Interactive map of the best practices

on the use of water, land and energy resources,
as well as the environment of Central Asia

Comparison of practices

Название практики Examination and monitoring of Enilchek Glacier and Lake Merzbacher Using drip irrigation systems in combination with soil mulching with polyethylene film
Category Water resources Water resources
Tool Monitoring system

Other: Remote monitoring

Drip irrigation system
Field of application
  • Use of water resources
  • Use of land resources
Usability of practice for adaptation to climate change High Moderate
Implemented by Central Asian Institute for Applied Geosciences (CAIAG) and German Research Centre for Geosciences (GFZ)
K-DEN Farm
Used by

Country: Kyrgyzstan

Province: Issyk Kul Region

District: Ak-Suu District

Country: Kazakhstan

Province: Almaty region

District: Alakol District

Other settlement: Yntaly Rural District (320 km away from Taldykorgan (region center))

Local specifics

Enilchek is a dendrite-type glacier originating around Khan Tengri Peak (6,995 m) with its tongue (43.2 km long and on average 2.2 km wide) descending to 2,800 m ASL.  Northern Enilchek Glacier is 38.2 km long (181.2 sq.km) and Southern Enilchek Glacier is 58.9 km long (567.2 sq.km).

Lake Merzbacher:

  • 3,304 m ASL;
  • volume – 0.12-0.25 km3;
  • deepest point -- 75 m;
  • average depth -- 35 m;
  • water-surface lake area – 4.5 sq.km.

Lake Merzbacher formed at the end of the Small Ice Age (19th century).  It has two pools called Upper and Lower Lakes divided by 400 m of elevation and 3-4 km long ice river with the same name.  In its southern part, the lower and larger part of the lake is limited by the glacial “dam”.  Every year (twice a year, in summer and winter periods) the lake’s lower part breaks into the Enilchek River Valley completely losing its water (discharge speed may exceed 1,000 m3/s) and dumping it in the course of 2-7 days via subglacial canals.  At the time of lake outburst, it accumulates 0.06-0.07 km3 of water.  Based on research data, lake bursts occur when water temperature in the lake rises to 10-15° Celsius.

Foothill area

Practice usage period

Start date: 01.01.2012

End date: 31.12.2013

Start date: 01.01.2008

End date: 31.12.2010

Problem solved through this practice

Lake Merzbacher’s outbursts often destroy bridges, roads and other engineering facilities/installations located along the rivers originating in the lake down to the Ak-Suu River on the territory of China.

After disintegration of large agricultural enterprises (state farms), the maintenance of inter- and intra-farm irrigation systems – that were earlier on the balance of state farms – appeared to exceed the technical capacity of small-scale private and owner-operated farms.  Due to this reason, in the majority of agricultural districts the tray irrigation networks got out of order.  The wear of the lion’s share of hydraulic engineering facilities in Alakol District reached nearly 70% leading to water losses associated with crops watering – the analysis showed that 40% of water was lost to filtration and evaporation.  In its turn, that resulted in ineffective and irrational use of water resources and contraction of irrigated land area.  For example, whereas in 2003 water intake for irrigation amounted to 195 mln m3, in 2009 it decreased to 114.8 mln m3 (41.1% drop).

Issue: Low efficiency of irrigation water due to wear of hydraulic engineering facilities/installations (tray irrigation system).

Tools used in the practice
  1. Upgrading control and management systems;
  2. Remote monitoring

Drip irrigation in combination with soil mulching with polyethylene film

Description of the practice and its results

The Sary-Dzhaz River Basin which includes Enilchek -- the largest glacier in the country – is one of main sources of fresh water and a potential source for hydropower in the region.

The region is of special significance as to investigating the probability of both natural and natural-technogenic disasters.  It also plays an important role in rational water supply in Kyrgyzstan and the adjacent territory of Xinjiang Autonomous Region of China, as well as planning large-scale infrastructure projects (ex.: cascading hydro-power stations).

Based on the observation data of the last decade, climate change is the reason behind the regressing Tien Shan glaciation.  It leads to reduction of shared water resources, activation of mud flows, floods and glacial lake outbursts.  The largest known glacier-dammed Lake Merzbacher is characterized by one of the most severe and regular annual disruptive glacial floods.  It was necessary to examine hydrological, climatic and glacial changes associated with altering region- and global-scale atmospheric circulations, i.e. their effect on the central section of Enilchek Glacier (confluence point of its two branches -- Northern and Southern Enilchek).

Actions:

Enilchek Glacier research was carried out on the premises of Merzbacher Station established jointly by CAIAG and GFZ in August 2009.  Subsequently, it is planned to expand the set of measuring tools used for studying Enilchek Glacier.

Project scope included field research in the Sary-Dzhaz and Enilchek River Basins, collection of measurements from automatic meteo- and seismic stations, hydro-posts on Northern Enilchek Bridge and Southern Enilchek ablation stake.

Automatic meteorological stations provide data on temperature, precipitation, humidity, atmospheric pressure, wind and total solar radiation necessary to reveal the impact of altering climatic parameters on glacier balance, discharge of the Enilchek River and outburst discharge regime of Lake Merzbacher.  Project efforts allowed better identification of summer glacial discharge for separate glaciers (Northern and Southern Enilchek) via automatic hydro-posts.

Water level and ice surface fluctuations in Lake Merz-bacher were subject to monitoring and registration via water pressure sensors developed GFZ, OpenGPS Sensor (laser scanning technology) and visual observations (high-resolution web-cameras).

Results:

The CAIAG monitoring network was established under research grants and third-party project investments.  The installed GPRS-modems allowed to automatically transfer data to CAIAG server on a daily basis.

The network of interlinked stations was created already under the GCO-CA Project, including MRZ1 and MRZ2 stations close to Lake Merzbacher on northern and southern walls of Northern and Southern Enilchek Glaciers.  The third ICED Station – to measure glacier speed and monitor the dam -- was installed on the ice dam.

The project allowed the e-mapping of the Sary-Dzhaz River Basin, making and assessing Enilchek Glacier geophysical and capacity measurements, as well as identifying lineaments, breaks and crossbars near outburst-prone Lake Merzbacher.  Analyses of satellite imagery allowed identifying rock slides in the form of paleoseismic dislocations within the 50 km radius of the merger point of the Sary-Dzhaz River and the Enilchek River (its left-bank tributary).  The deciphered paleoseismic dislocations prove the region’s high seismicity.  In the future, project results can be used for designing and building the Sary-Dzhaz Hydropower Station.

Financial and economic:

The received results manifest an important contribution to planning and implementing secure economic development efforts in the Sary-Dzhaz River Basin, in particular, designing, building and operating hydropower plants in the region.

Environmental:

Project outcomes serve basis for assessing and forecasting climatic and ecological variability of water resources.

Social:

  • reduced probability of sudden destruction of engineering facilities;
  • increased security for the residents of the Sary-Dzhaz River Basin.

Drip irrigation combined with filming has been widely adopted around the world in vegetable and cucurbits cultivation.  Thanks to long moisture preservation and proper thermal balance achieved under film, deployment of this technology allows reducing the overall need for irrigation water and receiving earlier and higher crop yields.

Actions:

The K-DEN Farm was offered to apply drip irrigation through film cover on the area of 5 hectares in Yntaly Rural District.  The technique was adapted for project site by Doctor of Engineering R.I. Vagapov. The recommended technology is the most available to local farmers and ensures significant saving of irrigation water.

Necessary resources:

1) seeds of vegetable and cucurbit crops;

2) polyethylene film;

3) equipment (DT-75 tractor, seeder, cultivator);

4) labor for preparatory works, sowing and harvest campaigns;

5) expert consultations and training.

Results:

Financial and economic:

The yield of vegetable and cucurbit crops increased twofold compared to two previous years allowing the farm to receive the profit of $12,000/ha in spite of the fact that the whole yield was sold at low price to the local population of Eastern Kazakhstan and Almaty Regions.  In particular, the productivity of vegetable crops amounted to 350-400 dt/ha, and cucurbits – 400 dt/ha.

Technical:

Water saving made 220,040 m3.

Lessons learnt and recommendations made

Lessons learnt:

Research and monitoring of Southern and Northern Enil-chek Glaciers and Lake Merzbacher are of paramount importance due to the prospects of developing water, hydropower and mineral resources in the target basin.

Recommendations:

Long-term monitoring of glaciers and lakes is necessary to prevent the devastating outbursts of high-altitude lakes.

Lessons learnt:

The practice of drip irrigation in combination with the application of polyethylene film has increased the efficiency of water use and crops productivity as well as reduced labor needs.

Recommendations:

The widespread deployment of water-saving technologies requires the presence of effective financial incentives for at water consumers.

  • Domestic tools (outcomes of research by domestic R&D organizations),
  • Foreign tools (transfer of foreign experience)
Source of practice

Foreign tools (transfer of foreign experience)

Readiness for implementation

1. Cost of implementation: High

2. Approximate cost of investment per 1 ha:

3. O&M costs: High

4. Expert support: Not needed

1. Cost of implementation: High

2. Approximate cost of investment per 1 ha:

3. O&M costs: High

4. Expert support: Not needed

Brief information on the project

Project title: Examination of Enilchek Glacier to determine its balance, morphological and dynamic characteristics, and climatic and hydrological conditions.

Project duration: 2012-2013.

Project goal and objectives: measure a series of parameters necessary for explanation, simulation and forecasting of glacial, water, and atmospheric sub-systems in terms of potential risks of geo-catastrophes and water resources changes.

Project long-term goals: forecast climate and water resources change trends in Kyrgyzstan and Central Asia.

Scale of implementation and project beneficiaries: populations of the Sary-Dzhaz River Basin of the Kyrgyz Republic and the river’s lower reaches on the territory of the People's Republic of China.

Project implementer: Central Asian Institute for Applied Geosciences (CAIAG).

Project title: Integrated preservation of globally significant wetlands as dwelling places of migrating birds.

Project duration: May 2008-Sept 2010.

Project goal and objectives: assessment of agro-economic and environmental efficiency of technology of sprinkling irrigation on vegetable crops; establishment of optimum watering regimes for vegetable crops based on mist sprinkling irrigation.

Project beneficiaries: peasants (farmers) and agricultural producers.

Project implementer: K-DEN Farm

Funding source Government of the Kyrgyz Republic via CAIAG and GFZ GEF/UNDP, K-DEN Farm
Information sources
  1. Central Asian Institute for Applied Geosciences, 2012-2013 Research Program;
  2. Magnetometer Survey of Southern and Northern Enilchek (Inylchek) Glaciers in the area of Lake Merzbacher;
  3. Presentation about the work of the institute;
  4. On the geo-risk monitoring system in Central Asia;

K-DEN Farm,

Mr. Afrikan Konstantinovich Kim, farm head

(ph.: +7 701 227 27 49, +7 701 672 85 85)

Contacts of a person, who filled this form

 SIC ICWC

SIC ICWC

Form submission date 18.05.2018 30.03.2018

Partners