" 60o48'02.9" 

C3M2KV 41o31'05.9" 60o47'59.2" 

C3M3KV 41o31'07.9" 60o47'55.8" 

4 Karomat cotton 4 C4L1KV 41o28'22.9" 60o41'25.9" 

C4L2KV 41o28'20.3" 60o41'27.4" 

C4L3KV 41o28'18.2" 60o41'29.4" 

5 Turdali cotton 9.5 C5M3KV 41o32'41.9" 60o19'30.9" 

C5M2KV 41o32'38.3" 60o19'26.0" 

C5M1KV 41o32'34.5" 60o19'20.4" 

 

 

Earth observation (EO) data acquisition and processing 

In total 9 scenes of Landsat 81 archive data were acquired in 2015 through EarthExplorer 

at http://earthexplorer.usgs.gov (table 2). This archive Landsat 8 data with 30 m spatial resolution 

have radiometric, geometric and atmospheric calibration and directly can be used to calculate var-

ious vegetation indices (VIs). 

 

 

1 Landsat 8 is the latest in a continuous series of land remote sensing satellites that began in 1972 (EROS. Landsat 8 

(L8) data users handbook. LSDS-1574, Version 1.0. Earth Resources Observation and Science (EROS) Center in 

Sioux Falls, Greenbelt, Maryland, 2015. 98 p.). The data is in GeoTiff format with 16 bits radiometric resolution 

(ranges from 0−65535). Landsat 8 images consist of nine spectral bands with a spatial resolution of 30 meters for 

Bands 1 to 7 and 9. The resolution for Band 8 (panchromatic) is 15 meters (0.503–0.676 µm). In addition, it also has 

two Thermal IR bands with a spatial resolution of 100 m (10.60–11.19 and 11.50–12.51 µm). Among the available 

11 bands, first seven (e.g., band1−band7) have been provided when these data have been ordered from http://earthex-

plorer.usgs.gov/. 

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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Table 2. Name, date and bands information of available (cloud free) Landsat 8 images in 2015 

 

 

No 

 

Image names* 

 

DATE 

Time dif-

ference 

(days) 

 

Bands (wavelength) 

1 LC81600312015109 19 Apr 15 64 

Band 1 — Coastal/aerosol (0.435−0.451 µm); 

Band 2 — Blue (0.452−0.512 µm);  

Band 3 — Green (0.533−0.590 µm);  

Band 4 — Red (0.636−0.673 µm);  

Band 5 — Near Infrared, NIR (0.851−0.879 

µm);  

Band 6 — SWIR 1 (1.566−1.651 µm); 

Band 7 — SWIR 2 (2.107−2.294 µm) 

2 LC81600312015125 5 May 15 16 

3 LC81600312015141 21 May 15 16 

4 LC81600312015157 6 Jun 15 16 

5 LC81600312015173 22 Jun 15 16 

6 LC81600312015189 8 Jul 15 16 

7 LC81600312015221 9 Aug 15 32 

8 LC81600312015253 10 Sep 15 32 

9 LC81600312015269 26 Sep 15 16 

* here L: Landsat; C: combination of Thermal Infrared Sensor (TIRS) and Operational Land Imager (OLI) Sensors; 

8: Landsat mission number; 160: path of the product; 031: row of the product; 2015: Acquisition year of the image; 

109: Acquisition day of the image 

 

The Environment for Visualizing Images (ENVI) ver. 4.5 was used to make layer stacking. 

At the first step, 7 bands of each 9 images were stacked one by one (fig. 2, left) following1. The 

output file of individual image had a geographic extent that encompasses only the data extent 

where all 7 bands overlap. At the second step, created single file from individual images re-stacked 

again so that it contains all bands from nine images (e.g., 9*7=63 bands, fig. 2, right). This single 

file, containing 63 bands was used in order to calculate various VIs using R programming software. 

After layer stacking of all 63 bands at the extent of original image dimensions, the image size was 

increased on 10 times (e.g., 7.0 GB) from individual layer stacked image (800 MB), thus cropping 

(cutting) the stacked image within the boundary of focus area was performed to reduce the image 

size (memory). The ‘raster’, ‘rgdal’ and ‘sp’ packages were installed in R from the freely available 

source (e.g., https://cran.r-project.org/web/packages/). 

 

  
  

Fig. 2. Layer stacked Landsat 8 images containing 7 bands in individual image (left)  

and 63 bands in single file (right) 

 

1 ENVI user’s guide. ENVI Version 4.1, September 2004 Edition, Research Systems, Inc. 1150 p. 

 

7 bands 

63 bands 
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Calculation of vegetation indexes 

This section focuses on vegetation indices (VIs), which can be broadly defined as combi-

nations of surface reflectance at two or more wavelengths designed to highlight a particular prop-

erty of vegetation. The VIs based on spectral reflectance have been used in agricultural research 

since 1969 [Tucker, 1979] in order to find functional relationships between canopy characteristics 

such as biomass, leaf area index (LAI) etc. and remote sensing observations. Canopy light reflec-

tance properties mainly based on the absorption of light at specific wavelengths are associated 

with specific plant characteristics. In general, unhealthy vegetation has a lower photosynthetic 

activity, causing increased visible reflectance and the reduced near-infrared reflectance (NIR) from 

the vegetation. The spectral reflectance in the visible (VIS) wavelengths (400–700 µm) depends 

on the absorption of light by leaf chlorophyll and associated pigments such as carotenoids and 

anthocyanins [Babar et al., 2006]. Reflectance in the VIS range is low because of the high absorp-

tion of light energy by these pigments. The reflectance in the NIR wavelengths (700–1300 µm) is 

high because of the multiple scattering of light by different leaf tissues [Knipling, 1970].  

To date, more than 150 VIs have been published in the scientific literature [Pettorelli, 

2013]. Among these VIs, commonly used indices, such as normalized differential vegetation index 

(NDVI), soil adjusted vegetation index (SAVI), normalized difference greenness index (NDGI), 

transformed vegetation index (TVI), ratio vegetation index (RVI), green chlorophyll index (GCI) 

and tasseled cap transformations at greenness (TCTG) have been selected in this study (table 3) as 

predictors of biophysical variables of cotton. 

 

 

Table 3. Vegetation indices that have been used for evaluation  

of crop biophysical characteristics 

 

 

No Indices Formula* Author and year 

1 
Normalized Differential Vege-

tation Index )R+(R

)R-(R
= NDVI

redNIR

redNIR                        [Rouse et al., 1973] 

2 
Soil Adjusted Vegetation In-

dex 
)1(*

L)R+(R

)R-(R
= SAVI

redNIR

redNIR L+
+

      [Huete, 1988] 

3 
Normalized Difference Green-

ness Index )R+(R

)R-(R
= NDGI

redgreen

redgreen                        
[Chamard et al., 1991] 

4 Transformed Vegetation Index 5.0NDVI
5.0NDVI

)5.0(NDVI
= TVI +

+

+    [Perry, Lauten-

schlager, 1984] 

5 Ratio Vegetation Index 
red

NIR

R

R
= RVI                                         [Jordan, 1969] 

6 Green Chlorophyll Index 1
R

R
= GCI

green

NIR −                                    
[Gitelson et al., 2003] 

7 
Tasseled Cap Transformations: 

- Greenness 
2

blueG

1608.010713.07276.0

5424.0243.00.2941R= TCT

SWIRSWIRNIR

redgreen

RRR

RR

−++

+−−−
 [Baig et al., 2014] 

*R is reflectance at wavelength of respective spectral bands of Landsat 8 image (refer to table 2) 

 

 

In order to develop spectro-biophysical and yield relationships, reflectance as well as veg-

etation values are needed to be extract from layer stacked and cropped RS data based on three plot 

located pixels within each field (see table 1). Anderson et al. [1993] suggested that it is a more 

desirable when sample point data is compared with vegetation index value obtained for a single 

pixel (900 m2).  
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RESULTS OF RESEARCHES AND THEIR DISCUSSIONS 

Trend analysis of biophysical parameters 

In-situ measured biophysical paramters of cotton (Gossypium hirsutum L.)  is  given  in  

fig. 3. Cotton height (crht, fig. 3A) follows approximately an exponantial curve from about 7±2 

cm (5−8 true leaves covering up to 2 % of land area on May 11−15) up to 88±16 cm (time of the 

peak growth stage covering an area of 75−90 % on August 5−15). Thereafter, the crht was 

remained constant with slightly decrease on about 87±14 cm (after 1st and 2nd pick up of cotton on 

September 28) due to drying up and plant disturbance during the harvest. In general, the height of 

cotton for the whole growth stage follows the 3rd order of polinomial curve (R² = 0.96). 

Plant density (crds, fig. 3B) was ranged from 9 to 120 plants per meter square before the 

plant singling (fig. 4). Once plant singling was completed, the crds was remained constant — 12±4 

plants m-2 with further shedding on about 11±2 plants m-2 (after 2nd pick up of cotton on September 

28). Similarly as the height, the crds of cotton for the whole growth stage is following the 3rd order 

polinomial curve (R² = 0.99). 

Crop green biomass (gbm, fig. 3C) was ranged from 5 to 120 gram per meter square at the 

initial stage of cotton development (greater biomass was due to high crop density as plant singling 

was not yet performed duing the measurement). Cotton wet biomass was increased exponentially 

untill the peak growth stage (e.g., 3.9±1.5 kg/m2 on August 5−15). The gbm was then decreased 

up to 1.9±1.0 kg/m-2 on September 26−30 due to crop drying up after defoliation and harvest1. 

Similarly as the height, the crds of cotton for the whole growth stage is following the 3rd order 

polinomial curve (R² = 0.99). 

As a cotton plant develops, new leaves appear and expand, increasing sunlight interception. 

Hence, the fraction of photosyntetically active radiation below the plant canopy (fpar, fig. 3D) 

decreases from about 1670±225 µmol m-2s-1 (when fraction of crop canopy cover of land area is 

low 2 % on May 11−15 and thus less amount of photosynthetically useful radiation is intercepted 

by the canopy) up to 135±100 µmol m-2s-1 (time of the peak growth stage covering un area of 

75−90 % on August 5−15 where greather amount of photosynthetically useful radiation is 

intercepted by the canopy). Thereafter, the fpar was increasing on about 480±230 µmol m-2s-1 

(when canopy cover is decreased on 30−45 % after the 1st and 2nd pick up of cotton on September 

28) due to drying up of plant and less or no remained leaves after the harvest. Such a decrease and 

increase of the fpar during the growth period of cotton, follows the 3rd order of polinomial curve 

(R² = 0.98). 

On the contrary to the fpar, leaf area index (lai, fig. 3E) increased most quickly from 

0.6±0.2 to 4.0±1.1 m2 m-2 between 60 to 130 DAP with average rate of increase 0.06 m2 m-2 day-1. 

It is obvious, that, the lai  increases exponentially per decrease of the fpar owing interception of 

the photosynthetically useful radiation by canopy (fig. 5). Once canopy cover decreasing, the fpar 

starts to increase thus lai reducing progressively at the premature aging of the cotton.  Further, the 

photosynthetic capacity of the plant reduces due to water stress, low fertility and other stresses and 

the value of lai reached to 1.5±0.8 m2 m-2 on September 28. Similarly to the aforementioned 

biophysical variables, the lai during the growth period of cotton, follows the 3rd order of polinomial 

curve (R² = 0.99). 

 

 

 

 

1 Note: crop wet biomass includes all parts of the plant above the land surface as well as seed and lint yield  
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Fig. 3. Time course of the canopy variables for 15 cotton plots: (A) height, (B) density,  

(C) wet biomass, (D) fraction of photosyntetically active radiation and (E) leaf area index 
 

Note:  Photos above the graph correspond to the field measurement dates and show crop cover in %;  

                 Dirk line indicates the 3rd order polinomial curve from average values of the variables as a function of days 

after planting (DAP) 
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C1L3KV (120 pl. m-2) C2H1KV (17 pl. m-2) C3M1KV (15 pl. m-2) C4L3KV(25 pl. m-2) C5M2KV(19 pl. m-2) 

     

 

Fig. 4. Cotton density (plants per meter square, pl.m-2) before singling in 5 plot-fields 

 (photos taken on May 10−13, 2015) 

 

 

 

 

 
 

 

Fig. 5. Relationship between leaf area index (lai) and photosyntetically active radiation (fpar) 

during the growth period of cotton for 15 plots 

 

 

Cotton yield variability 

Cotton yields, measured using a handheld scale for all 5 fields x 3 plots are illustrated in 

fig. 6. Cotton yield was ranged from 1.3±0.4 (C4L1KV-C4L3KV, Khonka  district)  to 3.3±0.3 t 

ha-1 (C2H1KV−C2H3KV, Urgench District).  Lower coton yields  through  C3M1KV  (1.6±0.2 t  

ha-1) and C4L3KV could be associated as 20−45 % of balls and squares were injured by cotton 

bollworm (Helicoverpa armigera Hbn.) and aphis (Aphis gossypii Glov.) (fig. 7) as well as cells, 

where heavy rainfall on ~May 7−8, 2015, feed on the meristems injured, and the resulting leaves 

appear crinkled and have holes in them (fig. 8). Whereas, higher cotton yield at the C2H1KV-

C2H3KV in farm “A. Karimov” could be the reason of a better farm management. In general, the 

yield variability of cotton is corresponding to the environmental condition governed within these 

fields. 
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Fig. 6. In-plot variation of the cotton yield within the five fields 
 

Note:  Here, cotton yild comprises lint and seed yields and could be higher than actually reported yield by farmers 

as latter include various losses; for location and decsription of the field ID refer to table 1 

 

 

 

 

 

 

 

 

  
 

 

Fig. 7. Injured cotton bolls by bollworm (left) and lint yield by aphis (right)  

at C3M1KV−C3M3KV in farm “Iroda-Ogiljon”  

(Photos taken on August 18, 2015) 
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Fig. 8. Manual harrowing of injured cotton after a heavy rainfall (left)  

and crinkled leaves with holes (right) at C4L1KV-C4L3KV in farm “Karomat”  

(Photos taken on May 12, 2015, left and June 15, 2015, right) 

 

 

Range and dynamics of the vegetation indices (VIs) 

The VIs curves for cotton, plotted as a function of time are given in fig. 9. The shape of the 

VIs curves during the growth period of cotton follows the 3rd order polinomial curve, which are 

similar as curves of the biophysical variables described in previous section. 

The NDVI values (fig. 3A) ranged from 0.07±0.01 on April 19 (as 92−98% of land surface 

is barren during the germination stage of cotton) to 0.80±0.11 on August 9 (dense vegetation dur-

ing the peak growth stage of cotton).  

 

 
 

Fig. 9.   Time course of the seven vegetation indices for cotton 
 

Note:  Dots are average values; outliers are standard deviation; dirk curve lines are 3rd order polynomial curve 

from average values of the variables as a function of calendar days 
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The values of the SAVI was 1/3 fold less than NDVI (in avergae) and ranged from 

0.05±0.01 (on April 19) to 0.53±0.07 (on August 9) (fig. 3B). 

The NDGI (fig. 3C) ranged from -0.11±0.00 (on April 19) to 0.18±0.08 (on August 9). 

Once cotton developed and canopy cover expand, variation of the NDGI values (difference be-

tween minimum and maximum) became high, e.g., 0.23−0.26 (July−August) due to higher 

reflectance in the green channel during the period. 

The TVI (fig. 3D) was exponentially increased from 0.76±0.01 (on April 19) to 1.14±0.05 

(on August 9) following the same curve-shape as three aforementioned VIs. 

The range of RVI (fig. 3E) from 1.16±0.02 on April 19 (e.g., more bare soil) to 10.4±3.54 

on August 9 (e.g., dense vegetation) is within the range of the findings of Jackson & Huete [1991], 

where RVI values of cotton in their study ranged from 1.43 (bare soil) to 20.2 (near-maximum 

green vegetation). The RVI is thus a non-linear measure of vegetation that is very sensitive to 

variations in areas with high vegetative cover but much less sensitive in areas with sparse cover. 

The GCI (fig. 3F) ranged from 0.43±0.03 (on April 19) to 5.86±1.68 (on August 9).  

Cotton after a week starts to germinate, however, major part of the soil surface still bare, 

which result smaller TCG value (i.e., 1270±670 on April 19). Once plant starts to grow up, the 

TCG would shift up until the peak vegetation stage (i.e., 2060±340 on August 9) and declines as 

the crop matured and then would ‘tassel out’ with senescence on September 26 (fig. 3G). 

Spectro-biophysical relationships 

The relationships between the various vegetation indices (VIs), and biophysical quantities 

(plant height, biomass, LAI/fPAR and yield), both linear and non-linear models have been devel-

oped based on the best-fit R2 values [Thenkabail, 2003]. Pearson’s correlation coefficient (R2) and 

asymptotic p-values (approximated by using the t or f-distributions) for all possible pairs of spec-

tro-biophysical parameters are calculated using the R software. 

Crop height, biomass, fPAR and LAI related with VIs 

Correlation coefficients and p-values for all possible pairs of spectro-biophysical parame-

ters of cotton are given in table 4. It is obvious that the NDVI, SAVI, TVI and RVI of Landsat 8 

(OLI) data had linear interrelationship between each other with strong positive correlation of 

R2>0.9 (highly significant with p-value=0). It can be explained as these indices are based on re-

flectance values in the red and NIR wavelengths. For all the seven spectral reflectance indices, 

significant correlations (R2≥0.92, p=0) were attained only when these indices were compared at 

the anthesis and the peak crop growth stages (e.g., July and August shown). 

When all the temporal spectro-biophysical variables were considered together for the entire 

growing period of cotton, positive logarithmic and power relationships between NDVI and crht, 

gbm and lai was observed (fig. 10 A, B, D). The saturation of NDVI due to large amounts of gbm 

and lai was evident [Brandão et al., 2015; Gutierrez et al., 2012] by the low NDVI changes at 

high biomass content (gbm>2.0 kg) and leaf area index value (lai>2.3 m2m-2) at the peak growth 

stage. At this point, NDVI tended to reach an asymptote at values between 0.81 and 0.88. In con-

trast, the linear relationship between NDVI and fpar was negative where NDVI increasing per 

decrease of fpar (fig. 10 C). In general, the spectral indices showed a logarithmic function rela-

tionship with crht, power function relationship with gbm and lai, and linear function relationship 

with fpar during the entire growing period of cotton (table 5). Among 7 VIs tested in this study, 

the NDVI/SAVI and GCI explained 88 and 91 % of variation in crht, respectively. These three 

indices also well explained gbm variation (R2=0.86). The TVI was slightly better explained fpar 

than NDVI and SAVI (all R2>0.87). The NDVI, SAVI and TCG explained 82 % of variation in 

lai. Obtained regression equations with higher R2 (table 5) can be used to predict cotton biophys-

ical variables. However, crop types must be first discriminated before individual spectro-biophys-

ical quantitative relationships are applied to spatially map within and between farm variability in 

every farm and every pixel within a farm [Thenkabail, 2003]. 
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Table 4. Correlation matrix of the spectro-biophysical parameters for cotton 

 
 

All cases, n=72 (all dynamic variables are used for entire growing period of cotton) 

crht 0.77 0.76 -0.92 0.90 0.90 0.62 0.91 0.73 0.88 0.86 

0.000 gbm 0.86 -0.79 0.82 0.82 0.74 0.81 0.85 0.87 0.85 

0.000 0.000 lai -0.84 0.88 0.88 0.83 0.88 0.91 0.89 0.91 

0.000 0.000 0.000 fpar -0.93 -0.93 -0.71 -0.94 -0.80 -0.91 -0.91 

0.000 0.000 0.000 0.000 ndvi 1.00 0.86 1.00 0.90 0.95 0.98 

0.000 0.000 0.000 0.000 0.000 savi 0.86 1.00 0.90 0.95 0.98 

0.000 0.000 0.000 0.000 0.000 0.000 ndgi 0.84 0.94 0.78 0.90 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 tvi 0.89 0.94 0.98 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 rvi 0.92 0.96 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 gci 0.96 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 tcg 

 

 

Note: variables on diagonal stand for crht — crop height; crds — crop density; gbm — crop green biomass; lai — 

leaf area index; fpar — fraction of photosynthetic active radiation below canopy; and others are vegetation indices 

described in table 3. The distribution of each variable is shown on the diagonal; on the top of the diagonal — the value 

of the R2; on the bottom of the diagonal — significance level (p-values) 

 

 

 

 

 

 
 

 

Fig. 10. Relationship between (A) crop height (crht), (B) green biomass (gbm),  

(C) fraction of photosynthetic active radiation below canopy (fpar) and leaf area index (lai) 

as a function of normalized differential vegetation index (NDVI)  

during the growing period of cotton 
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Table 5. Regression parameters of biophysical variables as a function of VIs for cotton 

 

  crht gbm fpar lai 

NDVI 
y = 42.87ln(x) + 101.66 

R² = 0.88 

y = 5326.16x2.31 

R² = 0.86 

y = -2068.5x + 1818.2 

R² = 0.871 

y = 4.4681x1.532 

R² = 0.8274 

SAVI 
y = 42.87ln(x) + 119.05 

R² = 0.88 

y = 13,567.20x2.31 

R² = 0.86 

y = -3103x + 1818.2 

R² = 0.871 

y = 8.3172x1.532 

R² = 0.8274 

NDGI* 
y = 172.04x + 53.801 

R² = 0.3806 

y = 9486x + 1307.6 

R² = 0.5472 

y = -3536.4x + 937.55 

R² = 0.5091 

y = 9.7194x + 1.5175 

R² = 0.69 

TVI 
y = 213.27ln(x) + 66.49 

R² = 0.85 

y = 800.05x11.36 

R² = 0.82 

y = -4034.3x + 4774.7 

R² = 0.8807 

y = 1.2785x7.5344 

R² = 0.7975 

RVI 
y = 35.76ln(x) + 15.70 

R² = 0.73 

y = 52.66x1.92 

R² = 0.71 

y = 2194.3x-1.172 

R² = 0.8458 

y = 0.2105x1.2828 

R² = 0.7247 

GCI 
y = 32.45ln(x) + 37.52 

R² = 0.91 

y = 172.79x1.71 

R² = 0.86 

y = 979.31x-0.915 

R² = 0.7812 

y = 0.4722x1.0996 

R² = 0.7857 

TCG* 
y = 0.0236x + 29.089 

R² = 0.7339 

y = 1.07x + 217.03 

R² = 0.72 

y = -0.4445x + 1397 

R² = 0.8253 

y = 0.0011x + 0.4185 

R² = 0.8197 

*NDGI and TCG had a linear relationship due to negative values 

 

Yield related with VIs 

Among all VIs, GCI, NDGI and RVI were found to be the best predictor of cotton yield 

during August, explaining 76−79 % variability (p<0.001, table 6). The VIs-cryd relationships can 

be improved certainly if crop yield data from the farm “Iroda-Ogiljon” (e.g., C3M1KV, C3M2KV 

and C3M3KV) is omitted in the regression analysis. This is because, although, cotton at this field 

was better developed and had relatively higher density, biomass, LAI (refer to fig. 3) and thus 

higher VIs, the yield was rather low (e.g., 1.5−1.8 t ha-1) compared to other fields (refer to fig. 6).  

 

Table 6. Correlation matrix of the spectro-biophysical parameters and yield of cotton  

during August, 2015 (cryd — crop yield and other variables are same as described in Table 4) 
 

crht 0.23 0.39 0.44 -0.58 0.28 0.55 0.55 0.59 0.54 0.68 0.68 0.58 

0.421 crds 0.24 0.55 -0.32 0.47 0.49 0.49 0.46 0.49 0.43 0.47 0.39 

0.165 0.406 gbm 0.70 -0.79 0.60 0.63 0.63 0.67 0.63 0.67 0.66 0.71 

0.111 0.040 0.005 lai -0.49 0.75 0.52 0.52 0.59 0.51 0.68 0.66 0.59 

0.031 0.258 0.001 0.073 fpar -0.52 -0.74 -0.74 -0.80 -0.73 -0.78 -0.79 -0.83 

0.335 0.093 0.023 0.002 0.059 cryd 0.69 0.69 0.77 0.68 0.79 0.76 0.73 

0.041 0.075 0.016 0.059 0.002 0.007 ndvi 1.00 0.96 1.00 0.92 0.96 0.96 

0.041 0.075 0.016 0.059 0.002 0.007 0.000 savi 0.96 1.00 0.92 0.96 0.96 

0.025 0.097 0.009 0.025 0.001 0.001 0.000 0.000 ndgi 0.96 0.98 0.99 0.98 

0.045 0.076 0.017 0.064 0.003 0.008 0.000 0.000 0.000 tvi 0.91 0.95 0.95 

0.008 0.121 0.009 0.007 0.001 0.001 0.000 0.000 0.000 0.000 rvi 0.99 0.96 

0.008 0.092 0.010 0.011 0.001 0.002 0.000 0.000 0.000 0.000 0.000 gci 0.97 

0.028 0.169 0.004 0.025 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 tcg 
             
             

 

CONCLUSIONS 

It is interesting to mention that yield/production forecasting depends upon the data collec-

tion technique from ground-based field visits that constituted sample surveys based on crop har-

vesting experiments. These yield surveys are extensive as plot yield data are collected through 

stratified multistage random sample techniques. From the data obtained in this way yields can be 

forecasted at the regional and national level. However, such a technique has three major draw-

backs: (i) it is time-consuming, subjective, and prone to significant discrepancies as a result of 
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insufficient ground observations that cause poor crop production assessment; (ii) the outcomes are 

usually made available to the government and public after several months of the harvesting of the 

crop; and (iii) it is costly, depending on the survey areas. 

Currently, the ground-based data collection method is in practice in Uzbekistan and dis-

trict/province branches of the Ministry of Agriculture and Water Resources (MAWR) and State 

Committee on statistics of the republic of Uzbekistan are responsible organizations for that. These 

organizations collect data at the basic administrative level/unit (i.e. massifs) and then aggregate at 

the district, region and country-levels. 

In this context, remote sensing-based methods have already been proven as an effective 

alternative for mapping crop area, biophysical parameters and yield forecasting. The benefits of 

remote sensing technology include: (i) spatial coverage over a large geographic area; (ii) availa-

bility during all seasons; (iii) relatively low cost, since some optical images are freely available 

(i.e., MODIS, Landsat); (iv) efficient analysis; (v) they provide information in a timely manner; 

and (vi) they are capable of delineating detailed spatial distributions of areas under crop cultiva-

tion. 

One of the most important issues is that regardless the employed method (i.e., ground or 

remote sensing-based) the user requires fast, reliable (accurate), less costly, and least labor-inten-

sive ways; and also forecasting should take place prior to harvesting of the crop. 

In this study, our objective was to quantify within and between field variability of vegeta-

tion status (i.e., crop height, biomass, fPAR, LAI) and yield using vegetation indices from histor-

ical and near-real-time Landsat-8 Operational Land Imager (OLI) Sensors. The best regression 

equations developed from the spectro-biophysical analysis can be used for mapping crop areas and 

forecasting its biophysical variables and production and thus can provide the basis of the use of 

remote sensing imagery for precision-farming applications. 

Based on spectro-biophysical analysis, VIs derived from RS data on July and August (an-

thesis and peak growth stages of cotton) is more reliable to use for modeling cotton yield (seed 

and lint yields together). Therefore, field data collection is recommended to perform during these 

months taking into account visual observation of in-field crop condition; canopy cover under di-

verse strata (environmental condition) coupled with Landsat-8 data acquisition date. In addition, 

September 5–20 is the second important period (i.e., cotton pick-up) to conduct yield data collec-

tion for establishment of relationships between cotton yields with VIs (July−August). 
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