Интерактивная карта лучших практик

по использованию водных, земельных и энергетических ресурсов,
а также окружающей среды Центральной Азии

Сравнение практик

Название практики Using drip irrigation systems in combination with soil mulching with polyethylene film Using the DUV 2/0.005-10 Water Level Sensor to automate the process of water accounting, level monitoring and management in Southern Kazakhstan
Категория Водные ресурсы Водные ресурсы
Инструмент Система капельного орошения Система мониторинга
Сфера использования практики
  • Use of water resources
  • Use of land resources

Use of water resources

Пригодность практики для адаптации к изменению климата Умеренная Высокая
Кем реализована практика K-DEN Farm
Kazakh Scientific Research Institute of Water Economy (KazSRIWE) LLP
Где использована практика

Страна: Казахстан

Область: Алматинская

Район: Алакольский

Другой населенный пункт: Yntaly Rural District (320 km away from Taldykorgan (region center))

Страна: Казахстан

Область: Южно-Казахстанская

Район: Мактааральский

Специфика местности, где использована практика

Foothill area

The hydro-posts are located in foothill and/or flat areas with the water stream speeds in canals fluctuating between 0.1 and 1.5 m/s

Когда использована практика

Дата начала: 01.01.2008

Дата окончания: 31.12.2010

Дата начала: 01.01.2015

Дата окончания: 31.12.2017

Проблема, которая решается применением практики

After disintegration of large agricultural enterprises (state farms), the maintenance of inter- and intra-farm irrigation systems – that were earlier on the balance of state farms – appeared to exceed the technical capacity of small-scale private and owner-operated farms.  Due to this reason, in the majority of agricultural districts the tray irrigation networks got out of order.  The wear of the lion’s share of hydraulic engineering facilities in Alakol District reached nearly 70% leading to water losses associated with crops watering – the analysis showed that 40% of water was lost to filtration and evaporation.  In its turn, that resulted in ineffective and irrational use of water resources and contraction of irrigated land area.  For example, whereas in 2003 water intake for irrigation amounted to 195 mln m3, in 2009 it decreased to 114.8 mln m3 (41.1% drop).

Issue: Low efficiency of irrigation water due to wear of hydraulic engineering facilities/installations (tray irrigation system).

  • Inefficient management of water resources;
  • Inefficient planning of water distribution
Примененные в практике инструменты

Drip irrigation in combination with soil mulching with polyethylene film

DUV 2/0.005-10 Water Level Sensor

Описание практики и ее результаты

Drip irrigation combined with filming has been widely adopted around the world in vegetable and cucurbits cultivation.  Thanks to long moisture preservation and proper thermal balance achieved under film, deployment of this technology allows reducing the overall need for irrigation water and receiving earlier and higher crop yields.

Actions:

The K-DEN Farm was offered to apply drip irrigation through film cover on the area of 5 hectares in Yntaly Rural District.  The technique was adapted for project site by Doctor of Engineering R.I. Vagapov. The recommended technology is the most available to local farmers and ensures significant saving of irrigation water.

Necessary resources:

1) seeds of vegetable and cucurbit crops;

2) polyethylene film;

3) equipment (DT-75 tractor, seeder, cultivator);

4) labor for preparatory works, sowing and harvest campaigns;

5) expert consultations and training.

Results:

Financial and economic:

The yield of vegetable and cucurbit crops increased twofold compared to two previous years allowing the farm to receive the profit of $12,000/ha in spite of the fact that the whole yield was sold at low price to the local population of Eastern Kazakhstan and Almaty Regions.  In particular, the productivity of vegetable crops amounted to 350-400 dt/ha, and cucurbits – 400 dt/ha.

Technical:

Water saving made 220,040 m3.

The DUV 2/0,005-10 Sensor was deployed and demonstrated its efficiency in Jambyl and Southern Kazakhstan Regions.  It allowed to visually and in real-time observe the dynamics of water level fluctuations and completely exclude manual operations and subjectivity in the process of taking readings – a relevant task in the environment of transition to market economy.

Water level sensors were installed in 17 hydro-posts in Southern Kazakhstan Region (Maktaaral District).  In Jambyl Region, the same sensors were installed in 3 hydro-posts in Merke District.

Results:

Technical:

a) immediate data exchange on water volume passing through every water lead to the fields of agricultural producers (farms) as well as automatic transfer of this information to stakeholder organizations (branch of “Kazvodkhoz” Republican State Enterprise (RSE), etc.);

b) archiving the data coming from hydro-posts with its subsequent processing in the form of reports.

Technical and economic:

1) “all in one” – all components of DUV 2/0.005-10 are assembled into one unit/casing, do not require any additional modules and adjustments, i.e. it is an out-of-the-box universal tool to execute monitoring of water reserves irrespective of the availability of power supply and other technical and weather conditions.  The simple Sensor’s design facilitates installation and start-up and commissioning, as well as allows minimizing labor costs;

2) DUV 2/0.005-10 is flexible in terms of installation, data transfer methods, measurement subject (water level or hydro-lock position, etc.);

3) the cost of the measuring unit is 3-4 times less compared to currently available alternatives;

4) DUV 2/0.005-10 designed architecture allows increasing the number of controlled points and performing an integrated monitoring of the whole network.

Какие уроки и рекомендации можно извлечь из практики

Lessons learnt:

The practice of drip irrigation in combination with the application of polyethylene film has increased the efficiency of water use and crops productivity as well as reduced labor needs.

Recommendations:

The widespread deployment of water-saving technologies requires the presence of effective financial incentives for at water consumers.

  • Domestic tools (outcomes of research by domestic R&D organizations),
  • Foreign tools (transfer of foreign experience)

Lessons learnt:

Deployment of the DUV 2/0.005-10 Water Level Sensor led to increased precision of water level and consumption measurements and higher promptness of information collection compared to any known methods.

Using the device in the conditions of water resources deficiency, on the one hand, will ensure objective accounting of water use and, on the other hand, will promote water conservation among water users which will lead to more efficient technological development of agro-industrial complex and higher labor productivity.

Recommendations:

The success of deploying water level sensors in project hydro-posts facilitated execution of measures to disseminate the positive experience of using the device in the water sector.  Their effect will be even more significant as enhanced quantity and quality indicators will ensure effective management of water resources and water conservation with simultaneous development of irrigated agriculture.

Источник практики

Domestic tools (outcomes of research by domestic R&D organizations)

Готовность практики к внедрению

1. Затраты на внедрение: Высокие

2. Примерная стоимость капиталовложений на 1 га:

3. Затраты на поддержание и эксплуатацию: Высокие

4. Экспертная поддержка: Не требуется

1. Затраты на внедрение: Высокие

2. Примерная стоимость капиталовложений на 1 га:

3. Затраты на поддержание и эксплуатацию: Высокие

4. Экспертная поддержка: Не требуется

Краткая информация о проекте

Project title: Integrated preservation of globally significant wetlands as dwelling places of migrating birds.

Project duration: May 2008-Sept 2010.

Project goal and objectives: assessment of agro-economic and environmental efficiency of technology of sprinkling irrigation on vegetable crops; establishment of optimum watering regimes for vegetable crops based on mist sprinkling irrigation.

Project beneficiaries: peasants (farmers) and agricultural producers.

Project implementer: K-DEN Farm

1. Project title: Implementation, scientific and methodical support and dissemination of automatic water-monitoring and water-accounting instruments in water measuring facilities of the pilot site in Jambyl Region.

Project goal: implement the innovation in the agro-industrial complex of Jambyl Region by way of installing water level sensors (DUV 0.005-10 Model, designed by KazSRIWE LLP) in hydro-posts along the Merkenka River and its diversion canals: Chon, Tesken, MPT of Merke District of Jambyl Region.

 

2. Project title: Implementation, scientific and methodical support and dissemination of automatic water-monitoring and water-accounting instruments in water measuring facilities of the pilot site in Southern Kazakhstan Region.

Project goal: implement the innovation in the agro-industrial complex of Southern Kazakhstan Region by way of installing water level sensors (DUV 0.005-10 Model, designed by KazSRIWE LLP) in hydro-posts along the diversion canals of Dostyk Main Canal in Maktaaral District of Southern Kazakhstan Region.

Источник финансирования практики GEF/UNDP, K-DEN Farm Program 019 “Identification of Innovative Projects in the Agro-Industrial Complex for 2017”
Источники информации о практике

K-DEN Farm,

Mr. Afrikan Konstantinovich Kim, farm head

(ph.: +7 701 227 27 49, +7 701 672 85 85)

  1. Implementation, scientific and methodical support and dissemination of automatic water-monitoring and water-accounting instruments in water measuring facilities of the pilot site in Jambyl Region: R&D Report (final)/ Kazakh Scientific Research Institute of Water Economy, supervised by Karlykhanov, O. K., executed by Li, M.A., Bakbergenov, N.N., Zhakashov, A.M., Imanaliyev, T. K., Ponkratiev, D.M., Taraz 2017, p. 108;
  2. Implementation, scientific and methodical support and dissemination of automatic water-monitoring and water-accounting instruments in water measuring facilities of the pilot site in Southern Kazakhstan Region: R&D Report (final)/ Kazakh Scientific Research Institute of Water Economy, supervised by Karlykhanov, O. K., executed by Li, M.A., Bakbergenov, N.N., Zhakashov, A.M., Imanaliyev, T. K., and Ponkratiev, D.M., Taraz 2017, p. 80.
Контактные данные лица, заполнившего форму

SIC ICWC

Li Marina 

Scientific Research Institute of Water Economy

+7(705)5774464

E-mail: limarina76@mail.ru

Дата заполнения формы 30.03.2018 18.05.2018

Партнеры