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Abstract: Climate change may significantly impact the availability and quality of water resources in
dam reservoirs by potentially altering the hydrological regime of lake tributaries and the correspond-
ing flow–duration curves. Hydrological models driven by climate projections (downscaled to the
watershed scale and bias corrected to eliminate systematic errors) are effective tools for assessing
this potential impact. To assess the uncertainty in future water resource availability, resulting from
the inherent uncertainty in climate model projections, an ensemble of climate models and different
climate scenarios can be considered. The reliability and effectiveness of this approach were illus-
trated by analyzing the potential impact of climate change on the water availability at Brugneto
Lake in northern Italy. This analysis was based on climate projections derived from an ensemble of
13 combinations of General Circulation Models and Regional Climate Models under two distinct
scenarios (RCP4.5 and RCP8.5). The semi-distributed HEC-HMS model was adopted to simulate
the hydrological response of the basin upstream of the lake. The hydrological model parameters
were calibrated automatically via the PEST software package using the inflows to the lake, estimated
through a reverse level pool routing method, as observed values. Future water availability was
predicted for short- (2010–2039), medium- (2040–2069), and long-term (2070–2099) periods. The
results indicate that the uncertainty in reservoir inflow is primarily due to the uncertainty in future
rainfall. A moderate reduction in water availability is expected for Brugneto Lake by the end of
the current century, accompanied by modifications in the flow regime. These changes should be
considered when planning future adaptation measures and adjusting reservoir management rules.

Keywords: climate change impact; water resources; dam reservoir; reservoir management; hydrological
modeling; regional climate projections

1. Introduction

Global warming is having a tremendous impact on the Earth’s hydrological cycle,
with significant social and economic consequences. The hydrological cycle shows changes,
detectable since the mid-20th century, which are expected to be exacerbated in the future
at both the global and regional scales, with different impacts at the catchment scale. In
particular, droughts have increased in the Mediterranean region and will intensify in
the future, with potentially serious hydrological, agricultural, and ecological impacts.
The expected changes in climate may also affect the availability and quality of water
resources [1].

Artificial reservoirs created by dams may play a key role in adaptation strategies
to climate change [2]. The Italian National Adaptation Strategy to Climate Change [3]
identifies, among the various strategies to cope with droughts, an increase in the capacity
of existing artificial reservoirs, thereby making it possible to plan multi-year management
of the water resource, in combination with an optimized management of reservoir levels.
For this reason, it becomes essential to evaluate the potential impact of climate change on
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the inflow to artificial reservoirs and, therefore, on the catchment areas upstream of them.
As an example, climate change can alter the hydrological regime of a river, as well as the
flow–duration curves [4], forcing dam managers to adapt the reservoir management rules
used currently.

Hydrological models driven by climate projections are useful tools through which to
obtain quantitative insights into potential future river flow conditions (e.g., [5,6]). Indeed,
hydrological models can effectively simulate the rainfall–runoff process and other dominant
hydrological processes in watersheds with varying levels of detail, involving empirically,
conceptually, or physically based models [7,8]. On the other hand, climate models provide
future projections of several variables, including precipitation and temperature, which are
key drivers of hydrological processes. These climate projections can be generated using
different General Circulation Models (GCMs), which offer a coarse spatial resolution, or
Regional Climate Models (RCMs), which provide a finer spatial resolution. The Intergov-
ernmental Panel on Climate Change (IPCC) has selected different emission pathways (or
scenarios), such as the Representative Concentration Pathways (RCPs) [9] and the Shared
Socioeconomic Pathways (SSPs) [10], to depict possible alternative future conditions.

When conducting analyses on a local scale or within small watersheds to assess
hydrological impacts, further refinement of the regional climate projections through a
downscaling process may be necessary. Additionally, it is crucial to apply bias-correction
techniques to correct systematic errors affecting the projections deriving from climate
models [11–15].

In order to cope with the inherent uncertainty in climate model projections, it is
advantageous to use an ensemble of climate models, rather than relying on a single
realization [12,13,16]. This ensemble approach should also incorporate different climate
scenarios. Accordingly, the selected hydrological model must be run multiple times for
different climate projections, thus obtaining a set of potential outcomes [5]. In some cases,
an ensemble of hydrological models is employed to investigate the uncertainty associated
with models of different structural complexities [17].

Numerous studies in the literature combine hydrological models with climate model
projections to evaluate the effects of climate change on water resources at the river basin
scale (e.g., [18–23]), some of these focusing on assessing water resource availability in rivers
that flow into natural or artificial lakes (e.g., [24–30]).

Versini et al. [24] investigated the impacts of climate change on the Llobregat Basin
in Spain, which includes three large dams. The HBV (Hydrologiska Byråns Vattenbal-
ansavdelning) model was coupled with climate projections from GCMs (either statistically
or dynamically downscaled and bias corrected) under two different scenarios (A2 and
B1) [31]. A future decrease in water resources was predicted for the study area, with the
extent of this decrease varying depending on the scenario and time period under consider-
ation. Additionally, that study showed that drought periods are expected to become more
frequent, despite the high level of uncertainty.

Emami and Koch [25] used the SWAT (Soil and Water Assessment Tool) hydrological
model to examine water resources in the basin of the Zarrine River, a tributary of Lake
Urmia (Iran). The hydrological model was driven by bias-corrected future climate data
from two GCMs, one for precipitation and another for temperature, under the RCP2.6,
RCP4.5, and RCP8.5 scenarios. The results indicate a projected reduction in inflow to the
lake by 2029, primarily attributed to a decrease in precipitation.

Teklay et al. [26] investigated how climate change could affect streamflow and evap-
otranspiration in the Lake Tana Basin in Ethiopia. The SWAT model was coupled with
bias-corrected high-resolution climate projections, obtained from a single climate model
under the RCP4.5 and RCP8.5 scenarios. Despite the predicted rise in temperature poten-
tially leading to increased evapotranspiration, the expected increase in precipitation may
result in higher streamflow levels by 2045–2055. The authors predicted a 7.2% increase in
streamflow levels for the RCP4.5 scenario and a 33% increase for the RCP8.5 one, compared
to 2005–2015.
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Babur et al. [27] assessed the climate change impact on the reservoir inflow of Mangla
Dam in Pakistan. The authors used climate projections from seven GCMs under the RCP4.5
and RCP8.5 scenarios in combination with the SWAT model. The Mangla Basin is likely
to experience more frequent floods and fewer droughts in the future, due to the expected
increases in both high and low flows.

D’Oria et al. [28] investigated the potential impacts of climate change on water re-
sources within a watershed in northern Tuscany, Italy, which includes 19 dams. The authors
combined the HEC-HMS (Hydrologic Engineering Center’s Hydrologic Modeling System)
hydrological model with an ensemble of climate models under the RCP4.5 and RCP8.5
scenarios. A moderate reduction in water resources is expected for the study area during
the medium- (2031–2040) and long-term (2051–2060) periods. The study showed that the
presence of dams, with their storage capacities, serves to mitigate the impact of climate
change, although the results strongly depend on the management strategies employed.

Abdulahi et al. [29] focused on the Upper Awash River Basin in Ethiopia to examine
how climate change would impact future streamflow availability. They utilized the HBV
hydrological model and incorporated bias-corrected climate projections from a single RCM
for the RCP4.5 and RCP8.5 scenarios. The authors predicted an increase in the annual
streamflow in the study area in the future.

Dau et al. [30] assessed water availability in the Huong River Basin in Central Vietnam,
which includes three major reservoirs and is subject to climate and population changes.
The HEC-HMS was used to simulate hydrological processes, while future climate variables
under the RCP8.5 scenario were derived using two different approaches: one involved
statistically downscaling GCM projections from a single model, and the other utilized
bias-corrected RCM projections from a different model. Increases in both temperature
and annual rainfall are expected for the future. Moreover, the results of the study led the
authors to conclude that the Huong River Basin is likely to meet future water demands,
even in the face of the most severe climate projections.

In this paper, we investigated the potential impacts of climate change on the in-
flow to Brugneto Lake, an artificial reservoir formed by Brugneto Dam, located in the
province of Genoa, northern Italy. Climate projections from 13 RCMs of the EURO-CORDEX
initiative [32] were downscaled and bias corrected for the study area, using available ob-
served data. Daily precipitation and mean temperature data extending until the end of the
current century were obtained under the RCP4.5 and RCP8.5 scenarios. This ensemble of
climate projections was used to drive an HEC-HMS hydrological model calibrated for the
watershed upstream of the dam, providing insights into water resource availability over
short- (2010–2039), medium- (2040–2069), and long-term (2070–2099) periods. The use of
a large ensemble of models and different scenarios increases the comprehensiveness and
reliability of the climate projections, making it a novel and robust method for assessing
future climate conditions in the study area.

This paper is structured as follows: Section 2 introduces the study area, presents the
available climate data (including historical observations and future climate projections),
outlines the hydrological data, and describes the implementation of the hydrological model.
Section 3 presents the results, encompassing meteorological and hydrological data for
historical and future periods. Finally, discussion and conclusions are reported in Section 4.

2. Materials and Methods
2.1. Study Area

The study area is a small catchment (26 km2) located upstream of Brugneto Dam, a
concrete gravity structure on Brugneto River, a tributary of Trebbia River, in the Province
of Genoa (Liguria Region, northern Italy).

The dam was built between 1956 and 1960 by the Municipalized Gas and Water
Company (AMGA) of Genoa. It is 77.5 m high, and the dam crest is situated at an elevation
of 780 m a.s.l. The catchment area extends up to 1597 m a.s.l. on Mount Antola, where the
Brugneto River originates. The primary function of the dam is to support the provision of
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drinking water to the Province of Genoa. The reservoir behind the dam is referred to as
Brugneto Lake, which has a capacity of approximately 25 million m3. The lake extends for
a length of 3 km, with a maximum width of about 200 m. At the spillway crest level (777 m
a.s.l.), the lake covers approximately 0.97 km2. Due to the morphological configuration of
the catchment, the lake exhibits several branches that gather runoff from different valleys
(Figure 1). The main river that feeds into the lake (Brugneto River) has a length of about
5 km.
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Figure 1. Study area with highlights including the locations of the dam, the artificial lake, and the
primary river network, as well as the locations of the Brugneto Dam gauging station and subbasins
used for hydrological modeling.

The predominant soil types consist mainly of clay loam and silty clay loam classes,
as classified by the United States Department of Agriculture (USDA) soil classification
system [33]. The data were retrieved from the geoportal of the Liguria Region: https:
//geoportal.regione.liguria.it/, accessed on 10 October 2023. The primary land cover in the
Brugneto catchment consists of forested areas, covering nearly 72% of the total area, with
an additional 23% covered by grassed areas. The remaining portion of the study area is
divided between water bodies (4%) and urban districts (1%).

A shallow aquifer, which closely resembles the surface catchment, is present in the
region. This aquifer is bounded at the base by rock formations, characterized by lithological
variations and chaotic complexes, which hinder the recharge of deeper aquifers. As a result,
most precipitation over the basin is discharged as shallow subsurface flow, with negligible
outflows from the system.

2.2. Climate Data
2.2.1. Historical Data

The climate data used in this study included daily precipitation and mean temperature
values recorded at a meteorological station located near the dam (Brugneto Dam gauging
station, Figure 1). These data are freely available in the Dext3r service (https://simc.
arpae.it/dext3r/, accessed on 10 October 2023) and “Hydrological Annals—Part I” (https:
//www.arpae.it/it/temi-ambientali/meteo/report-meteo/annali-idrologici/, accessed
on 10 October 2023), provided by the Environmental Agency of the Emilia-Romagna
Region (ARPAE). Precipitation data refer to the periods 1976–2005 and 2015–2020, while
temperature data cover the period from 1976 to 2020. The gaps in the data series were

https://geoportal.regione.liguria.it/
https://geoportal.regione.liguria.it/
https://simc.arpae.it/dext3r/
https://simc.arpae.it/dext3r/
https://www.arpae.it/it/temi-ambientali/meteo/report-meteo/annali-idrologici/
https://www.arpae.it/it/temi-ambientali/meteo/report-meteo/annali-idrologici/
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filled by utilizing information from the closest monitoring stations, following the FAO
method [34,35].

The meteorological data for the period from 1976 to 2005, assumed as the control
period, were utilized to analyze historical climate and adjust the bias in the climate model
data used for future projections. The data collected over the remaining periods were used
as the input for hydrological model calibration and validation. Temperature data were
employed to calculate potential evapotranspiration through the Thornthwaite method [36].

The historical climate was investigated by calculating precipitation and temperature
regimes and trend analyses on a monthly scale. The Mann–Kendall test [37,38] was used to
detect the presence of monotonic trends in the time series at a 5% significance level. The
Mann–Kendall test is a statistical non-parametric test; thus, it is not affected by assumptions
about the underlying distribution of the data. This test identifies potential trends by
comparing the number of concordant and discordant pairs of data points. In particular, it
recognizes the presence of a trend if the number of concordant pairs significantly exceeds
the number of discordant pairs or vice versa. Since the Mann–Kendall test assumes data
independence, the correction recommended by Hamed and Rao [39] was applied to account
for data serial correlation. The non-parametric Theil–Sen statistical estimator [40] was used
to quantify the magnitude of the identified trend. In the Theil–Sen method, the trend slope
is determined as the median of the slopes computed for all possible pairs of data points.
Unlike parametric approaches (such as least square linear regressions), the Theil–Sen
method is particularly robust in the presence of outliers, thereby providing a reliable
measure of the trend without being influenced by extreme values.

2.2.2. Future Climate Projections

This study exploits the daily precipitation and temperature projections of the EURO-
CORDEX initiative [32], which can be freely accessed at https://www.euro-cordex.net/
(accessed on 10 October 2023). An ensemble of 13 combinations of General Circulation
Models (GCMs) and Regional Climate Models (RCMs) was considered (Table 1).

Table 1. Climate models (GCM-RCM combinations) from the EURO-CORDEX initiative used in this
study. The ditto mark “ indicates repetition of the above text.

GCM RCM

1 CNRM-CM5 CCLM4-8-17
2 “ RCA4
3 “ RACMO22E
4 EC-EARTH RACMO22E
5 “ RCA4
6 “ CCLM4-8-17
7 “ HIRHAM5
8 IPSL-CM5A-MR WRF381P
9 “ RCA4
10 “ WRF331F
11 MPI-ESM-LR CCLM4-8-17
12 “ RCA4
13 NorESM1-M HIRHAM5

Each climate model includes a historical simulation, spanning from 1950/1970 to 2005,
and scenario simulations based on different Representative Concentration Pathways (RCPs)
for the period from 2006 to 2100. In this work, the RCP4.5 and RCP8.5 scenarios were
considered. RCP4.5 is an intermediate scenario that assumes moderate greenhouse gas
emissions and efforts to mitigate climate change. In contrast, RCP8.5 is a high-emission
scenario in which greenhouse gas emissions continue to increase throughout the 21st
century without significant mitigation efforts. The EURO-CORDEX models provide data
on a regular grid with a resolution of approximately 12.5 km (EUR-11 grid). The model
outputs were downscaled at the meteorological station location (Brugneto Dam gauging

https://www.euro-cordex.net/
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station) through an inverse distance interpolation method with a power of two. The RCM
data regarding the nine grid cells closest to the selected station were interpolated to obtain
site-specific time series.

Climate model projections often exhibit systematic deviations from the observed cli-
mate. To enhance the reliability of these projections, especially for hydrological impact
assessments, a bias correction is essential [11]. To this end, the distribution mapping
method [13,41–43] was adopted in this study. Through this method, the cumulative distri-
bution functions of the climate model data were aligned with those of the observed data
during the control period (1976–2005) for each month. The Gaussian distribution function
was used to model temperature data, and the Gamma distribution function was used to
model wet day rainfall. Before applying the distribution mapping method, the number of
rainy days in the climate models was adjusted by identifying suitable thresholds for each
model, so that the modeled number of rainy days matched the observed one during the
control period. All projected precipitation values below this threshold were set to zero. The
same transfer functions and thresholds, calculated for each month and each model during
the control period, were then used to correct projected temperature and precipitation data
throughout the scenario simulations. The bias-corrected temperature data were used to
compute the future potential evapotranspiration.

2.3. Hydrological Data

Since several river branches gather flow directly into the lake, measures of the inflow
discharge into Brugneto Lake are not available. Daily measurements of the lake water level
from January 2015 to December 2020 are available, as well as records of the discharged
volume from the dam. This outflow volume includes that used for drinking water, the
volume supplied to the land reclamation authority for irrigation use, the ecological flow,
and the overflow volume. Furthermore, the relationship between storage and water level
elevation (i.e., the reservoir volume–elevation curve), obtained through a topographical
survey, exists.

Under the level pool approximation, the continuity equation establishes a connection
between the difference in inflow and outflow from the reservoir and the rate of change in
the reservoir’s storage [44]. Accordingly, the continuity equation was solved to estimate
the unknown inflow through the reverse level pool routing method [44,45]. Negative
inflow values can be calculated using this method, even following the recommendations
by Zoppou [44], due to measurement errors. To overcome this problem, a zero-inflow
discharge was assigned whenever the calculated value turned negative.

Figure 2 shows the estimated inflow to the lake for the period from 2015 to 2020, along
with the recorded outflow and lake water levels. The same figure also includes the reservoir
volume–elevation curve.
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2.4. Hydrological Modeling
2.4.1. The Hydrologic Modeling System (HEC-HMS)

In this study, we used the Hydrologic Engineering Center’s Hydrologic Modeling
System (HEC-HMS, version 4.9) [46] to simulate the hydrological processes occurring
within the watershed considered.

The HEC-HMS is a freely available software developed by the U.S. Army Corps of
Engineers. It is a physically based and conceptually semi-distributed model, extensively
described in various literature sources (e.g., [28,46–48]). It allows for dividing the watershed
into several subbasins, each with its own specific characteristics.

The HEC-HMS can be employed as either an event-based or continuous rainfall–runoff
model. Given our focus on future water resources, we opted for a continuous simulation,
including the temporal changes in soil storage and evapotranspiration. For continuous
simulations, we employed the soil moisture accounting (SMA) model [46] to replicate water
losses during both dry and wet periods. The SMA model, in combination with canopy
and surface methods, simulates the movement and storage of water for each subbasin,
encompassing the land surface, soil profile, and multiple groundwater layers [49].

The SMA model conceptualizes the watershed with a series of storage layers [47,50,51]:
(I) canopy-interception storage, where precipitation intercepted by the canopy is stored,
does not reach the soil surface, and is removed only by evaporation; (II) surface-interception
storage, where precipitation not captured by canopy interception can be stored on the sur-
face and may infiltrate or become surface runoff; (III) soil-profile storage, where infiltrated
water can be stored in the top soil layer, and water from this storage can either percolate to
a groundwater layer or be eliminated through evapotranspiration; and (IV) groundwater
storage (comprising up to two layers), representing horizontal interflow processes. Losses
from a groundwater storage layer occur due to groundwater flow (baseflow) or percolation
between layers (note that aquifer flow is not explicitly modeled). The linear reservoir
method was used to represent the baseflow contribution to the outflow from the subbasins.
Precipitation and evapotranspiration time series data are essential meteorological inputs
for the simulation, which were detailed at a daily scale.

The Clark Unit Hydrograph method was used to compute surface runoff. Specifically,
the standard version of the method, in which the time of concentration and the storage coef-
ficient parameters do not depend on the intensity of excess precipitation, was applied. The
kinematic wave model was used to simulate the flood routing within the river network [46],
assuming a rectangular channel for simplicity.

The HEC-HMS requires specifying the value of various parameters governing the
relationship between system input and output. Table 2 provides a list of these parameters
for each subbasin and river reach.

Table 2. Subbasin and reach parameters appearing in the HEC-HMS. Criteria used to make an initial
estimation of the parameters. Parameters involved in the calibration process are indicated with
the symbol *.

Parameter Units Initial Estimate Criteria Module

Maximum canopy storage mm Land cover [50,52]

Soil
Moisture

Accounting
(SMA)

Maximum surface storage mm Land cover [50,52]

Maximum infiltration rate * mm/h Soil type [53]

Impervious surface area % Land cover

Total soil storage * mm Soil type [54,55]

Soil tension storage * mm Soil type [54,55]

Soil percolation * mm/h Soil type (hydraulic
conductivity) [49,55]
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Table 2. Cont.

Parameter Units Initial Estimate Criteria Module

Groundwater1 * and 2 * storage mm Flow–recession curves [49]
Soil

Moisture
Accounting

(SMA)

Groundwater 1 * and 2 percolation mm/h Soil type (hydraulic
conductivity) [49,55]

Groundwater 1 * and 2 * coefficient h Flow–recession curves [49]

Groundwater 1 and 2 fraction - Not needed using SMA
Baseflow—linear reservoirGroundwater 1 and 2 storage

coefficient h 12 h, the minimum for
daily-scale simulations [46]

Time of concentration h Kirpich formulation [56]
Clark

unit hydrographStorage coefficient h Time of concentration and
land cover [57]

Length m DEM

Kinematic
wave

Slope m/m DEM

Manning’s coefficient s/m1/3 River bed material [58]

Width m DEM

2.4.2. Model Setup

The delineation of the basin upstream of the dam and relative subbasins was accom-
plished by utilizing an available digital terrain model (DEM) of the study area with a spatial
resolution of 5 m, combined with the GIS tools integrated into the HEC-HMS. Given the
relatively small size of the catchment, one subbasin was identified for each of the river
branches which flow into the lake. An exception was made for the northernmost branch
(the main one), whose subbasin was subdivided into three smaller subbasins (Figure 1).

In the modeling process, only the main reach was considered for flood propagation,
neglecting the other reaches due to their relatively short lengths.

Several model parameters must be set before simulations (Table 2). Initial values for
these parameters were established based on the geological features, soil type, and land
cover characteristics of the area, as well as on expert knowledge. Table 2 outlines the criteria
used to make an initial estimation of these parameters, along with the pertinent literature
references to assist in their initialization.

Furthermore, precipitation and potential evapotranspiration (ETP) time series are
essential for continuous simulations. These data were provided on a daily scale, as data con-
cerning shorter time windows were not available. To obtain daily ETP values, the monthly
ETP, evaluated with the Thornthwaite formula, was equally distributed for each day of the
corresponding month. Evapotranspiration was enabled in both dry and wet periods.

The final values of the parameters were estimated through calibration.

2.4.3. Model Calibration

The calibration and validation of the hydrologic model were performed on the basis
of the total inflow to the lake, using the data referring to the period from 2015 to 2020. In
particular, the year 2015 was employed as a warm-up period to compensate for inaccuracies
in defining the initial conditions, the period from 2016 to 2019 was dedicated to calibration,
and the year 2020 was used for validation.

The PEST (Parameter Estimation) software package v. 17 [59] was employed to au-
tomatically calibrate the HEC-HMS model through minimization of the weighted sum
of square differences between observed data and simulated results. An iterative process,
which requires the computation of derivatives of model outputs with respect to the pa-
rameters to be estimated, was used to handle the non-linear parameter estimation. PEST
calculates these derivatives using finite differences.
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Sensitivity analysis of the model outputs to the model parameters shows that some
parameters are irrelevant and could be excluded from the calibration, retaining their initially
estimated values. Table 2 indicates the parameters considered in the automatic calibration
process with asterisks.

To speed up the calibration process, the adjustable parameters were not individually
estimated for each subbasin. Instead, parameters of the same type were tied together for
all subbasins. Accordingly, PEST adjusted these parameters simultaneously, preserving
their initial ratios. This strategy maintains heterogeneity among subbasins without overly
burdening the calibration process.

Figure 3 compares observed and estimated discharge after the calibration process. On
the whole, the model satisfactorily replicates the observed values, although some data
points in the calibration set (2016–2019) exhibited significant deviations from the 1:1 line,
especially for the highest observed flow values. This discrepancy could be explained by the
use of daily rainfall data, which may not fully capture the formation of the most significant
flood events in small basins. However, it is worth noting that this article focuses on water
resource availability, rather than providing an in-depth description of flood events. The
coefficient of determination from the linear regression for the calibration period has a
satisfactory value (R2 = 0.74). Furthermore, in the validation period (year 2020), data points
exhibited a smaller deviation from the 1:1 line.
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Figure 3. Actual vs. estimated flow discharges entering Brugneto Lake during the calibration and
validation periods, along with the identity 1:1 line (solid line) and the linear regression line (dashed
line) for the calibration dataset; R2 is the corresponding coefficient of determination.

To globally evaluate the discrepancy between simulated and observed discharges
for both the calibration and validation periods, three different metrics were employed:
(1) the Volume Bias, which represents the ratio of the difference in observed and simulated
volumes to the observed volume; (2) the Nash–Sutcliffe efficiency, which evaluates the
model’s ability to replicate the shape of discharge time series with values ranging from 0
to 1, and 1 indicating the best performance; and (3) the Root Mean Square Error (RMSE),
which quantifies the discrepancy between observed and simulated discharges. Table 3
reports the values of these metrics for both the calibration and validation periods. The
model performance is generally good within the calibration period, but is slightly worse in
terms of bias and Nash–Sutcliffe values within the validation period. The RMSE shows a
slightly lower value during the validation period. The overall performance of the model is
satisfactory, demonstrating that the model is able to effectively capture the most significant
hydrological aspects.
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Table 3. Model performance metrics for the calibration and validation periods.

Metrics Calibration Period Validation Period

Volume Bias −0.21% 5.68%
Nash–Sutcliffe 0.733 0.607

RMSE 17.31 11.04

3. Results
3.1. Climate Analysis
3.1.1. Historical Climate

Table 4 provides monthly and annual historical climate analysis data for the Brugneto
Dam meteorological station over the period from 1976 to 2005. The average annual pre-
cipitation was approximately 1810 mm, but the rainfall distribution throughout the year
was not evenly spread. The month of October recorded the highest precipitation, with
an average monthly value of approximately 286 mm, whereas July was the driest month,
with 70 mm of precipitation on average. The precipitation trend varied by month, with
some months experiencing decreasing trends and others increasing trends. November
showed the most significant increase in precipitation (44.6 mm/decade), while March had
the most significant decrease (−28.7 mm/decade). However, the precipitation trend was
never statistically significant within the period considered.

Table 4. Precipitation and temperature monthly mean values and Sen slopes (Trend), evaluated
during the period from 1976 to 2005 at Brugneto Dam gauging station. The symbol * indicates a
significant trend at the 5% level.

Precipitation Temperature
Mean
(mm)

Trend
(mm/decade)

Mean
(◦C)

Trend
(◦C/decade)

Jan 157.1 −1.5 1.48 +0.39
Feb 91.7 −11.2 1.91 +0.29
Mar 130.4 −28.7 4.63 +0.67
Apr 161.1 +9.6 7.02 +0.64 *
May 135.8 +3.1 11.48 +1.07 *
Jun 98.9 −6.2 15.54 +0.76 *
Jul 69.7 +8.2 17.98 +0.29

Aug 92.8 −9.7 17.85 +0.85 *
Sep 165.6 +10.2 13.92 +0.41
Oct 285.9 −9.3 10.30 +0.61 *
Nov 225.0 +44.6 5.48 +0.60 *
Dec 196.0 −7.8 2.62 +0.23
Year 1810.1 +73.4 9.18 +0.63 *

Temperature data indicated well-defined seasonal variations. The annual average
temperature for the 30-year period, from 1976 to 2005, was about 9.2 ◦C, with January
being the coldest month (1.5 ◦C on average) and July the warmest (18 ◦C on average). The
temperature trend also varied by month, but it systematically showed positive values,
denoting continuous warming within the period considered. In several months, the trends
were statistically significant at the 5% level. May had the most significant warming trend,
of 1.07 ◦C per decade; the annual temperature exhibited a significant upward trend of
0.63 ◦C per decade.

3.1.2. Future Climate Projections

Bias-corrected data from 13 RCMs were used to investigate future climate conditions
in the study area. The climate variables were analyzed over four 30-year periods that in-
cluded a control period (CP) from 1976 to 2005, followed by three future periods: 2010–2039
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(short-term, ST), 2040–2069 (medium-term, MT), and 2070–2099 (long-term, LT). The anal-
ysis focused on monthly and annual precipitation, as well as monthly and annual mean
temperature, considering two emission scenarios: RCP4.5 and RCP8.5.

Figures 4 and 5 present the results for precipitation under the RCP4.5 and RCP8.5 sce-
narios, respectively. For each month, the precipitation projected at different time intervals is
displayed in terms of RCM medians, along with climate model uncertainty represented by
the RCM interquartile range. Table 5 summarizes monthly and annual precipitation values
(RCM median) evaluated within the CP, as well as the percentage changes expected in the
ST, MT and LT, compared to the control period, for the RCP4.5 and RCP8.5 scenarios. The
outcomes vary across different months. The RCP4.5 scenario shows a significant increase
in precipitation from November to March, except for a short-term decrease in November
(−8.6%). The highest increase occurs in February (+40.3%, LT). The months from April
to October present a prevalent precipitation decrease, apart from an increase in the LT
in June (+13.4%) and some other slight positive changes of less than 3.5%. In particular,
August exhibits a progressive decrease in precipitation (−19.2% in the LT). The annual
precipitation for the future periods is generally higher than during the control period, with
small variations in the ST and MT and an increase of 8.4% in the LT.
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Figure 4. Monthly precipitation evaluated with the RCMs during the control period (CP, 1976–2005)
and at the short- (ST, 2010–2039), medium- (MT, 2040–2069), and long-term (LT, 2070–2099) periods
under the RCP4.5 scenario. The bars represent the medians of the RCM ensembles, and the error bars
indicate the interquartile ranges.

According to the RCP8.5 scenario, the precipitation is projected to increase from
November to March for all considered time periods, except for in the ST in December. The
highest decrease is estimated for January (+24%, MT). Precipitation is projected to decrease
during the months from April to October, with some minor positive changes of less than
3.3% and a notable increase in the LT in August (+15.8%). July experiences the most severe
reduction in precipitation (−27.7%, LT). Annual precipitation variations across the three
future periods are less than 5%, with small decreases in the ST and MT and an increase in
the LT.
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Figure 5. Monthly precipitation evaluated with the RCMs during the control period (CP, 1976–2005),
and at the short- (ST, 2010–2039), medium- (MT, 2040–2069), and long-term (LT, 2070–2099) periods
under the RCP8.5 scenario. The bars represent the medians of the RCM ensembles, and the error bars
indicate the interquartile ranges.

Table 5. RCM median values of monthly precipitation (in mm) during the control period (CP,
1976–2005), and precipitation changes (%) among the RCM medians at the short- (ST, 2010–2039),
medium- (MT, 2040–2069), and long-term (LT, 2070–2099) periods, compared to those obtained during
the control period, for the RCP4.5 and RCP8.5 scenarios.

RCP4.5 RCP8.5

CP ST MT LT ST MT LT

Jan 161.9 +7.6% +15.3% +23.6% +2.1% +24.0% +16.2%
Feb 94.9 +0.3% +18.9% +40.3% +11.6% +20.2% +14.0%
Mar 134.9 +3.2% +5.1% +19.4% +3.3% +13.4% +16.5%
Apr 165.5 −0.5% −11.3% +1.9% −8.8% −2.8% −12.6%
May 141.9 −3.8% −8.1% −5.4% +2.7% −0.6% −16.7%
Jun 104.1 +0.9% −7.6% +13.4% −4.0% +3.3% −13.1%
Jul 74.5 −5.9% +0.4% −6.1% +2.0% −5.2% −27.7%

Aug 97.2 −14.5% −17.5% −19.2% −13.7% −14.4% +15.8%
Sep 175.5 +3.5% −15.1% −2.7% −4.9% −14.3% −19.3%
Oct 290.4 −4.4% +0.3% −4.8% −14.4% +0.5% −17.4%
Nov 229.5 −8.6% +5.3% +14.3% +5.9% +8.8% +9.5%
Dec 200.3 +6.9% +5.6% +10.4% −1.5% +2.9% +12.9%
Year 1872.3 +3.1% +2.0% +8.4% +1.7% +4.9% −3.0%

It is worth noting that there is considerable variability among the 13 RCMs, as in-
dicated by the spread between the 25th and 75th percentiles (Figures 4 and 5). This
variability highlights the complexity of precipitation climate projections and the need to
assess model uncertainty.

Figures 6 and 7 show projected changes in monthly average temperatures across the
four periods considered based on the RCP4.5 and RCP8.5 scenarios, respectively. Table 6
summarizes these results in terms of RCM median differences among the future periods
and the control period at monthly and annual scales.
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Figure 6. Monthly mean temperature evaluated with the RCMs during the control period (CP,
1976–2005), and at the short- (ST, 2010–2039), medium- (MT, 2040–2069), and long-term (LT,
2070–2099) periods under the RCP4.5 scenario. The bars represent the medians of the RCM en-
sembles, and the error bars indicate the interquartile ranges.
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Figure 7. Monthly mean temperature evaluated with the RCMs during the control period (CP,
1976–2005), and at the short- (ST, 2010–2039), medium- (MT, 2040–2069), and long-term (LT,
2070–2099) periods under the RCP8.5 scenario. The bars represent the medians of the RCM en-
sembles, and the error bars indicate the interquartile ranges.
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Table 6. RCM median values of monthly mean temperature (in ◦C) during the control period (CP,
1976–2005), and differences among the RCM medians at the short- (ST, 2010–2039), medium- (MT,
2040–2069), and long-term (LT, 2070–2099) periods, as well as those obtained during the control
period for the RCP4.5 and RCP8.5 scenarios.

RCP4.5 RCP8.5

CP ST MT LT ST MT LT

Jan 1.48 +0.66 +1.41 +1.78 +0.73 +1.65 +3.17
Feb 1.91 +0.69 +1.13 +1.70 +0.99 +1.84 +3.31
Mar 4.63 +0.90 +1.17 +1.44 +0.73 +1.99 +2.70
Apr 7.02 +0.69 +1.04 +1.50 +0.81 +1.49 +2.94
May 11.48 +0.85 +1.62 +2.11 +1.04 +1.86 +3.63
Jun 15.54 +1.03 +2.08 +2.00 +1.19 +1.99 +4.07
Jul 17.98 +0.96 +1.78 +1.92 +1.13 +2.03 +4.10

Aug 17.85 +0.88 +2.07 +2.22 +1.11 +2.22 +4.17
Sep 13.92 +1.03 +1.60 +2.07 +1.18 +2.17 +3.91
Oct 10.30 +0.80 +1.25 +1.65 +0.80 +1.89 +2.82
Nov 5.48 +0.52 +1.13 +1.74 +0.72 +2.00 +3.25
Dec 2.62 +0.85 +0.93 +1.45 +0.54 +1.74 +2.92
Year 9.18 +0.80 +1.43 +1.79 +0.96 +1.83 +3.32

The analysis shows a progressive warming across all months for both emission scenar-
ios. According to RCP4.5, the mean temperature is expected to increase, from a maximum
of 0.9 ◦C in the ST up to 1.8 ◦C in the LT, from October to April. The months from May to
September experience significant temperature increases, from about 1.0 ◦C in the ST up to
more than 2 ◦C in the LT. The annual mean temperature increases from 0.8 ◦C (ST) up to
1.8 ◦C (LT). The warming rate is even more severe under the RCP8.5 scenario. The months
from October to April show a temperature increase of about 1.0 ◦C in the ST up to about
3 ◦C in the LT. Temperature increases from about 1 ◦C in the ST up to more than 4 ◦C in the
LT are expected from May to September. The annual mean temperature increases from 1 ◦C
(ST) up to 3 ◦C (LT). The inter-model variability (Figures 6 and 7) is quite limited, and lower
than that assessed for precipitation, denoting that all of the climate models considered
agree with the warming trend.

3.2. Hydrological Analysis
3.2.1. Historical Period

The calibrated hydrological model was used to determine the inflow to Brugneto Lake
for the historical period from 1976 to 2005. Table 7 reports the monthly and annual inflow
discharges averaged over the control period.

Table 7. Monthly and annual averaged inflow (in m3/s) to Brugneto Lake during the period from
1976 to 2005.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

1.52 1.02 0.97 1.16 0.74 0.35 0.14 0.05 0.43 1.63 1.87 1.61 0.96

The flow regime is pluvial, with liquid precipitation predominating across all seasons.
This leads to a strong correlation between precipitation and flow discharge. The flow
regime exhibits significant interannual variability. The highest discharge values occurred
during the autumn and winter months, with a maximum in November, with an average
discharge value of approximately 1.9 m3/s. The lowest values were observed during the
summer months, with an absolute minimum of approximately 0.05 m3/s in August.
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3.2.2. Future Scenarios

The future inflow to Brugneto Lake was assessed for the same periods as for the
meteorological variables. Figures 8 and 9 show the monthly average inflow discharges
projected under the RCP4.5 and RCP8.5 scenarios, respectively. Table 8 summarizes the
results, presenting the differences in RCM medians among the future periods and the
control period on both monthly and annual scales.
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Figure 8. Monthly discharge evaluated with the RCMs during the control period (CP, 1976–2005),
and at the short- (ST, 2010–2039), medium- (MT, 2040–2069), and long-term (LT, 2070–2099) periods
under the RCP4.5 scenario. The bars represent the medians of the RCM ensembles, and the error bars
indicate the interquartile ranges.
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Figure 9. Monthly discharge evaluated with the RCMs during the control period (CP, 1976–2005),
and at the short- (ST, 2010–2039), medium- (MT, 2040–2069), and long-term (LT, 2070–2099) periods
under the RCP8.5 scenario. The bars represent the medians of the RCM ensembles, and the error bars
indicate the interquartile ranges.
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Table 8. RCM median values of monthly averaged inflow discharge during the control period (CP,
1976–2005), and changes (%) among the RCM medians at the short- (ST, 2010–2039), medium- (MT,
2040–2069), and long-term (LT, 2070–2099) periods, compared to those obtained during the control
period, for the RCP4.5 and RCP8.5 scenarios.

RCP4.5 RCP8.5

CP ST MT LT ST MT LT

Jan 1.50 +1.9% +12.4% +12.8% −1.0% +11.7% +4.6%
Feb 1.04 +0.8% +17.6% +28.2% +3.5% +11.7% +14.2%
Mar 1.07 +4.6% +3.9% +23.4% +4.0% +5.4% +11.6%
Apr 1.15 −13.9% −13.6% +1.3% −15.7% −3.7% −23.0%
May 0.81 −8.2% −19.8% −7.8% −3.1% −11.5% −32.6%
Jun 0.39 +0.7% −28.0% −0.3% +5.2% +2.8% −44.1%
Jul 0.17 +3.0% −10.2% −20.5% −7.8% −21.2% −66.4%

Aug 0.09 +9.1% +1.4% −31.3% +6.2% −25.4% −21.1%
Sep 0.51 −13.4% −42.7% −26.1% −24.7% −36.7% −40.1%
Oct 1.56 −4.4% −2.7% −5.7% −28.4% −10.2% −32.0%
Nov 1.87 −6.1% +3.1% +1.7% +1.2% +1.6% −4.5%
Dec 1.78 −1.6% −0.8% +4.7% −5.7% −0.5% −0.9%
Year 1.00 +3.0% −0.6% +7.4% −2.4% +3.0% −6.0%

The variations in discharge are generally consistent with those in precipitation. The
monthly discharge values for the RCP4.5 scenario exhibit increases during the months from
January to March, with the highest increase expected for February (+28.2%, LT). The period
spanning April through October denotes a prevalent discharge decrease, except for an
increase in the ST in August (+9.1%), as well as some other minor positive changes of less
than 3%. However, it is noteworthy that the percentage changes for July and August are
calculated with reference to very small values. The months of November and December
present slight positive and negative variations. In terms of annual values, the discharge
increases by 3% in the ST, stays nearly stable in the MT, and reduces by 7.4% in the LT.
According to the RCP8.5 scenario, the inflow discharge will increase in the months from
January to March, even if the variations are projected to be less pronounced than those
estimated under the RCP4.5 scenario. Also, in this case, the highest increase is estimated
for the month of February (+14.2%, LT). Discharges are expected to experience a reduction
from April to October, with some exceptions for slight increases in June in the ST and
MT and August in the ST. July shows the most severe discharge decrease (−66.4%, LT).
The months of November and December present discharge variations of less than 6%. As
regards the annual values, the water resource slightly decreases in the ST (−2.4%) and LT
(−6%), and increases in the MT (+3%).

Figure 10 shows the flow–duration curves (FDCs) obtained considering the daily
discharges of the single RCMs and the whole RCM ensemble for the three future periods
and both emission pathways, RCP4.5 and RCP8.5. FDCs are valuable for understanding
how water availability may be altered, since they provide a comprehensive view of the
range of river discharges. For comparison, the FDCs obtained in the CP are also included in
Figure 10. In addition, Table 9 provides an overview of the flow rates predicted for selected
durations. Specifically, the flow discharges corresponding to 1/4 365, 1/2 365, and 3/4 365
days were reported to represent wet, median, and dry hydrological conditions, respectively.
Referring to the ST period and the entire ensemble of RCMs, a slight reduction in inflow is
estimated, compared to the CP, for both the RCP4.5 and RCP8.5 scenarios. This reduction
is more evident for low discharges. The curves obtained from individual RCMs show a
higher degree of variability for the RCP4.5 scenario in comparison with the RCP8.5 one.
Similar considerations can be made for the MT, although a more pronounced decline in
low flow rate values is expected. Inter-model variability also increases, especially for the
RCP8.5 scenario. In the LT, the results under the RCP4.5 scenario are similar to those of the
previous period when considering the whole RCM ensemble. Under the RCP8.5 scenario, a



Water 2023, 15, 4243 17 of 22

more pronounced downward shift in future FDCs can be expected, although an increase in
high flows is highlighted for very short durations. The model variability increases, but the
majority of CDFs fall below those of the CP, denoting an expected future decrease in the
available water resource.
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Table 9. Discharges (in m3/s) corresponding to 1/4 365 days (Qwet), 1/2 365 days (Qmid), and
3/4 365 days (Qdry), evaluated using the entire RCM ensemble during the control period (CP,
1976–2005), and in the short- (ST, 2010–2039), medium- (MT, 2040–2069), and long-term (LT,
2070–2099) periods under the RCP4.5 and RCP8.5 scenarios.

RCP4.5 RCP8.5

CP ST MT LT ST MT LT

Qwet 1.01 0.96 0.96 0.98 0.95 0.97 0.83
Qmid 0.37 0.34 0.32 0.33 0.32 0.33 0.26
Qdry 0.10 0.09 0.07 0.08 0.08 0.08 0.06

4. Discussion and Conclusions

This study aimed to assist and enhance future water management for the Brugneto
Dam by investigating how climate change will affect water availability. To this end, the
future inflow to Brugneto Lake was estimated through a combination of climate change
scenarios and hydrological modeling.

The first significant aspect to discuss pertains to the uncertainty of the study findings.
To account for uncertainty in climate scenarios, an ensemble of climate model projections
and two distinct emission pathways were examined. For precipitation, the inter-model
variability exceeded the median changes across the short-, medium-, and long-term pe-
riods for both scenarios. This indicated a substantial level of uncertainty in projecting
precipitation. Conversely, temperature data displayed less uncertainty, with the climate
models generally in agreement regarding temperature increases in the study area. This
uncertainty extended into the hydrological modeling phase, leading to uncertainties in
simulated river discharges. In many cases, variations among different models exceeded the
median variations among future time periods, indicating a high degree of uncertainty for
river discharges, as well. These findings are in accordance with those of Versini et al. [24]
for Llobregat River Basin in Spain. Furthermore, additional factors, such as uncertainty in
hydrological model parameters and the hydrological model itself, should also be taken into
account. Additionally, downscaling and bias-correction methods for the climate projections
introduce further sources of uncertainty that can impact the final results. Handling a large
ensemble of climate models, as executed in this study, can pose significant computational
demand. It is worth noting that the authors of many studies in the literature opted to restrict
the analysis to just one or a few climate models and scenarios. Given these circumstances,
it also becomes challenging to consider multiple hydrological models (each requiring setup
and calibration) and different downscaling/bias-correction methods. Consequently, the
inclusion of all sources of uncertainty may become impractical, if not unfeasible. However,
when the hydrological model is well-calibrated, the related uncertainty tends to become
less significant [24], and the primary sources of overall uncertainty often are climate model
projections. Comparative analyses with alternative hydrological models or different model
setups may help to discern the impacts of the various sources of uncertainty. This aspect
may be the subject of a future investigation.

Calibrating a semi-distributed (or even more so, a distributed) hydrological model
involves various parameters, each of which typically differs for every subbasin. Nowadays,
automatic calibration, using specific software, is generally preferred over manual calibra-
tion procedures [60]. Calibration necessitates observations that correspond to the simulated
values, which, in the context of a hydrological model, typically refer to river discharges.
Often, collecting a robust calibration dataset, both in terms of recorded period and location,
is difficult, due to the limitations in the availability of gauging stations, especially in small
basins. This situation was also encountered in the case study considered in this paper,
in which the only feasible approach to obtaining useful inflow discharge data was by
employing the reverse level pool routing method [45]. Consequently, in hydrological model
calibration, it is common to deal with more parameters than can be uniquely constrained by
the available observations, resulting in an ill-posed inverse problem. In such circumstances,
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a regularization approach is required to obtain a unique solution [61]. There are various
regularization techniques available, including mathematical and manual methods [61,62].
A simple manual regularization technique entails using the same parameter values for
all subbasins (lumped method) [62]; however, this can lead to excessive simplification. A
more effective manual regularization approach involves estimating values for combina-
tions of parameters, rather than individual parameters. As an example, these parameter
combinations tie together the same parameters from different subbasins, causing them to
vary in unison, while maintaining fixed ratios to one another [59]. This method, which
was employed in this work, avoids oversimplification while guaranteeing computational
efficiency. At the same time, it preserves the distinct characteristics and variations identified
through the selection of different initial parameter values for each subbasin based on expert
knowledge [28].

Another important aspect to acknowledge is the potential impact of changes in land
cover and land use on future water resources. Land cover and use modifications, including
urbanization, deforestation, and agricultural expansion, are well-established factors sig-
nificantly affecting hydrological systems in various regions (e.g., [63–65]). However, this
aspect has not been explicitly addressed within this paper. It is worth noting that the study
area is situated within a mountainous region, where more than 70% of the total land area is
currently covered with forest. Given this context, it is reasonable to assume that substantial
alterations in land cover and use are unlikely to occur in the foreseeable future.

According to the findings of this study, considering the median values of the ensemble
of climate models, a maximum variation in annual inflow to Brugneto Lake is expected
within the range of ±3% in the short- and medium-term periods under both the RCP4.5
and RCP8.5 scenarios. More significant changes are projected for the long-term period,
where an increase in river discharge is forecasted for the RCP4.5 scenario (+7.4%), while a
decrease is expected for the RCP8.5 scenario (−6%). Although annual-scale variations may
not be exceptionally high, alterations in the discharge regime are anticipated in the future.
In general, an increase in inflow discharge is expected during the January–March period;
the increments are more pronounced from the short- to the long-term. Conversely, April
and May (with minimal exceptions) and September and October are likely to experience
more persistent reductions in water resources, especially for the RCP8.5 scenario. During
the summer months, a general reduction in the water resource can be expected, particularly
in the medium- and long-term periods, with the most substantial reduction occurring in
the RCP8.5 scenario. While these changes generally align with precipitation patterns, the
temperature will rise in the study area, and the subsequent increase in evapotranspiration
will modify the overall scenario. In addition, the temperature rise could also promote
increased evaporation from the lake surface. It is essential to consider this factor when
developing the water balance for the lake.

Based on the analyses conducted in this study, it is reasonable to expect a modest
reduction in water resources in Brugneto Lake by the end of the current century. Due to
changes in the flow regime, it is highly likely that adjustments to the management of the
Brugneto Dam will be necessary in order to address climate-induced challenges.
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