Интерактивная карта лучших практик

по использованию водных, земельных и энергетических ресурсов,
а также окружающей среды Центральной Азии

Сравнение практик

Название практики Application of tubular outlet flowmeters Increasing water supply of distant pastures
Категория Водные ресурсы Водные ресурсы
Инструмент Средства и методы водоучета Система повышения водообеспеченности
Сфера использования практики

Use of water resources

  • Use of water resources
  • Use of land resources
  • Environmental protection
Пригодность практики для адаптации к изменению климата Умеренная Высокая
Кем реализована практика Institute of Water Issues, Hydropower and Ecology of the Academy of Sciences of the Republic of Tajikistan (IWIHE of the AS of the RTj)
Kazakh Scientific Research Institute of Water Economy (KazSRIWE) LLP
Где использована практика

Страна: Таджикистан

Область: Хатлонская

Район: Джиликульский

Страна: Казахстан

Область: Южно-Казахстанская

Другой населенный пункт: distant pastures of A. Sagintayev LLP

Специфика местности, где использована практика
  • Located in the valley part of the Vakhsh River Basin (river catchment area);
  • Deep (below 3 meters) ground water occurrence;
  • Middle loamy soils.

The climate of Jambyl Region is characterized by significant dryness and continentality. The majority of Talas District is located in the desert zone. The warm season is characterized by high air dryness.

Despite substantial thermal resources, considerable lack of moisture limits crop cultivation. The majority of the district’s territory is used for spring, fall and winter grazing. Water supply of pastures is ensured by underground water.

Когда использована практика

Дата начала: 01.04.2010

Дата окончания: 31.10.2011

Дата начала: 01.06.2015

Дата окончания: 15.09.2015

Проблема, которая решается применением практики

Uneven distribution of irrigation water, lack of water accounting means to ensure observance of recommended irrigation norms for cotton

Water supply of the farms located in the zone of distant-pasture livestock production; possibilities to utilize idle wells containing highly mineralized water, use water resources in a rational manner, as well as to increase the area of used pastures by way of supplying them with additional water.

Примененные в практике инструменты

Tubular water outlet flowmeter

Technology of reverse osmosis water de-salination in well casing columns

Описание практики и ее результаты

Actions:

- Construction of tubular water outlet flowmeter with removable nozzles (procurement of polyethylene piping to make tubular water outlets and matching nozzles);
- Installation of tubular water outlet flowmeter along temporary sprinklers. 

Results:

Financial and economic:

saving of irrigation water; low cost of irrigation system automation (total kit cost: $500/ha) with the service life of 5 years. 

Technical:

simple design allowing a more even distribution of irrigation water stream among furrows, thus, ensuring the prescribed water supply mode.

Social:

improved working conditions of irrigators; lower labor needs/costs; enhanced mutual trust among farmers and water users.

The water-lifting and de-salination technology includes several innovative elements like air-tight wellheads, pipeless water-lifting devices and de-salination module block in absence of high-pressure pump to drive water through them.

Water de-salination with its subsequent separation into soft (permeate) water supplied to consumers and saline concentrate diverted for disposal.

Protected by Patent No. 23118 of the RK:

 - application of water lifting pipes for submersible pumps is excluded;

- pollution of the water-bearing layer is excluded;

- labor input (assembly and dismantling works) decreases by 40-70%;

- power costs (water lifting) decrease by 30%;

- water return of the water-bearing layer due to vacuuming the water reception section increases;

- exclusion of capital costs associated with construction of a heated room for de-salination block.

Economic efficiency

The social effect lies in supplying consumers with high-quality drinking water, and the economic effect – in growing livestock population grazing in distant pastures with additional (de-salinized underground) water supply. The later will increase Kazakhstan’s food security and meat export capacity, as well as enhance the overall environmental condition of distant pastures.

Какие уроки и рекомендации можно извлечь из практики

Lessons learnt:

Installation and deployment of tubular water outlet flowmeter allows to improve the uniformity of irrigation stream’s distribution among furrows and conduct irrigation water accounting.

Recommendations:

It is necessary to widely use the small-scale irrigation automation means like the tubular water outlet flowmeters which have simple design, are convenient to operate, are low-cost and mobile and ensure supply of the prescribed amount of irrigation water.

Enhancing water supply of pastures by restoring existing and, where possible, building new well infrastructure; possibility of using water sources with mineralized water that were not used previously, providing livestock crews and cattle on pastures with drinking-quality water.

Источник практики

Domestic tools (outcomes of research by domestic R&D organizations)

Domestic tools (outcomes of research by domestic R&D organizations)

Готовность практики к внедрению

1. Затраты на внедрение: Высокие

2. Примерная стоимость капиталовложений на 1 га:

3. Затраты на поддержание и эксплуатацию: Высокие

4. Экспертная поддержка: Не требуется

1. Затраты на внедрение: Умеренные

2. Примерная стоимость капиталовложений на 1 га: 2,000 thous. tenge

3. Затраты на поддержание и эксплуатацию: Умеренные

4. Экспертная поддержка: Требуется на стадии внедрения

Краткая информация о проекте

Project title: Watering technology based on tubular water outlet flowmeters.

Project duration: Apr 2010-Oct 2011.

Project goal and objectives: development and deployment of a crop watering technology for dekhan farms of the Republic of Tajikistan allowing to significantly increase the efficiency of water use.

Project beneficiaries: members of “Istikol” WUA (Water User Association).

Project implementer: Institute of Water Issues, Hydropower and Ecology of the Academy of Sciences of the RTj

The R&D works were executed under the theme “Investigating the Process of De-Salinizing Different Types of Mineralized Underground Water and Identifying De-Salination Regimes for Water Supply of Pasturable Land” (2013-2015, amount of funding – 13.5 mln tenge) within the framework of Project 0190/GF3 under Program 055 “Research and scientific-technical activities”, Sub-Program 101 “Grant funding of scientific research” as per the contract with SE “Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan”.  The process of de-salinizing mineralized underground water with different physical and chemical characteristics was designed and adjusted in lab and field conditions on distant pastures.  In addition, the technical standards of operating devices to treat underground water with 2-7 g/l mineralization (as per Patent No. 23118 of the RK) were developed.

The practice was deployed under the R&D Workstream “Scientific substantiation of pasture water supply system based on GIS-technologies with the aim of intensifying distant-pasture livestock production” within the framework of Project “Development of technologies to improve and ensure rational use of pastures to advance distant-pasture livestock production” (2015-2017).

Источник финансирования практики “Tajikistan Water Partnership” NGO Ministry of Agriculture of Kazakhstan
Источники информации о практике

Report by the Innovation Technology Department of the IWIHE of the AS of the RTj, Dushanbe, 2012, 45 p.

  1. Balgabayev, N.N., Tumlert, V.A., Tumlert, E.V. “Resource-saving technology of de-salinizing mineralized underground water in the conditions of distant pastures” / Water Magazine, No. 6 (82), 2014, pp. 46-49;
  2. Tumlert, V.A., Grankin, Yu.Ya., Tumlert, E.V., Gritsenko, N.V. “Disposal of salt brines during de-salination of mineralized water with receiving commodity salts and fertilizers”// “Science and World”, 2015, No. 8 (24), pp. 32-37;
  3. Tumlert, V.A., Grankin Yu.Ya., Tumlert, E.V. “Investigating the process of de-salting mineralized underground water based on reverse osmosis via a device installed in well trunk” // ”Science and World”, 2015, No. 12 (28);
  4. Tumlert, V.A. “Issues of restoring and upgrading pasture water supply infrastructure to revive distant-pasture livestock production” // “Agricultural Science of Kazakhstan Digest”, 2014, No. 9.
Контактные данные лица, заполнившего форму

SIC ICWC

SIC ICWC

Дата заполнения формы 02.04.2018 18.05.2018

Партнеры