Интерактивная карта лучших практик

по использованию водных, земельных и энергетических ресурсов,
а также окружающей среды Центральной Азии

Сравнение практик

Название практики Increasing water supply of Aksa-Ayuliye District Examination and monitoring of Enilchek Glacier and Lake Merzbacher
Категория Водные ресурсы Водные ресурсы
Инструмент Система повышения водообеспеченности Система мониторинга

Другое: Remote monitoring

Сфера использования практики

Use of water resources

Пригодность практики для адаптации к изменению климата Умеренная Высокая
Кем реализована практика UNDP, UNECE and Water Resources Committee of the Ministry of Agriculture of the RK jointly with the Public Association “Association of Country Farms of Shet Dis-trict of Karaganda Region”
Central Asian Institute for Applied Geosciences (CAIAG) and German Research Centre for Geosciences (GFZ)
Где использована практика

Страна: Казахстан

Область: Карагандинская

Район: Шетский

Другой населенный пункт: Aksa-Ayuliye Rural District

Страна: Кыргызстан

Область: Иссык-Кульская

Район: Ак-Суйский

Специфика местности, где использована практика

The site is located in the area of acute shortage of irrigation and drinking water

Enilchek is a dendrite-type glacier originating around Khan Tengri Peak (6,995 m) with its tongue (43.2 km long and on average 2.2 km wide) descending to 2,800 m ASL.  Northern Enilchek Glacier is 38.2 km long (181.2 sq.km) and Southern Enilchek Glacier is 58.9 km long (567.2 sq.km).

Lake Merzbacher:

  • 3,304 m ASL;
  • volume – 0.12-0.25 km3;
  • deepest point -- 75 m;
  • average depth -- 35 m;
  • water-surface lake area – 4.5 sq.km.

Lake Merzbacher formed at the end of the Small Ice Age (19th century).  It has two pools called Upper and Lower Lakes divided by 400 m of elevation and 3-4 km long ice river with the same name.  In its southern part, the lower and larger part of the lake is limited by the glacial “dam”.  Every year (twice a year, in summer and winter periods) the lake’s lower part breaks into the Enilchek River Valley completely losing its water (discharge speed may exceed 1,000 m3/s) and dumping it in the course of 2-7 days via subglacial canals.  At the time of lake outburst, it accumulates 0.06-0.07 km3 of water.  Based on research data, lake bursts occur when water temperature in the lake rises to 10-15° Celsius.

Когда использована практика

Дата начала: 01.01.2015

Дата окончания: 31.12.2015

Дата начала: 01.01.2012

Дата окончания: 31.12.2013

Проблема, которая решается применением практики

Acute shortage of irrigation water

Lake Merzbacher’s outbursts often destroy bridges, roads and other engineering facilities/installations located along the rivers originating in the lake down to the Ak-Suu River on the territory of China.

Примененные в практике инструменты

Measures to restore natural springs: arrangement of stone protection fencing around springs and installation of water-release pipes

  1. Upgrading control and management systems;
  2. Remote monitoring
Описание практики и ее результаты

Actions
For project purposes, 10 springs were selected still able to exert water to the surface. Project actions included arrangement of stone protection fencing around springs to prevent cattle from trampling the springs. To allow water release, drain pipes were installed in protection stone walls.

Results
Financial and economic:
The economic effect of livestock production and irriga-tion development exceeding 100,000 USD.

Technical
Enhanced (by up to 30-40%) supply of irrigation and drinking water in the area; drafted “Rules of Using General Use Water Facilities for Personal and Domestic Needs Located on the territory of the Rural District”.

The Sary-Dzhaz River Basin which includes Enilchek -- the largest glacier in the country – is one of main sources of fresh water and a potential source for hydropower in the region.

The region is of special significance as to investigating the probability of both natural and natural-technogenic disasters.  It also plays an important role in rational water supply in Kyrgyzstan and the adjacent territory of Xinjiang Autonomous Region of China, as well as planning large-scale infrastructure projects (ex.: cascading hydro-power stations).

Based on the observation data of the last decade, climate change is the reason behind the regressing Tien Shan glaciation.  It leads to reduction of shared water resources, activation of mud flows, floods and glacial lake outbursts.  The largest known glacier-dammed Lake Merzbacher is characterized by one of the most severe and regular annual disruptive glacial floods.  It was necessary to examine hydrological, climatic and glacial changes associated with altering region- and global-scale atmospheric circulations, i.e. their effect on the central section of Enilchek Glacier (confluence point of its two branches -- Northern and Southern Enilchek).

Actions:

Enilchek Glacier research was carried out on the premises of Merzbacher Station established jointly by CAIAG and GFZ in August 2009.  Subsequently, it is planned to expand the set of measuring tools used for studying Enilchek Glacier.

Project scope included field research in the Sary-Dzhaz and Enilchek River Basins, collection of measurements from automatic meteo- and seismic stations, hydro-posts on Northern Enilchek Bridge and Southern Enilchek ablation stake.

Automatic meteorological stations provide data on temperature, precipitation, humidity, atmospheric pressure, wind and total solar radiation necessary to reveal the impact of altering climatic parameters on glacier balance, discharge of the Enilchek River and outburst discharge regime of Lake Merzbacher.  Project efforts allowed better identification of summer glacial discharge for separate glaciers (Northern and Southern Enilchek) via automatic hydro-posts.

Water level and ice surface fluctuations in Lake Merz-bacher were subject to monitoring and registration via water pressure sensors developed GFZ, OpenGPS Sensor (laser scanning technology) and visual observations (high-resolution web-cameras).

Results:

The CAIAG monitoring network was established under research grants and third-party project investments.  The installed GPRS-modems allowed to automatically transfer data to CAIAG server on a daily basis.

The network of interlinked stations was created already under the GCO-CA Project, including MRZ1 and MRZ2 stations close to Lake Merzbacher on northern and southern walls of Northern and Southern Enilchek Glaciers.  The third ICED Station – to measure glacier speed and monitor the dam -- was installed on the ice dam.

The project allowed the e-mapping of the Sary-Dzhaz River Basin, making and assessing Enilchek Glacier geophysical and capacity measurements, as well as identifying lineaments, breaks and crossbars near outburst-prone Lake Merzbacher.  Analyses of satellite imagery allowed identifying rock slides in the form of paleoseismic dislocations within the 50 km radius of the merger point of the Sary-Dzhaz River and the Enilchek River (its left-bank tributary).  The deciphered paleoseismic dislocations prove the region’s high seismicity.  In the future, project results can be used for designing and building the Sary-Dzhaz Hydropower Station.

Financial and economic:

The received results manifest an important contribution to planning and implementing secure economic development efforts in the Sary-Dzhaz River Basin, in particular, designing, building and operating hydropower plants in the region.

Environmental:

Project outcomes serve basis for assessing and forecasting climatic and ecological variability of water resources.

Social:

  • reduced probability of sudden destruction of engineering facilities;
  • increased security for the residents of the Sary-Dzhaz River Basin.
Какие уроки и рекомендации можно извлечь из практики

Lessons learnt:
The practice demonstrated the advantages of restoring springs and the need to regularly maintain water bodies

Recommendations:
It is necessary to continue the efforts not only in Kazakhstan, but also across the region. For example, it is possible to rehabilitate multiple springs and water accumulators (like “sardoba” or underground “kyariz”) across all Central Asia.

Lessons learnt:

Research and monitoring of Southern and Northern Enil-chek Glaciers and Lake Merzbacher are of paramount importance due to the prospects of developing water, hydropower and mineral resources in the target basin.

Recommendations:

Long-term monitoring of glaciers and lakes is necessary to prevent the devastating outbursts of high-altitude lakes.

Источник практики

Domestic tools (outcomes of research by domestic R&D organizations)

Foreign tools (transfer of foreign experience)

Готовность практики к внедрению

1. Затраты на внедрение: Высокие

2. Примерная стоимость капиталовложений на 1 га:

3. Затраты на поддержание и эксплуатацию: Высокие

4. Экспертная поддержка: Не требуется

1. Затраты на внедрение: Высокие

2. Примерная стоимость капиталовложений на 1 га:

3. Затраты на поддержание и эксплуатацию: Высокие

4. Экспертная поддержка: Не требуется

Краткая информация о проекте

Project title: SaveH2Okz Project within the framework of the joint EU/UNDP/UNECE Project “Supporting Kazakhstan in its transition to green economy model”

Duration: 2015-2018

Project goal and objectives: raising awareness on the issue of water resources exhaustion with the aim of fostering “green economy” practices

Project beneficiaries: local population

Project implementer: Ministry of Agriculture of the Republic of Kazakhstan

Project title: Examination of Enilchek Glacier to determine its balance, morphological and dynamic characteristics, and climatic and hydrological conditions.

Project duration: 2012-2013.

Project goal and objectives: measure a series of parameters necessary for explanation, simulation and forecasting of glacial, water, and atmospheric sub-systems in terms of potential risks of geo-catastrophes and water resources changes.

Project long-term goals: forecast climate and water resources change trends in Kyrgyzstan and Central Asia.

Scale of implementation and project beneficiaries: populations of the Sary-Dzhaz River Basin of the Kyrgyz Republic and the river’s lower reaches on the territory of the People's Republic of China.

Project implementer: Central Asian Institute for Applied Geosciences (CAIAG).

Источник финансирования практики European Union (grant) Government of the Kyrgyz Republic via CAIAG and GFZ
Источники информации о практике

Joint EU/UNDP/UNECE Project “Supporting Kazakhstan in its transition to green economy model” sponsored by the European Union (saveh2o.kz)

  1. Central Asian Institute for Applied Geosciences, 2012-2013 Research Program;
  2. Magnetometer Survey of Southern and Northern Enilchek (Inylchek) Glaciers in the area of Lake Merzbacher;
  3. Presentation about the work of the institute;
  4. On the geo-risk monitoring system in Central Asia;
Контактные данные лица, заполнившего форму

SIC ICWC

 SIC ICWC

Дата заполнения формы 29.03.2018 18.05.2018

Партнеры