

INTERNATIONAL FUND FOR SAVING THE ARAL SEA
INTERSTATE COMMISSION FOR WATER COORDINATION
OF CENTRAL ASIA

BULLETIN ICWC of Central Asia

December 2025

№ 8 (113)

Scientific-Information Center of Interstate Commission for Water Coordination
of Central Asia

CONTENT

Minutes of the 91st Meeting of the Interstate Commission for Water Coordination (ICWC) of the Republic of Kazakhstan, Kyrgyz Republic, Republic of Tajikistan, Turkmenistan and Republic of Uzbekistan	3
Materials for the 91st ICWC Meeting.....	13
Results of the use of water withdrawal limits/quotas and the operation regimes of reservoirs in the Amu Darya and Syr Darya River basins during the growing season 2025.....	13
Approval of country water withdrawal limits/quotas and projected operation regime of the reservoir cascades in the Syr Darya and Amu Darya River Basins for the non-growing season 2025-2026	45
Progress on Implementation of the Tasks Set at the Summits of the Heads of IFAS Founder-States.....	56
Analysis of Water Management Situation in the Syr Darya and Amu Darya River Basins for the Growing Season 2025	70
Cooperation Between Central Asian Countries on Water and Energy	80
Cooperation between Kyrgyzstan and Uzbekistan discussed in Manas.....	80
Kazakhstan and Uzbekistan Signed Agreement on Joint Management and Rational Use of Transboundary Water Bodies.....	81
Kazakhstan, Kyrgyzstan, and Uzbekistan Agree on Cooperation in the Water and Energy Sector.....	83

Minutes of the 91st Meeting of the Interstate Commission for Water Coordination (ICWC) of the Republic of Kazakhstan, Kyrgyz Republic, Republic of Tajikistan, Turkmenistan and Republic of Uzbekistan

13 November 2025

Ashgabat

Chairman:

Durdi M. Gendjiyev

Chairman of the State Committee for Water Management, Turkmenistan and Khakim of Lebap velayat

ICWC members:

Nurjan M. Nurjigitov

Minister of Water Resources and Irrigation, Republic of Kazakhstan

Jamshed Sh. Shoimzoda

First Deputy Minister of Energy and Water Resources, Republic of Tajikistan

Shavkat R. Khamraev

Minister of Water Management, Republic of Uzbekistan

ICWC Executive Bodies:

Umar A. Nazarov

Head, ICWC Secretariat

Makhmud Ya. Makhramov

Head, BWO Amu Darya

Odil A. Kholkhujaev

Head, BWO Syr Darya

Dinara R. Ziganshina

Director, Scientific-Information Center (SIC) of ICWC

Alisher M. Nazariy

Deputy Director, SIC ICWC

Farkhodjon N. Djabborov

Senior Officer, ICWC Secretariat

Invited:**Republic of Kazakhstan**

Nurlan A. Nogaev	Ambassador Extraordinary and Plenipotentiary of the Republic of Kazakhstan to Turkmenistan
Seyilbek S. Nurymbetov	Chairman of the Committee for the Regulation, Protection, and Use of Water Resources, Ministry of Water Resources and Irrigation
Daniyar Ye. Sharip	Director, International Cooperation Department of the Ministry of Water Resources and Irrigation
Aset A. Beristenov	Advisor to the Minister of Water Resources and Irrigation
Talgat A. Ketebaev	Head, Transboundary Water Resources Division, International Law Department, MFA
Khasen S. Karlybaev	Assistant to the Minister of Water Resources and Irrigation
Serikbai T. Nurgalym	Director of Hydrology Department, RGP "Kazgidromet", Ministry of Ecology and Natural Resources.

Kyrgyz Republic

Emil T. Shadykhanov	Counselor of the Embassy of the Kyrgyz Republic in Turkmenistan
---------------------	---

Republic of Tajikistan

Daler A. Abdurazokzoda	Head of Central Water and Energy Policy Administration, Ministry of Energy and Water Resources
------------------------	--

Turkmenistan

Derya Kh. Ishankulyev	Deputy Chairman of the State Committee for Water Management of Turkmenistan
-----------------------	---

Yanov D. Pashyev	Head of the Water Use Department of the State Committee for Water Management
Begench A. Mommadov	Director, Garagumderyasuv-Khojalyk Association, State Committee for Water Management
Saparmurat K. Charyev	Head, Digital Technologies and Information Security Department, State Committee for Water Management
Tirkesh Yo. Nurgeldiev	Head, Water Use Department, State Committee for Water Management
Republic of Uzbekistan	
Jahongir B. Abdurazzakov	Head, Transboundary Water Resource Department, Ministry of Water Management

Agenda

1. The use of water withdrawal limits/quotas and operation regimes of reservoirs in the Syr Darya and Amu Darya River basins during the growing season 2025
2. Approval of country water withdrawal limits and projected operation regime of reservoir cascades in the Syr Darya and Amu Darya River basins for the non-growing season 2025-2026.
3. Progress on the fulfillment of tasks arising from the summits of the Heads of IFAS Founder States.
4. Additional matters. On amendments and additions to the Regulations of the ICWC Secretariat
5. Agenda and venue of the regular 92nd ICWC meeting

Decision on the first item:

1. Take into consideration the reports by BWO Syr Darya and BWO Amu Darya on the use of water withdrawal limits and the operation regimes of reservoirs in the Syr Darya and Amu Darya River basins during the growing season 2025.

Decision on the second item:

1. Approval of country water withdrawal limits in the Syr Darya and Amu Darya River basins for the non-growing season 2025-2026. (Appendices 1 and 2).

2. Take into consideration the reports by BWO Syr Darya and BWO Amu Darya on the projected operation regimes of reservoirs cascades in the Syr Darya and Amu Darya River basins during the non-growing season 2025-2026 (Appendices 3 and 4).

Decision on the third item:

1. Acknowledge the effective work carried out by the water management organizations of Central Asian countries and the ICWC Executive Bodies in implementing the proposals and initiatives put forward at the Summits of the Heads of IFAS Founder States in Turkmenbashi (2018) and Dushanbe (2023).

2. ICWC members and executive bodies shall report on the progress of implementation of these proposals and initiatives at the next ICWC meetings.

Decision on the fourth item:

The ICWC Secretariat shall prepare proposals for amendments and additions to the ICWC Secretariat Regulations and submit them to ICWC members for consideration before the regular 92nd ICWC meeting.

Decision on the fifth item:

I. Hold the regular 92nd ICWC meeting in Dushanbe, Tajikistan. The date of the regular ICWC meeting shall be agreed in working order.

II. Propose the following agenda for the 92nd ICWC meeting:

1. Results of the use of water withdrawal limits/quotas and operation regimes of reservoirs in the Syr Darya and Amu Darya River basins during the non-growing season 2025-2026.
2. Progress on the fulfillment of tasks arising from the summits of the Heads of IFAS Founder States.
3. On amendments and additions to the Regulations of the ICWC Secretariat
4. Information on the results of the 19th World Water Congress (December 1-5, 2025, Morocco) from representatives who attended the event.
5. Additional matters.
6. Agenda and venue of the regular 93rd ICWC meeting.

Republic of Kazakhstan

N. M. Nurjigitov

Kyrgyz Republic

Republic of Tajikistan

D. Sh. Shoimzoda

Turkmenistan

D. M. Gendjiev

Republic of Uzbekistan

Sh. R. Khamraev

Appendix 1

Water withdrawal limits/quotas in the Syr Darya River basin, non-growing season, 2025-2026

Water-user state	Proposed limits mcm
Republic of Kazakhstan (Dustlik canal)	460
Kyrgyz Republic	47
Republic of Tajikistan	365
Republic of Uzbekistan	3347
Total	4219

Appendix 2

Water withdrawal limits/quotas in the Amu Darya River basin, non-growing season 2025-2026

River basin, state	Water withdrawal limits, mcm	
	Total for the year (1.10.2025 – 1.10 .2026)	incl. non-growing season (1.10.2025 – 1.04.2026)
Total from the Amu Darya River basin	55 391	15 865
including:		
Republic of Tajikistan	9 821	3 015
From Amu Darya River at the nominal Kerki g/s	44 000	12 480
Turkmenistan	22 000	6 500
Republic of Uzbekistan	22 000	5 980
In addition:		
- water delivery to the river delta and the Aral Sea considering irrigation water releases and CDW	4 200	2 100
- sanitary and environmental flow to irrigation systems:	800	800
Dashoguz province	150	150
Khorezm province	150	150
Karakalpakstan	500	500

Appendix 3

Projected operation schedule of the Naryn-Syr Darya reservoir cascade
October 1, 2025 – March 31, 2026

		October	November	December	January	February	March	Total, mcm
Toktogul reservoir								
Inflow to the reservoir	m3/s	237	202	168	159	160	172	
	mcm	635	524	450	426	387	461	2882
Volume: beginning of the season	mcm	11374	11532	11045	9867	8662	7668	
end of the season	mcm	11532	11045	9867	8662	7668	7481	
Water releases from the reservoir	m3/s	178	390	608	609	571	242	
	mcm	477	1011	1628	1630	1381	648	6775
Bakhri Tojik reservoir								
Inflow to the reservoir	m3/s	343	598	851	779	744	369	
(Akjar g/s)	mcm	918	1550	2280	2086	1799	988	9621
Volume: beginning of the season	mcm	1554	2093	2875	3283	3404	3424	
end of the season	mcm	2093	2875	3283	3404	3424	3407	
Water releases from the reservoir	m3/s	131	300	710	750	750	380	
	mcm	351	778	1902	2009	1814	1018	7871
Shardara reservoir								
Inflow to the reservoir	m3/s	142	450	750	800	800	700	
(r/п Chinaz-Syr Darya g/s.+Bozsu+Keles g/s)	mcm	380	1166	2009	2143	1935	1875	9508
Volume: beginning of the season	mcm	429	823	1292	2460	3507	4448	
end of the season	mcm	823	1292	2460	3507	4448	5225	
Water releases from the reservoir	m3/s	27	250	300	400	400	400	
	mcm	72	648	804	1071	968	1071	4634

		October	November	December	January	February	March	Total, mcm
Water supply to the Aral Sea	m3/s mcm	15 40	60 156	90 241	100 268	100 242	100 268	1214
Charvak reservoir								
Inflow to the reservoir	m3/s mcm	82 219	73 189	62 166	55 149	55 133	81 216	1072
Volume: beginning of the season end of the season	mcm mcm	1372 1277	1277 1176	1176 971	971 727	727 580	580 515	
Water releases from the reservoir (Water discharge from Gazalkent HPP)	m3/s mcm	114 306	112 289	139 371	146 392	116 280	105 281	1920
Andijan reservoir								
Inflow to the reservoir	m3/s mcm	55 146	67 172	53 143	45 121	47 113	70 188	884
Volume: beginning of the season end of the season	mcm mcm	792 782	782 848	848 919	919 988	988 1054	1054 1101	
Water releases from the reservoir	m3/s mcm	58 156	41 107	27 72	20 52	20 47	53 141	576

Note

The inflow to the Shardara reservoir, as proposed by the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan, is expected to be 9508 mcm.

The inflow to the Shardara reservoir, according to calculations by BWO Syr Darya, prepared on the basis of the received projected operation regimes of the upper reservoirs and forecast data on lateral inflow from the UzHydromet, is expected to be 8314 mcm.

Appendix 4

Projected operation schedule of Nurek and Tuyamuyun reservoirs
October 2025 – March 2026

Nurek reservoir	Unit	Projection						Total
		October	November	December	January	February	March	
Volume: beginning of the season	mcm	10505	10536	10205	9232	8056	6934	10505
Inflow to the reservoir	m3/s	322	293	236	200	190	235	
	mcm	863	760	632	535	460	631	3881
Water releases from the reservoir	m3/s	307	417	548	600	591	436	
	mcm	823	1080	1467	1607	1431	1167	7575
Volume: end of the season	mcm	10536	10205	9232	8056	6934	6226	6226
Accumulation (+), drawdown (-)	mcm	31	-331	-973	-1176	-1121	-709	-4279

Tuyamuyun reservoir	Unit	Projection						Total
		October	November	December	January	February	March	
Volune: beginning of the season	mcm	3602	3655	4010	4504	4888	4517	3602
Inflow to the reservoir	m3/s	396	277	369	353	342	414	
	mcm	1062	718	987	946	826	1109	5649
Water releases from the reservoir	m3/s	377	140	184	210	495	827	
	mcm	1009	363	493	562	1198	2216	5841
Volume: end of the season	mcm	3655	4010	4504	4888	4517	3410	3410
Accumulation(+),drawdown (-)	mcm	53	355	494	384	-371	-1107	-192

Materials for the 91st ICWC Meeting

Results of the use of water withdrawal limits/quotas and the operation regimes of reservoirs in the Amu Darya and Syr Darya River basins during the growing season 2025

Amu Darya River Basin

Actual water availability in the Amu Darya River Basin at nominal Kerki g/s (upstream of water intake to Garagumdarya) was 93.4 % of the norm during the growing season 2025. This calculation included non-regulated natural flow of the Vaksh River and flow regulation by the Nurek reservoir. During the growing season 2024, this indicator was 94.3 % of the norm. Water availability was quite uneven during the growing season 2025; it was within 85-125% of the norm in April and May and 78-88% of the norm from June to August. In August and September, due to rising temperatures in the upper reaches of the river basin, water content increased to 115% of the norm. This allowed accumulation of planned water volume in reservoirs by the end of the season to supply water to downstream water users during the growing season.

Under the current water-management situation, 86.1% of the cumulative water withdrawal limit was used in the basin: with the limit of 39723.5 mcm, 34 202.4 mcm was actually used. The use of approved water withdrawal limits/quotas by states for the reporting growing season is as follows:

- Republic of Tajikistan: actually used 5839.9 mcm or 83.4 % of the cumulative limit;
- Turkmenistan: actually used 14 195.0 mcm or 91.6 % of the cumulative limit
- Republic of Uzbekistan: actually used 14 167.5 mcm or 82.3 % of the cumulative limit;

Water-user state	Water withdrawal limits for the growing season 2025	Actual, mcm	%% of the use
Republic of Tajikistan	7003.5	5839.9	83.4
Turkmenistan	15500.0	14195.0	91.6
Republic of Uzbekistan	17220.0	14167.5	82.3
Total	39723.5	34202.4	86.1

In the growing season 2025, 87.4% of the cumulative water limit/quota was used downstream of the nominal Kerki gauging station (upstream of Garagumdarya), including:

- Turkmenistan: actually used 14195.0 mcm or 91.6 % of the cumulative limit/quota.
- Republic of Uzbekistan: actually used 13352.3 mcm or 83.3 % of the cumulative limit/quota.

Water-user state	Water withdrawal limits for the growing season 2025	Actual, mcm	%% of the use
Downstream of nominal Kerki g/s	31520.0	27547.3	87.4
Turkmenistan	15500.0	14195.0	91.6
Republic of Uzbekistan	16020.0	13352.3	83.3

The actual use of the approved water limits was as follows by river reach:

Upper reaches – 6 655.1 mcm or 81.1 % of the cumulative water limit, including

Tajikistan – 5839.9 mcm or 83.4 % of the cumulative limit,

Uzbekistan – 815.2 mcm or 67.9 % of the cumulative limit.

- Middle reaches – 15 854.7 mcm or 97.8 % of the cumulative water limit, including:
- Turkmenistan – 10 412.0 mcm or 76.4 % of the cumulative limit
- Uzbekistan – 5442.7 mcm or 94.9 % of the cumulative limit

Lower reaches – 11 692.6 mcm or 76.4 % of cumulative water limit, including

- Turkmenistan – 3783.0 mcm or 75.2 % of cumulative water limit,
- Uzbekistan – 7909.6 mcm or 76.9 % of cumulative water limit.

Water -user state	Water withdrawal limits for the growing season 2025	Actual, mcm	%% of the use
Upper reaches	8203.5	6655.1	81.1
Republic of Tajikistan	7003.5	5839.9	83.4
Republic of Uzbekistan	1200.0	815.2	67.9
Middle reaches	16207.0	15854.7	97.8
Turkmenistan	10472.0	10412.0	99.4
Republic of Uzbekistan	5735.0	5442.7	94.9
Lower reaches	15313.0	11692.6	76.4
Turkmenistan	5028.0	3783.0	75.2
Republic of Uzbekistan	10285.0	7909.6	76.9

It was planned to deliver 2100 mcm to the river delta and the Aral Sea in the growing season 2025. The actual quantity of water delivered was 993 mcm or 47.3 % of the plan.

The operation regimes of the Nurek and Tuyamuyun reservoirs were projected based on average water availability.

Overall, the projected regime for the Nurek Reservoir proved reliable, with the reservoir reaching full capacity in August. While the average seasonal inflow was 93.4% of the norm, monthly levels fluctuated between 85% and 125%. Meanwhile, the Tuyamuyun Reservoir exceeded expectations, reaching 119.0% of its projected volume.

The inflow to the Nurek reservoir was expected to be 16 864 mcm during the growing season 2025, while the actual inflow was 17 217 mcm or 102.1 % of the expected one. Water releases from the reservoir were planned at 13 140 mcm and the actual water releases amounted to 13568 mcm or 103.3 % of the plan.

Water volume in the reservoir was planned to be 10 572 mcm by the end of the growing season 2025; the actual volume amounted to 10 505 mcm or 99.4 % of the plan.

The inflow to the Tuyamuyun reservoir was expected to be 13 709 mcm during growing season 2025, while the actual inflow was 15 148 mcm or 110.5 % of the expected one. Water releases from the reservoir were planned at 14 491 mcm and the actual water releases amounted to 15 352 mcm or 105.9 % of the plan.

Water volume in the reservoir was planned to be 3023 mcm by the end of the growing season 2025; the actual volume amounted to 3602 mcm or 119.1 % of the plan.

Item		Unit	Nurek reservoir	Tuyamuyun reservoir
Volume: beginning of the season		mcm	6178	3805
Inflow to the reservoir	forecast	mcm	16864	13709
	actual	mcm	17217	15148
		% %	102,1	110,5
Water release from the reservoir	forecast	mcm	13140	14491
	actual	mcm	13568	15352
		% %	103,3	105,9
Volume: end of the season	forecast	mcm	10572	3023
	actual	mcm	10505	3602
		% %	99,4	119,1

**Analysis of the use of water withdrawal limits/quotas in the Amu Darya
River basin, growing season 2025, mcm**

Item	Water withdrawal limits for the growing season, mcm	Actual, mcm	% %
Upper Darya Division (UDD)			
(Upper reaches) including:	8203.5	6655.1	81.1
Tajikistan	7003.5	5839.9	83.4
Uzbekistan	1200.0	815.2	67.9
Water withdrawal from the Amu Darya at nominal Kerki g/s, including:	31520.0	27547.3	87.4
Turkmenistan	15500.0	14195.0	91.6
Uzbekistan	16020.0	13352.3	83.3
Middle Darya Division (MDD)			
(Middle reaches) including:	16207.0	15854.7	97.8
Turkmenistan	10472.0	10412.0	99.4
Uzbekistan:	5735.0	5442.7	94.9
Amu Darya Inter-Republican Canals Division (UPRADIK) and Lower Darya Division (LDD)			
(Lower reaches) including:	15313.0	11692.60	76.4
Turkmenistan	5028.0	3783.00	75.2
Uzbekistan:	10285.0	7909.60	76.9
Total in the basin, including:	39723.5	34202.40	86.1
Tajikistan	7003.5	5839.90	83.4
Turkmenistan	15500.0	14195.00	91.6
Uzbekistan:	17220.0	14167.50	82.3

Actual operation regime of the Nurek and Tuyamuyun reservoirs (April-September 2025)

Nurek reservoir	Unit	Actual						Total
		April	May	June	July	August	September	
Volume: beginning of the season	mcm	6178	6417	7262	8292	9986	10540	6178
Inflow to the reservoir	m3/s	559	1002	1242	1556	1356	797	
	mcm	1448	2685	3218	4168	3632	2066	17217
Water releases from the reservoir	m3/s	491	765	898	996	1173	813	
	mcm	1273	2050	2328	2669	3141	2108	13568
Volume: end of the season	mcm	6417	7262	8292	9986	10540	10505	10505
Accumulation (+), drawdown (-)	mcm	239	845	1030	1694	554	-35	4327

Tuyamuyun reservoir	Unit	Actual						Total
		April	May	June	July	August	September	
Volume: beginning of the season	mcm	3805	3161	3935	3448	3131	3548	3805
Inflow to the reservoir	m3/s	405	1022	970	1230	1139	965	
	mcm	1050	2736	2515	3295	3052	2501	15148
Water releases from the reservoir	m3/s	653	733	1158	1349	984	944	
	mcm	1693	1963	3002	3612	2635	2447	15352
Volume: end of the season	mcm	3161	3935	3448	3131	3548	3602	3602
Accumulation (+), drawdown (-)	mcm	-644	773	-487	-317	417	54	-203

Water supply to the river delta and the Aral Sea during the growing season 2025, mcm

Item	April	May	June	July	August	September	Actual water supply from 01.04.2025 to 30.09.2025
From the Amu Darya at Samanbay g/s	31	38	94	116	39	42	360
Total water discharge from Dustlik and Suenli canal system							0
CDN	105	90	82	129	124	103	633
TOTAL:	136	128	176	245	163	145	993
Cumulative	136	264	440	685	848	993	

Syr Darya River basin

Forecast of inflow

According to UzHydromet's forecast, during the growing season 2025 river water availability in the Syr Darya basin was expected to be: 95-105% (100%) in river basins in the south Fergana Valley, 90-100% (95%) in the Naryn river basins, 75-85% (80%) in the rivers of the northern Fergana Valley, and 70-80% (75%) of the norm in the basins of the Karadarya, Akhangaran, and Chirchik rivers.

The information on projected operation regime of the Toktogul reservoir was provided by the Coordination Dispatch Center (CDC) "Energy" on March 14, 2025.

The projected operation regime of the Charvak reservoir was received from the Ministry of Energy of the Republic of Uzbekistan, and agreed with the Uzbek Ministry of Water Management.

The projected operation regime of the Andijan reservoir was received from JSC “UzbekHydroenergy, and agreed with the Ministry of Water Management of the Republic of Uzbekistan.

The projected operation regime of the Shardara reservoir was received from the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan.

Based on the projected data, inflow to the upper reservoirs was expected to be as follows

- Toktogul reservoir – 95%;
- Andijan reservoir – 78%;
- Charvak – 83% of the norm.

The total lateral inflow was expected to be 85 % of the norm.

Overall, water availability was expected at the level of 87% of the norm in the Syr Darya River basin.

The projected operation schedule of the Naryn-Syr Darya reservoir cascade for the growing season was taken into consideration at the 89th ICWC meeting and country water withdrawal limits/quotas for the Syr Darya River basin were approved.

The actual water-management situation in the growing season 2025 is characterized as follows:

Total inflow (Table 1)

The total inflow to the Syr Darya River basin in the growing season:

Norm - 29 494 mcm

UzHydromet's forecast – 25 771 mcm or 87% of the norm.

Actual inflow – 21 330 mcm, which is 4441 mcm less (17%) or 83% of the forecast (72% of the norm)

Inflow to upper reservoirs (Table 1)

The norm of inflow to upper reservoirs of the Naryn-Syr Darya cascade is 18 531 mcm.

The forecast inflow was 16 403 mcm or 89% of the norm.

The actual inflow to upper reservoirs was 14 471 mcm, which is 1932 mcm less or 88% of the forecast (78% of the norm).

The inflow to reservoirs was as follows:

Inflow to the Toktogul reservoir:

- Norm – 9827 mcm;
- Forecast – 9336 mcm;
- Actual inflow was 9123 mcm, which is 213 мм^3 less than or 98% of the forecast (93% of the norm).

Inflow to the Andijan reservoir:

- Norm – 2927 mcm;
- Forecast – 2268 mcm;
- Actual inflow was 1927 mcm, which is 341 млн.м^3 less than or 85% of the forecast (66% of the norm).

Inflow to the Charvak reservoir:

- Norm – 5777 mcm;
- Forecast – 4799 mcm;
- Actual inflow was 3421 mcm, which is 1378 mcm less than or 71% of the forecast (59% of the norm).

Lateral inflow (Table 1)

The lateral inflow in the Syr Darya River basin, from the Toktogul reservoir to the Shardara reservoir for the growing season is as follows:

Norm – 10963 mcm

UzHydromet's forecast – 9368 mcm or 85% of the norm.

Actual inflow: 6859 mcm, which is 2509 mcm less or 73% of the forecast (63% of the norm).

Table 1

Item	Growing season (April 1 – September 30), mcm													
	2025							2024						
	norm	forecast	forecast/norm (%)	actual	actual / forecast (%)	Deviation actual "-" forecast	actual /norm (%)	norm	forecast	forecast/norm (%)	actual	actual /forecast (%)	Deviation actual "-" forecast	actual /norm (%)
Inflow to upper reservoirs														
Toktogul	9827	9336	95	9123	98	-213	93	9827	9336	95	10693	115	1357	109
Andijan	2927	2268	78	1927	85	-341	66	2927	2411	82	2465	102	54	84
Charvak	5777	4799	83	3421	71	-1378	59	5777	4885	85	5071	104	186	88
Total:	18531	16403	89	14471	88	-1932	78	18531	16632	90	18229	110	1597	98
Lateral inflow														
Toktogul – Uchkurgan	1216	1155	95	662	57	-493	54	1216	1155	95	1219	105	64	100
Andijan – Uchtepe	2511	2211	88	1477	67	-734	59	2511	2053	82	2014	98	-39	80
Uchkurgan, Uchtepe – Bakhri Tojik	3349	2843	85	2568	90	-275	77	3349	2685	80	3390	126	705	101
Bakhri Tojik –	2985	2369	79	1386	59	-983	46	2985	2843	95	3087	109	244	103

Item	Growing season (April 1 – September 30), mcm													
	2025							2024						
	norm	forecast	forecast/norm (%)	actual	actual/forecast (%)	Deviation actual "-" forecast	actual/norm (%)	norm	forecast	forecast/norm (%)	actual	actual/forecast (%)	Deviation actual "-" forecast	actual/norm (%)
Shardara														
Gazalkent – Chinaz (excluding Ugam)	902	790	88	766	97	-24	85	902	790	88	765	97	-25	85
Total:	10963	9368	85	6859	73	-2509	63	10963	9526	87	10475	110	949	96
Grand total (total inflow):	29494	25771	87	21330	83	-4441	72	29494	26158	89	28704	110	2546	97

Table 2

Item	Growing season, mcm (April 1-September 30)							
	2025				2024			
	Forecast	Actual	actual/forecast (%)	Deviation (actual "—" forecast)	Forecast	Actual	Actual/forecast (%)	Deviation (actual "—" forecast)
Inflow to run-of-the-river reservoirs								
Inflow to Bakhri Tojik reservoir	5231	5737	110	506	5207	6328	122	1121
Forecast inflow to the Shardara reservoir, noted at ICWC meeting 89								
Inflow to Shardara reservoir (Chinaz g/s-Syr Darya + Bozsu g/s + Keles g/s)	3694	2700	73	-994	3692	5197	141	1505
Inflow to Shardara reservoir (Kokbular g/s+ Keles g/s+CDN)	3694	2567	70	-1127	3692	4790	130	1098
Forecast inflow to the Shardara reservoir according to BWO Syr Darya calculation								
Inflow to Shardara reservoir (Chinaz g/s-Syr Darya + Bozsu g/s + Keles g/s)	3173	2700	85	-473	3692	5197	141	1505
Inflow to Shardara reservoir (Kokbular g/s+ Keles g/s+CDN)	3173	2567	81	-606	3692	4790	130	1098
Water supply to the Aral Sea								
Water supply to the Aral Sea	975	589	60	-386	997	974	98	-23

Inflow to run-of-the river reservoirs and water supply to the Aral Sea (Table 2)

According to the projected schedule, inflow to the Bakhri Tojik reservoir was to be 5231 mcm in the growing season 2025.

The actual inflow was 5737 mcm, which is 506 mcm more than or 110% of the projected schedule.

According to the projected schedule, the inflow to the Shardara reservoir was expected to be 3694 mcm.

In fact, 2700 mcm flowed into the reservoir according to UzHydromet's data (Chinaz g/s-Syr Darya + Bozsu g/s + Keles g/s), which is 994 mcm less than or 73% of the projected schedule.

According to RSE "KazHydromet" (Kokbulak + Keles gauging stations), 2567 mcm flowed into the reservoir, which is 1127 mcm less than or 70% of the projected schedule.

According to the BWO Syr Darya data, the inflow to the Shardara reservoir was expected to be 3173 mcm.

In fact, 2700 mcm flowed into the reservoir according to UzHydromet's data, which is 473 mcm less than or 85% of the BWO Syr Darya data.

In fact, according to RSE "KazHydromet" data, 2567 mcm flowed into the reservoir, which is 606 mcm less than or 81% of the BWO Syr Darya data.

According to the projected schedule, the inflow to the Aral Sea and the Aral Sea region was expected to be 975 mcm, actual inflow to the Karateren g/s was 589 mcm, which is 386 mcm less than the projected schedule.

VI. Water releases from reservoirs (Table 3)

According to the projected operation schedule for the Naryn-Syr Darya reservoir cascade, 24,030 mcm of water were scheduled for discharge during the 2025 growing season. Actual releases totaled 21,351 mcm - 89% of the forecast - representing a deficit of 2,679 mcm.

Water releases from reservoirs were following:

- Toktogul Reservoir: 5887 mcm - plan, 6150 mcm - actual water releases;
- Andijan Reservoir: 2353 mcm - plan, 2311 mcm - actual water releases;
- Charvak Reservoir: 3645 mcm - plan, 3107 mcm - actual water releases;

- Bakhri Tojik Reservoir: 6303 mcm - plan, 6491 mcm - actual water releases;
- Shardara Reservoir: 5842 mcm - plan, 3292 mcm - actual water releases.

Water storage in reservoirs (Table 4)

The actual water storage in reservoirs of the Naryn-Syr Darya reservoir cascade was 18369 mcm at the beginning of the growing season.

As of 1 October 2025, the water storage was to be 17588 mcm according to the forecast.

In fact, on that date the water storage was 15521 mcm, which is 2067 mcm less than the forecast.

Water storage was 10311 mcm in the upper reservoirs.

According to the forecast, the water storage by the end of the growing season was expected to be 14812 mcm. In fact, 13538 mcm of water were accumulated, which is 1274 mcm less than the forecast.

Table 3

Reservoir	Water releases, mcm (April 1- September 30)							
	2025				2024			
	Operation schedule NSR		Difference (факт "-" график)	Actual/Forecast %	Operation schedule NSRC	Actual	Difference (actual "-" forecast)	Actual/forecast %
Upper reservoirs								
Toktogul	5887	6150	263	104	5771	4990	-781	86
Andijan	2353	2311	-42	98		2376	73	103
Charvak (discharge from Gazalkent HPP)	3645	3107	-538	85		4832	1009	126
TOTAL:	11885	11568	-317	97		12198	301	103
Run-of-the-river reservoirs								
Bakhri Tojik	6303	6491	188	103	6156	6421	265	104
Shardara	5842	3292	-2550	56	6208	5267	-941	85
Total:	12145	9783	-2362	81	12364	11688	-676	95
Grand Total:	24030	21351	-2679	89	24261	23886	-375	98

The water accumulation by reservoir was as follows:

Toktogul reservoir – forecast: 11900 mcm, actual: 11374 mcm, which is 526 mcm less than the forecast;

Andijan reservoir – forecast: 1112 mcm, actual: 792 mcm, which is 320 mcm less than the forecast.

Charvak reservoir – forecast: 1800 mcm, actual: 1372 mcm, which is 428 mcm more than the forecast.

Water storage in the run-of-the -river reservoirs by the end of the growing season was 8058 mcm.

Water volume in the run-of-the-river reservoirs was forecasted to be 2776 mcm, while actual storage was 1983 mcm, which is 793 mcm less than the forecast.

Water volume by reservoir:

Bakhri Tojik reservoir – forecast: 1771 mcm, actual: 1554 mcm, which is 217 mcm less than the forecast schedule;

Shardara reservoir – forecast: 1005 mcm, actual: 429 mcm, which is 576 mcm less than the forecast.

Table 4

Reservoir	Water volume in reservoirs, mcm					
	Actual by April 1, 2025	Scheduled by October 1, 2025	Actual by October 1, 2025	Difference (actual " - " schedule)	Actual by October 1, 2024	Difference (Actual by October 1, 2025 " - " Actual by October 1, 2024)
Upper reservoirs						
Toktogul	8451	11900	11374	-526	13036	-1662
Andijan	1198	1112	792	-320	987	-195
Charvak	662	1800	1372	-428	1805	-433
TOTAL:	10311	14812	13538	-1274	15828	-2290
Run-of-the-river reservoirs						
Bakhri Tojik	3497	1771	1554	-217	1716	-162
Shardara	4561	1005	429	-576	1121	-692
TOTAL:	8058	2776	1983	-793	2837	-854
GRAND TOTAL :	18369	17588	15521	-2067	18665	-3144

VIII. Water supply to countries (Table 5)

According to the approved limits and submitted requests from water users and based on water availability, water was delivered to user countries in the following amounts during the growing season 2025:

- Republic of Kazakhstan: limit - 909 mcm, actual – 644 mcm
- Kyrgyz Republic: limit - 270 mcm, actual – 191 mcm
- Republic of Tajikistan: limit – 1905 mcm, actual – 1454 mcm
- Republic of Uzbekistan: limit – 8800 mcm, actual – 7012 mcm.

The actual total water withdrawal by water user countries amounted to 11 884 mcm, given the water withdrawal limit of 9301 mcm.

Table 5

Water-user country	Water withdrawal, mcm April 1 – September 30, 2025	
	Limit	Actual
Republic of Kazakhstan (Dustlik canal)	909	644
Kyrgyz republic	270	191
Republic of Tajikistan	1905	1454
Republic of Uzbekistan	8800	7012
Total	11884	9301

Execution of the Protocol decision on electricity exchange and additional water releases through the Uchkurgan HPP (April 1 – September 30, 2025) (Tables 6-11)

Given the projected water availability in the Syr Darya Basin for the 2025 growing season, the water and energy ministers of Kyrgyzstan, Kazakhstan, and Uzbekistan signed a protocol on water-energy cooperation in Tashkent on January 27, 2025. This agreement aimed to improve supply in the river's upper and middle reaches and established a formal discharge schedule for the Uchkurgan HPP from April to September 2025.

Under this protocol, the planned discharge from the Uchkurgan HPP for April was set at 340 m³/s. However, the actual discharge averaged only 239 m³/s - a deficit of 101 mcm compared to the agreed volume (see Table 6).

To monitor implementation and address this shortfall, the Ministers reconvened in Tashkent on May 14, 2025. They signed a follow-up protocol and approved a revised schedule of water releases from the Uchkurgan HPP specifically designed to compensate for the April undersupply:

- May: 395 m³/s instead of 380 m³/s (+15 m³/s)
- June: 470 m³/s instead of 460 m³/s (+10 m³/s)
- August: 400 m³/s instead of 390 m³/s (+10 m³/s) (Table 7).

Table 6**Water releases from Uchkurgan HPP, according to the protocol of January 27, 2025**

Unit	April			May	June	July	August	September	Total
	protocol	actual	difference	protocol					
m3/s	340	239	-101	380	460	470	390	190	
mcm	881	619	-262	1018	1192	1259	1045	492	5887

Table 7

Unit	May			June			July			August			Difference between the protocols of 27.01& 14.05.2025
	Protocol 14.05.2025	Protocol 10.07.2025	Difference	Protocol 27.01.2025	Protocol 14.05.2025	Difference	Protocol 27.01.2025	Protocol 14.05.2025	Difference	Protocol 27.01.2025	Protocol 14.05.2025	Difference	
m ³ /s	380	395	15	460	470	10	470	470	0	390	400	10	
mcm	1018	1058	40	1192	1218	26	1259	1259	0	1045	1071	27	93

On July 10, 2025, in Tashkent, a further protocol was signed in which the Kyrgyz Republic committed, subject to technical feasibility, to providing additional water releases from the Uchkurgan HPP. The agreed adjustments to average daily flow rates are as follows: 520 m3/s instead of 470 m3/s (an increase of 50 m3/s) from July 20 to July 31; 520 m3/s instead of 400 m3/s (an increase of 120 m3/s) from August 1 to 15; 400 m3/s from August 16 to 20, no changes; from August 21 to 31 – 350 m3/s instead of 400 m3/s (decrease – 50 m3/s) (Table 8).

On July 29, 2025, a subsequent protocol was signed in Tashkent between water and energy ministries of Kazakhstan and Uzbekistan. This agreement outlined three distinct options for calculating water discharges from the Uchkurgan HPP.

According to the first option, discharge from the Uchkurgan HPP remains unchanged as compared to the protocol of July 10, 2025: 520 m3/s from July 29 to August 15; 400 m3/s from August 16 to August 20; and, 350 m3/s from August 21 to August 31.

Under the second option, water discharge from the Uchkurgan HPP was as follows, compared to the protocol of July 10, 2025: no change from July 29 to July 31; 620 m3/s instead of 520 m3/s (100 m3/s added) from August 1 to August 15; 500 m3/s instead of 400 m3/s (100 m3/s added) from August 16 to 20; and, 350 m3/s - no change from August 21 to 31.

Under the third option, water discharge from the Uchkurgan HPP: no change from July 29 to July 31; 674 m3/s instead of 520 m3/s (154 m3/s added) from August 1 to August 15; 400 m3/s - no change from August 16 to 20; and, 350 m3/s - no change from August 21 to 31 (Table 9).

Subsequently, the actual water discharge from the Uchkurgan HPP was implemented according to Option 2 for the period from July 29 to August 15 and followed Option 1 from August 16 to August 31.

In line with the protocols signed on May 14, July 10 and July 29, 2025, a total of 248 mcm of compensatory water was released between May and August (consisting of 40 mcm, 26 mcm, 52 mcm, and 130 mcm). This total was 14 mcm less than the 262 mcm deficit originally identified in the January 27, 2025 (Table 9).

Table 8**Analysis of water discharge from Uchkurgan HPP during the growing season 2025**

Unit	May		June		July			August					Difference between the protocols									
	Protocol 27.01.2025	Protocol 14.05.2025	Protocol 27.01.2025	Protocol 14.05.2025	Protocol 27.01.2025	Protocol 10.07.2025	Difference	Protocol 27.01.2025	Protocol 10.07.2025	Difference	Protocol 14.05.2025 ^r	Protocol 10.07.2025	Difference	Protocol of 4.05.2025	Protocol of 10.07.2025	Difference	Protocol of 14.05.2025	Protocol of 10.07.2025	Difference			
m3/s	380	395	15	460	470	10	470	470	0	470	520	50	400	520	120	400	400	0	400	350	-50	
mcm	1018	1058	40	1192	1218	26	772	772	0	487	539	52	518	674	156	173	173	0	173	151	-22	252

Table 9

Unit	May			June			July			August						Difference between the protocols						
	Protocol 27.01. 2025	Protocol 14.05. 2025	Difference	Protocol 27.01. 2025	Protocol 14.05. 2025	Difference	Protocol 27.01. 2025	Protocol 10.07. 2025	Difference	Protocol 27.01. 2025	Protocol 10.07. 2025	Difference	Protocol 10.07. 2025	Protocol 29.07. 2025, 2 nd option	Difference	Protocol 10.07. 2025	Protocol 29.07. 2025, 1 st option	Difference	Protocol 10.07. 2025	Protocol 29.07. 2025, 1 st option	Difference	
m3/s	380	395	15	460	470	10	470	470	0	470	520	50	520	620	10	400	400	0	350	350	0	248
mcm	101 ₈	1058	40	1192	121 ₈	26	772	772	0	487	539	52	674	804	13	173	173	0	151	151	0	

Table 10

Analysis of water discharge from Uchkurgan HPP, May 1 – September 30, 2025 (according to the protocols of May 14 and July 10 and 29, 2025)

Unit	May		June		July		August				September		Total from 1 May to 30 September	
	Protocol 14.05. 2025	Actual	Protocol 14.05. 2025	Actual	from 1 to 19 July	from 20 to 31 July	from 1 to 15 August	from 16 to 20 August	from 21 to 31 August					
m3/s	395	392	470	457	470	466	520	498	620	612	400	381	350	328
mcm	1058	1050	1218	1184	772	765	539	516	804	794	173	165	333	312
Difference (mcm)	-8		-34		-7		-23		-10		-8		-20	
											24		-86	

Table 11

Analysis of water discharge from Uchkurgan HPP, from April 1 to September 30, 2025
(compared to the protocol of January 27, 2025)

Unit	April		May		June		July		August		September		Total		
	protocol	actual	protocol	actual	protocol	actual	protocol	actua l	protocol	actua l	protocol	actua l	protocol	actua l	differen ce (actual - protocol)
m3/s	340	239	380	392	460	457	470	479	390	474	190	199			
mcm	881	619	1018	1050	1192	1184	1259	1282	1045	1270	492	516	5887	5921	34

From May 1 to September 30, 2025, water discharge from the Uchkurgan HPP - based on the protocols of May 14, July 10, and July 29 -was planned at 5388 mcm. Actual discharge reached 5302 mcm, representing a shortfall of 86 mcm compared to those specific agreements (Table 10). However, looking at the broader period from April 1 to September 30, 2025, actual discharge totaled 5921 mcm, exceeding the 5887 mcm target (Table 11).

It is important to acknowledge the initiative and significant efforts of the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan in facilitating these increased flows. Furthermore, despite lower inflows and reduced volumes in the Toktogul Reservoir compared to the previous year, the Ministry of Energy of the Kyrgyz Republic successfully increased water discharge from the Uchkurgan HPP. This resulted in 34 mcm more than mandated by the January 27 protocol and a 752 mcm increase over the 2024 growing season (5169 mcm).

Execution of the trilateral protocol on the operating regime of the Bakhri Tojik reservoir for the period from June 1 to August 31, 2025 (Table 12)

Given the projected water management situation in the Syr Darya River basin, on May 30, 2025, Uzbekistan, Kazakhstan, and Tajikistan signed a trilateral protocol regarding additional water discharges from the Bakhri Tojik reservoir.

Under this protocol, the inflow to the Bakhri Tojik reservoir from June 1 to August 31, 2025 was forecasted at 2385 mcm. However, the actual inflow reached 2974 mcm, exceeding the protocol's projections by 589 mcm.

To increase inflow to the Bakhri Tojik Reservoir, the Ministry of Water Management of the Republic of Uzbekistan, in coordination with BWO Syr Darya, restricted water abstractions in the upper reaches of the Syr Darya River and diverted additional supply to the Akjar gauging station. As a result of these measures, average monthly inflows to the Bakhri Tojik Reservoir were significantly bolstered: reaching 379 m³/s in June, 341 m³/s in July, and 402 m³/s in August - surpassing the target of 300 m³/s.

During the peak of the growing season, this enhanced inflow allowed for water discharges from the reservoir to exceed the volumes originally established in the protocol.

In accordance with the trilateral protocol, the planned water releases from the Bakhri Tojik Reservoir for the period from June 1 to August 31 was 3527 mcm, but the actual release was 4233 mcm, which is 706 mcm more than the protocol.

The Republic of Tajikistan surpassed its obligations - under the Protocol of the working meeting of the Tajik, Kazakh, and Uzbek sides on the implementation of the operation regime of the Bakhri Tojik reservoir for the period June-August 2025 - and released additional 117 mcm of water, more than specified in the protocol.

Table 12

Operation regime of the Bakhri Tojik reservoir
June 1- August 31, 2025

Item	Unit	June						July						August						Total, mcm								
		I		II		III		aver. monthly		I		II		III		aver. monthly		I		II		III		aver. monthly				
		Protocol	Actual	Protocol	Actual	Protocol	Actual	Protocol	Actual	Protocol	Actual	Protocol	Actual	Protocol	Actual	Protocol	Actual	Protocol	Actual	Protocol	Actual	Protocol	Actual	Protocol	Actual			
Inflow	m3/s	300	411	300	389	300	338	300	379	300	306	300	347	300	367	300	301	300	458	300	436	300	321	300	302	402		
	mcm	259	355	259	336	259	292	778	983	259	265	259	300	285	349	804	914	259	396	259	377	285	305	804	1078	2385	2974	589
Water releases	m3/s	350	493	390	494	450	490	397	492	520	525	520	589	520	649	520	590	510	665	440	587	300	312	413	515			
	mcm	302	426	337	426	389	423	1028	1275	449	454	449	509	494	617	1393	1579	441	575	380	507	285	297	1106	1379	3527	4233	706
Akdjар +	m3/s	50	82	90	105	150	155	97	113	220	219	220	242	220	282	220	249	210	207	140	150	0	-8	113	112			
	mcm	43	71	78	90	130	132	251	293	190	189	190	209	209	268	589	666	181	179	121	130	0	-8	302	301	1142	1259	117

Table 13**Projected operation schedule of the Naryn – Syr Darya reservoir cascade, growing season 2025**

Reservoir	Unit	April	May	June	July	August	September	Total, mcm
Toktogul reservoir								
Inflow to reservoir	m3/s	373	540	1064	698	495	374	9336
	mcm	967	1446	2758	1870	1326	969	
Volume: beginning of the season end of the season	mcm	8451	8537	8966	10531	11142	11423	
	mcm	8537	8966	10531	11142	11423	11900	
Water releases from reservoir	m3/s	340	380	460	470	390	190	5887
	mcm	881	1018	1192	1259	1045	492	
Discharge from Uchkurgan HPP (under protocol of January 27, 2025)	m3/s	340	380	460	470	390	190	5887
	mcm	881	1018	1192	1259	1045	492	
Bakhri Tojik reservoir								
Inflow to reservoir (Akdjar g/s)	m3/s	404	402	321	300	300	257	5231
	mcm	1046	1078	833	804	804	666	
Volume: beginning of the season end of the season	mcm	3497	3543	3543	3063	2244	1685	
	mcm	3543	3543	3063	2244	1685	1771	
Water releases from reservoir	m3/s	392	380	440	530	445	200	6303
	mcm	1015	1019	1140	1420	1191	518	
Shardara reservoir								
Inflow to the reservoir	m3/s	400	330	214	150	150	160	3694
	mcm	1037	884	555	402	402	415	

Volume: beginning of the season	mcm	4561	4696	4503	3513	2029	1057	
end of the season	mcm	4696	4503	3513	2029	1057	1005	
Water releases from the reservoir	m3/s	250	330	500	550	430	150	
	mcm	648	884	1296	1473	1152	389	5842
Releases to Kyzylkum canal	m3/s	80	50	55	110	50	5	
	mcm	207	134	143	295	134	13	925
Water supply to the Aral Sea	m3/s	70	70	70	60	50	50	
	mcm	181	187	181	161	134	130	975
Charvak reservoir								
Inflow to the reservoir	m3/s	227	397	493	344	228	129	
	mcm	588	1064	1277	923	611	335	4799
Volume: beginning of the season	mcm	662	876	1419	1938	1975	1867	
end of the season	mcm	876	1419	1938	1975	1867	1800	
Water releases from the reservoir	m3/s	143	193	290	330	269	155	
(Discharge from the Gazalkent HPP)	mcm	372	517	752	883	720	402	3645
Andijan reservoir								
Inflow to the reservoir	m3/s	142	241	223	129	68	58	
	mcm	367	645	577	346	182	151	2268
Volume: beginning of the season	mcm	1198	1292	1507	1566	1340	1090	
end of the season	mcm	1292	1507	1566	1340	1090	1112	
Water releases from reservoir	m3/s	105	160	200	214	161	50	
	mcm	272	429	518	572	432	129	2353

Table 14**Actual operation regime of the Naryn-Syr Darya reservoir cascade, growing season 2025**

Reservoir	Unit	April	May	June	July	August	September	Total, mcm
Toktogul reservoir								
Inflow to the reservoir	m3/s	377	830	749	658	480	361	
	mcm	978	2222	1942	1762	1285	935	9123
Volume: beginning of the season	mcm	8451	8878	10109	10788	11154	11054	
end of the season	mcm	8878	10109	10788	11154	11054	11374	
Water releases from the reservoir	m3/s	216	370	471	519	523	226	
	mcm	559	991	1222	1390	1402	586	6150
Disharge from Uchkurgan HPP	m3/s	239	392	457	479	474	199	
	mcm	619	1050	1184	1282	1270	516	5921
Bakhri Tojik reservoir								
Inflow to the reservoir	m3/s	415	360	379	341	402	280	
(Aktdjar g/s)	mcm	1075	963	983	914	1078	725	5737
Volume: beginning of the season	mcm	3497	3467	3389	2825	1846	1328	
end of the season	mcm	3467	3389	2825	1846	1328	1554	
Water releases from the reservoir	m3/s	401	319	492	590	515	140	
	mcm	1039	855	1275	1579	1379	364	6491
Shardara reservoir								
Inflow to the reservoir	m3/s	410	73	149	113	172	113	
(Chinaz-Syr g/s+Bozsuz g/s+Keles g/s)	mcm	1062	195	385	303	461	293	2700

Reservoir	Unit	April	May	June	July	August	September	Total, mcm
Inflow to the reservoir (Kokbulak g/s+Keles g/s+CDN)	m3/s	399	50	136	101	179	114	
	mcm	1034	134	353	271	479	296	2567
Volume: beginning of the season end of the season	mcm	4561	4554	3338	2082	485	237	
	mcm	4554	3338	2082	485	237	429	
Water releases from the reservoir	m3/s	115	247	348	350	155	30	
	mcm	298	661	903	937	415	78	3292
Releases to Kyzylkum canal	m3/s	87	67	60	81	33	7	
	mcm	226	179	156	218	89	17	885
Water supply to the Aral Sea	m3/s	121	43	14	16	17	14	
	m3/s	314	115	36	43	44	37	589
Charvak reservoir								
Inflow to the reservoir	m3/s	235	371	280	189	126	96	
	mcm	608	995	726	507	337	248	3421
Volume: beginning of the season end of the season	mcm	662	1026	1645	1779	1576	1459	
	mcm	1026	1645	1779	1576	1459	1372	
Water releases from the reservoir (Discharge from Gazalkent HPP)	m3/s	132	204	269	270	176	125	
	mcm	342	548	698	724	471	325	3107
Andijan reservoir								
Inflow to the reservoir	m3/s	149	205	180	92	49	57	
	mcm	386	548	468	246	131	147	1927
Volume: beginning of the season end of the season	mcm	1198	1388	1519	1452	1031	776	
	mcm	1388	1519	1452	1031	776	792	
Water releases from the reservoir	m3/s	74	154	204	248	143	51	
	mcm	192	412	529	664	384	131	2311

Note

The inflow to the Shardara reservoir under the proposal of the Ministry of Water Resources and Irrigation of Kazakhstan was expected to be 3694 mcm.

According to calculations by BWO Syr Darya, the inflow to the Shardara reservoir was expected to be 3173 mcm.

Approval of country water withdrawal limits/quotas and projected operation regime of the reservoir cascades in the Syr Darya and Amu Darya River Basins for the non-growing season 2025-2026

Amu Darya Basin

Quotas/limits of water withdrawal from Amu Darya River and water supply to the river delta and the Aral Sea during the non-growing season 2025-2026

River basin, state	Water withdrawal limits/quotas , mcm	
	Total amount (from 1.10.2025 to 1.10 .2026)	Including, non-growing season (from 1.10.2025 to 1.04.2026)
Total from the Amu Darya River basin	55 391	15 865
including:		
Republic of Tajikistan	9 821	3 015
From the Amu Darya River to the nominal Kerki gauging station	44 000	12 480
Turkmenistan	22 000	6 500
Republic of Uzbekistan	22 000	5 980
In addition:		
- water supply to the river delta and the Aral Sea, including irrigation water releases and CDW	4 200	2 100
- sanitary and environmental flow to irrigation systems:	800	800
Dashoguz province	150	150
Khorezm province	150	150
Republic of Karakalpakstan	500	500

Projected operation regime of Nurek and Tuyamuyun reservoirs
(October 2025 – March 2026)

Nurek reservoir	Unit	Forecast						Total
		October	November	December	January	February	March	
Volume: beginning of the season	mcm	10505	10536	10205	9232	8056	6934	10505
Inflow to the reservoir	m3/s	322	293	236	200	190	235	
	mcm	863	760	632	535	460	631	3881
Water releases from the reservoir	m3/s	307	417	548	600	591	436	
	mcm	823	1080	1467	1607	1431	1167	7575
Volume: End of the season	mcm	10536	10205	9232	8056	6934	6226	6226
Accumulation (+), drawdown(-)	mcm	31	-331	-973	-1176	-1121	-709	-4279

Tuyamuyun reservoir	Unit	Forecast						Total
		October	November	December	January	February	March	
Volume: beginning of the season	mcm	3602	3655	4010	4504	4888	4517	3602
Inflow to the reservoir	m3/s	396	277	369	353	342	414	
	mcm	1062	718	987	946	826	1109	5649
Water releases from the reservoir	m3/s	377	140	184	210	495	827	
	mcm	1009	363	493	562	1198	2216	5841
Volume: end of the season	mcm	3655	4010	4504	4888	4517	3410	3410
Accumulation (+), drawdown(-)	mcm	53	355	494	384	-371	-1107	-192

Syr Darya River Basin

Forecast of inflow

On September 26, 2025, the Uzhydromet provided the forecast for non-growing season 2025-2026.

On October 17, 2025, the Coordination Dispatch Center (CDC) "Energy" provided the anticipated operation regime of the Toktogul reservoir.

The projected operation regime of the Charvak reservoir was received from State Unitary Enterprises (SUE) "National Dispatch Center" of the Uzbek Ministry of Energy, agreed with the Ministry of Water Management and Joint Stock Company "Uzbekhydroenergy".

The projected operational regime of the Andijan reservoir was received from the Ministry of Water Management of the Republic of Uzbekistan and that of the Shardara reservoir - from the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan.

According to the forecasts, inflows to the upper reservoirs are expected to be as follows:

- Toktogul reservoir – 98%;
- Andijan reservoir – 95%;
- Charvak reservoir – 75% of the norm.

Total lateral inflow is expected to be 71% of the norm.

In general, water availability in Syr Darya River basin is expected at 78% of the norm.

Total inflow (Table 1)

The total inflow norm in the Syr Darya River basin is 16413 mcm for the non-growing season.

According to the forecast, the total inflow is expected to be 12770 mcm (78% of the norm).

For the non-growing season 2024-2025, the forecast of total inflow was 15415 mcm, while the actual inflow was 16 806 mcm (1391 mcm more than or 109% of the forecast).

Inflow to upper reservoirs (Table 1)

The norm of inflow to upper reservoirs of the Naryn–Syr Darya reservoir cascade is 5283 mcm for the non-growing season.

The inflow is projected to be 4838 mcm (92% of the norm).

The norm of inflow to the Toktogul reservoir is 2932 mcm, and the forecast is 2882 mcm (98% of the norm).

The norm of inflow to the Andijan reservoir is 929 mcm, and the forecast is 884 mcm (95% of the norm).

The norm of inflow to the Charvak reservoir is 1422 mcm, and the forecast is 1072 mcm (75% of the norm)

Lateral inflow (Table 1)

The norm of lateral inflow in the Syr Darya River basin, from the Toktogul to Shardara reservoirs is 11 130 mcm, while the forecast for the inflow is 7932 mcm (71% of the norm).

Water storage in reservoirs (Table 2)

As of October 1, 2025, the total volume of water in the reservoirs is 15 521 mcm (including the dead storage of 7963 mcm). Usable water storage in reservoirs, excluding dead storage, is 7558mcm

Available water resources of the Naryn-Syr Darya reservoir cascade (total inflow + water storage in reservoirs excluding dead storage) is 20328 mcm for the non-growing season 2025-2026.

$$(12770 \text{ mcm} + 7558 \text{ mcm} = 20328 \text{ mcm})$$

As of October 1, 2024, the total volume of water in the reservoirs was 18665 mcm (including the dead storage of 7963 mcm). Usable water storage in reservoirs, excluding dead storage, was 10702 mcm.

Available water resources of the Naryn-Syr Darya reservoir cascade was 26117 mcm for the non-growing season 2024-2025.

$$(15415 \text{ mcm} + 10702 \text{ mcm} = 26117 \text{ mcm})$$

Water releases from reservoirs (Table 3)

According to the projected operation schedule of the Naryn-Syr Darya reservoir cascade, 21 776 mcm are planned to be released from the reservoirs during the non-growing season 2025-2026.

As to the non-growing season 2024-2025, 27 644 mcm were planned to be released from the Naryn-Syr Darya reservoir cascade, while the actual water releases amounted to 29 424 mcm (by 1780 mcm less than in the projected schedule).

Water withdrawal limits (Table 4)

Based on requests of water user states, the following water withdrawal limits are proposed for the non-growing season.

The total volume of water withdrawal limit of water-user states is 4219 mcm for the non-growing season.

Water-user states, requests

Republic of Kazakhstan (Dustlik canal)	460 mcm
Kyrgyz Republic	47 mcm
Republic of Tajikistan	365 mcm
Republic of Uzbekistan	3347 mcm
Total:	4219 mcm

Table 1

Reservoir	Non-growing season, mcm									
	2025-2026			2024-2025						
	norm	forecast	forecast/norm (%)	norm	forecast	forecast/norm (%)	actual	actual/forecast (%)	actual/forecast (%)	
Inflow to upper reservoirs										
Toktogul	2932	2882	98	2932	2993	102	3707	124	126	
Andijan	929	884	95	929	817	88	809	99	87	
Charvak	1422	1072	75	1422	1340	94	1603	120	113	
Total:	5283	4838	92	5283	5150	97	6119	119	116	
Lateral inflow										
Toktogul – Uchkurgan	398	390	98	398	366	92	365	100	92	
Uchkurgan, Uchtepe – Bakhri Tojik	4397	3297	75	4397	4240	96	4406	104	100	
Andijan – Uchtepe	2533	1731	68	2533	2045	81	2016	99	80	
Bakhri Tojik – Shardara	2969	1885	63	2969	2828	95	3142	111	106	
Gazalkent- Chinaz (excluding Ugam)	833	629	75	833	786	94	758	97	91	
Total:	11130	7932	71	11130	10265	92	10687	104	96	
Grand Total (total inflow):	16413	12770	78	16413	15415	94	16806	109	102	

Table 2

Reservoir	Water volume in reservoirs, mcm			
	Actual as of October 1, 2025	Actual as of October 1, 2024	Difference 2025 "-" 2024	Dead volume
Upper reservoirs				
Toktogul	11374	13036	-1662	5500
Andijan	792	987	-195	150
Charvak	1372	1805	-433	426
TOTAL:	13538	15828	-2290	6076
Run-of-the rivers reservoirs				
Bakhri Tojik	1554	1716	-162	917
Shardara	429	1121	-692	970
TOTAL:	1983	2837	-854	1887
GRAND TOTAL:	15521	18665	-3144	7963

Table 3

Reservoir	Water releases, mcm		
	Projected schedule 2025 - 2026	Projected schedule 2024 - 2025	Actual 2024 - 2025
Toktogul	6775	7996	8260
Andijan	576	691	579
Charvak (discharge from Gazalkent HPP)	1920	2633	2687
TOTAL:	9271	11320	11526
Bakhri Tojik	7871	9904	11133
Shardara	4634	6420	6765
TOTAL:	12505	16324	17898
GRAND TOTAL:	21776	27644	29424

Table 4

Water-user state	Proposed limits, ,mcm
Republic of Kazakhstan (Dustlik canal)	460
Kyrgyz Republic	47
Republic of Tajikistan	365
Republic of Uzbekistan	3347
Total	4219

According to the data from the Ministry of Water Resources and Irrigation of the Republic Kazakhstan, inflow to the Aral Sea and the Aral Sea region is expected to be 1214 mcm for the non-growing season.

The actual inflow to the Aral Sea and the Aral Sea region at Karaten gauging station was 1791 mcm during the non-growing season 2024-2025.

The operation schedule for Naryn-Syr Darya reservoir cascade was projected for October 1, 2025 to March 31, 2026, based on forecasts and accumulated storage in reservoirs, as well as the requests from water-user states. The schedule is shown in Table 5.

Table 5**Forecast operation regime of the Naryn-Syr Darya reservoir cascade (October 1, 2025 – March 31, 2026)**

		October	November	December	January	February	March	Total, mcm
Toktogul reservoir								
Inflow to the reservoir	m3/s	237	202	168	159	160	172	
	mcm	635	524	450	426	387	461	2882
Volume: beginning of the season	mcm	11374	11532	11045	9867	8662	7668	
end of the season	mcm	11532	11045	9867	8662	7668	7481	
Water releases from the reservoir	m3/s	178	390	608	609	571	242	
	mcm	477	1011	1628	1630	1381	648	6775
Bakhri Tojik reservoir								
Inflow to the reservoir	m3/s	343	598	851	779	744	369	
(Akjar g/s)	mcm	918	1550	2280	2086	1799	988	9621
Volume: beginning of the season	mcm	1554	2093	2875	3283	3404	3424	
end of the season	mcm	2093	2875	3283	3404	3424	3407	
Water releases from the reservoir	m3/s	131	300	710	750	750	380	
	mcm	351	778	1902	2009	1814	1018	7871
Shardara reservoir								
Inflow to the reservoir	m3/s	142	450	750	800	800	700	
(Chinaz g/s-Syr Darya+Bozsu g/s+Keles g/s)	mcm	380	1166	2009	2143	1935	1875	9508
Volume: beginning of the season	mcm	429	823	1292	2460	3507	4448	
end of the season	mcm	823	1292	2460	3507	4448	5225	
Water releases from the reservoir	m3/s	27	250	300	400	400	400	

		October	November	December	January	February	March	Total, mcm
	mcm	72	648	804	1071	968	1071	4634
Water supply to the Aral Sea	m3/s	15	60	90	100	100	100	
	mcm	40	156	241	268	242	268	1214
Charvak reservoir								
Inflow to the reservoir	m3/s	82	73	62	55	55	81	
	mcm	219	189	166	149	133	216	1072
Volume: beginning of the season	mcm	1372	1277	1176	971	727	580	
end of the season	mcm	1277	1176	971	727	580	515	
Water releases from the reservoir	m3/s	114	112	139	146	116	105	
(Discharge from the Gazalkent HPP)	mcm	306	289	371	392	280	281	1920
Andijan reservoir								
Inflow to the reservoir	m3/s	55	67	53	45	47	70	
	mcm	146	172	143	121	113	188	884
Volume: beginning of the season	mcm	792	782	848	919	988	1054	
end of the season	mcm	782	848	919	988	1054	1101	
Water releases from the reservoirs	m3/s	58	41	27	20	20	53	
	mcm	156	107	72	52	47	141	576

Note

The inflow to the Shardara reservoir under the proposal of the Ministry of Water Resources and Irrigation of Kazakhstan is expected to be 9508 mcm.

Based on the projected operational schedules for upstream reservoirs and lateral inflow forecasts from Uzhydromet, BWO Syr Darya estimates that total inflow to the Shardara Reservoir will reach 8314 mcm.

Progress on Implementation of the Tasks Set at the Summits of the Heads of IFAS Founder-States¹

(August 14 – November 13, 2025)

General information

The Summit of the Council of the Heads of IFAS Founder States was held on August 24, 2018, in Turkmenbashi, and again on September 15, 2023, in Dushanbe. During these summits, the Heads of State introduced a series of proposals and initiatives targeting critical water, environmental, energy, and socioeconomic challenges. The progress and implementation of these initiatives are regularly reviewed and discussed during meetings of ICWC².

The protocol of the 90th meeting of the ICWC states: "1. To acknowledge the effectiveness of the work of water management agencies of Central Asian countries and executive bodies of the ICWC in implementing the proposals and initiatives put forward at the meetings of the Heads of IFAS founder-states in Turkmenbashi (2018) and Dushanbe (2023). 2. Members of the ICWC and Executive bodies shall present information on the progress of these proposals and initiatives at regular meetings of the ICWC."

Brief information on the work of the countries and executive bodies on implementation of the tasks set out in the summit decisions for the period from August 14 to November 13, 2025 is presented below.

1. Institutional and legal improvement of IFAS, strengthening its capacity and image in the international arena

EC IFAS in Kazakhstan continues to coordinate efforts on institutional and legal improvement of IFAS. A consensus is being sought on possible changes to the institutional structure of the IFAS, the name of the organization, and the permanent location of its executive body. The 15th meeting of the Working Group (WG) is scheduled to take place before the end of 2025.

Information on progress in this area was reported at the regular meeting of the IFAS Board (October 10, Astana). Resolution: "1. To take note of the information provided by the EC IFAS on activities of the WG on the

¹ Information on the third item of the 91th ICWC meeting's agenda

² Starting from the 77th meeting of the ICWC (November 5-6, 2019)

improvement of institutional and legal frameworks of IFAS. 2. EC IFAS together with ICWC, ICSD and agencies of the IFAS founder-states shall take measures to accelerate the process on the improvement of institutional and legal frameworks of IFAS”.

2. Projects and programs as part of ASBP-4 (2020-2023)

Under the chairmanship of Kazakhstan, IFAS is working on the implementation and systematic monitoring of ASBP-4. Information on the implementation of projects corresponding to the areas of focus of ASBP-4 is regularly provided by countries and implementing agencies at the request of EC IFAS.

According to information presented by the EC IFAS at the IFAS Board meeting (October 10, Astana), a total of 42 projects worth \$114.2 million and €77.1 million were implemented in the Aral Sea basin in 2025. Following the meeting, it was decided that: “The Executive Committee of the IFAS, ICWC and the ICSD, in cooperation with the relevant ministries and agencies of the founder-states of the Fund, shall continue their joint activities to ensure the implementation of ASBP-4”.

SIC ICWC, in collaboration with the **EC IFAS** and with funding from the French Development Agency (AFD), continues to implement ASBP-4 project 1.11. “Correction of the hydromodule zoning of the Syr Darya River basin using remote sensing data and satellite mapping technologies for correction of water consumption and irrigation regimes for agricultural crops cultivated in the region.”

As of November 2025, the following work has been completed: (1) an analytical review of existing standards and methods for hydromodule zoning of the region; (2) comprehensive ground-space research - collection and analysis of data on soils, hydrology, irrigated agriculture, and cartographic materials for Andijan, Namangan, and Fergana provinces; (3) calculation and analysis of global climate models (GCM) and representative concentration pathways (RCP2-RCP8); 4) calculations using the Sebal (Surface Energy Balance Algorithm for Land) model for hydromodule zoning, correction of irrigation rates and regimes for agricultural crops.

3. Water conservation and climate change adaptation measures

In **Kazakhstan**, state support measures for farmers have been extended since 2024: the share of cost reimbursement for adopting water-saving technologies were increased from 50% to 80%, and differentiated subsidies for irrigation water were introduced. This has made it possible to increase the area covered by water-saving technologies by 86% — from 312,200 to 581,000 ha.

Domestic production is also developing: four factories producing sprinkler and drip irrigation systems have been opened, and a joint Kazakh-Chinese project has been launched in the Zhambyl province, providing drip irrigation for up to 14,000 ha. Production of plastic pipes for drip irrigation systems has been launched in Turkistan and preparations are underway to launch a production line for pipes, tapes, and drip irrigation devices in Zhetsysai and Makhtaaral. In the Kyzylorda province, Turkish investors are implementing a project of a plant capable to produce 20,000 ha of drip irrigation systems.

Development of climate-resilient water resources project continues³ (IBRD, \$1.153 billion), providing for (Phase 1) the construction of four new reservoirs and the reconstruction of four existing reservoirs, as well as the reconstruction of 115 canals. The reconstruction of 96 canals has begun.

A project is developed on generation of glacier catalogs in collaboration with the Central Asian Regional Glaciological Center. There are plans to resume the registration of rivers and lakes with the aim of creating a state water cadastre.

The Atlas of Hydrogeological Maps of the Republic of Kazakhstan was generated at the Institute of hydrogeology and geoecology named after Akhmedsafin. The atlas was created using the ArcGIS geographic information system, which allows users to obtain factual information about the graphic objects displayed on the electronic map. This provides access to information about the parameters of the underground hydrosphere and the environment.

Tajikistan. A 2025-2027 Action Plan has been approved for implementation of the National Climate Change Adaptation Strategy for the period up to 2030 (PP RT 404 of July 24, 2025), which includes the following key measures in the water sector: (1) Reconstruction and rehabilitation of water supply systems; (2) Introduction of water-saving technologies; (3) Reconstruction of irrigation systems to reduce water losses; (4) Automation of water metering stations at intake structures on rivers, reservoirs, canals, etc.

The process of updating NDC 3.0 has been launched and led by the Committee on Environmental Protection with the support of UNDP in Tajikistan

³ aimed at implementing the Concept for the Development of Water Management System

as part of the Climate Promise initiative. The action plan and a roadmap were reviewed at a national kick-off workshop (July 30, Dushanbe).

As part of the Dushanbe Invest 2025 International Investment Forum, a panel session titled “Green Infrastructure and Clean Energy” was held (October 14, Dushanbe).

The project Improvement of Water Management and Irrigation in Tajikistan (MFA/EU, 2023-2027) continues to be implemented in Khatlon and Sughd provinces of the Republic of Tajikistan with the aim of improving water and irrigation infrastructure and systems.

“The 2026-2030 State program for the development of new irrigated land and the reclamation of land withdrawn from agriculture” (PPRT No. 512 of September 30, 2025) through the construction, rehabilitation, and reconstruction of hydraulic structures has been approved.

Turkmenistan. By the end of 2025, a Regional Climate Technology Center for Central Asian countries is to open in Ashgabat. The aim is to search for and attract new technologies for adapting agriculture and water management to a changing climate. The National Youth Climate Conference (LCOY 2025) took place on October 13 in Ashgabat, where the Youth Climate Roadmap was adopted. The Roadmap will be presented at the upcoming Youth Conference (COY20) and the 30th Conference of the Parties (COP30) (November 6-21, Belém, Brazil).

Work continued (1) under the program “EU for Green Development in Turkmenistan: Political dialogue and climate action for 2024-2028 which aims to strengthen political dialogue between the EU and Turkmenistan on energy, environmental protection, and climate policy; implement best international practices and EU standards, develop cooperation in the field of climate, renewable energy, energy efficiency, and methane emission reduction; support the implementation of Turkmenistan's National Strategy on Climate Change; (2) under the project “Developing Turkmenistan's national capacity by improving the regulatory framework for energy-efficient and sustainable construction/TEESB” (GEF/UNDP, 2025-2030), which aims to support Turkmenistan's efforts to combat climate change.

The process of updating NDC 3.0 has started as part of UNFCCC and Paris Agreement commitments (September 12⁴, Ashgabat). The document will set out commitments to reducing greenhouse gas emissions and expanding sections on adaptation. It will also address biodiversity, land degradation, and climate finance. Special attention will be paid to engagement of the private sector in climate actions.

⁴ The working meeting was organized by UNDP in coordination with the Ministry of Foreign Affairs and with the support of the Ministry of environment protection of Turkmenistan

Uzbekistan. The 2025-2028 Program for Water Management and Irrigation Sector Development in the Republic of Uzbekistan (PPRUz. PP-250 of August 15, 2025) has been approved with the following targets: (1) Reconstruction of 2,551 km of irrigation networks (annual expenditure of 1.3 trillion soums from the state budget and \$300 million from donor funds); (2) Modernization of pumping stations (energy-saving 562 pumps and 578 electric motors); (3) Reduction of irrigated areas with low water supply from 424 to 276 thous. ha; (4) Installation of alternative energy sources at 15 pumping stations; (5) Expansion of areas under water-saving technologies and reduction of salinized land areas, as well as land areas with critical water tables; (6) Reclamation of 67,000 ha of withdrawn irrigated land.

The project “Climate resilient integrated water resources management in the Zerafshan river basin” (Switzerland, 2022-2027) continues to be implemented in Samarkand, Jizzakh, Navoi, Bukhara, and Kashkadarya provinces. Plans include installing more than 50 weather stations, automating wells to monitor groundwater, training farmers in water conservation, and introducing the “Green School” concept.

The National Irrigation and Energy Efficiency Improvement Project/NIEEIP (WB, October 2025 - July 2031) is being implemented in Surkhandarya, Kashkadarya, Bukhara, Namangan provinces, and the Republic of Karakalpakstan.

Planned: (1) concreting of eight large main canals connected to the Amu Darya and Syr Darya rivers (259 km); (2) re-profiling and raising the level of canal beds to ensure gravity-fed water supply; (3) construction of approximately 470 hydraulic structures to improve control along canals; (4) installation of adjustable water intakes with meters, as well as implementation of SCADA.

An international scientific and practical conference “Water Security and Climate Change - 2025” was held in Tashkent with the aim of promoting water-saving technologies in countries severely affected by climate change and facing water shortages (October 8-10). PP RUz 302 of October 14, 2025 establishes measures for further improvement of water management at the grassroots level and development of PPP. The target indicators include, among other things, the installation of 1,804 smart water meters in a pilot project in Dustlik district, saving up to 107 mcm (33%) of water per year, concreting of a 159 km section of irrigation networks and bringing a 541 km section of irrigation networks into technically sound condition.

SIC ICWC (1) in cooperation with BWO Amu Darya and BWO Syr Darya, conducts decadal monitoring of water balance in the Amu Darya and Syr Darya river basins⁵; (2) with the support of UNEP and the EU, is implementing

⁵ Analytical reports are published in sections “Water Management Situation in the Amu Darya River

the project “Facilitating region-specific approaches to addressing climate and environment-related risks for peace and security”, which aims to strengthen the capacity of local communities in the Fergana Valley (Kyrgyzstan, Tajikistan and Uzbekistan) and expand regional cooperation by creating a network of practitioners. As of November, the following has been achieved: project areas have been identified; a training package has been adapted; training sessions and seminars have been held; eight grant recipients have been selected; proposals have been developed to create a platform for exchange between participants of the regional network. (3) Under an agreement with GIZ⁶, research is conducted on the assessment of climate resilience of water management infrastructure in the Syr Darya River basin to inform the Basin Dialogue. Preliminary results were presented at the international seminar “Reliable and Sustainable Water Security in Central Asia” (September 21, Almaty); a study tour was conducted to key sites along the middle reaches of the Syr Darya River in Uzbekistan (October 27-28).

4. Measures to address the consequences of the Aral Sea disaster in an integrated manner

The IFAS Board at its meeting on in Astana (October 10) ordered to consider a proposal to declare March 26 as International Day of the Aral Sea, Amu Darya and Syr Darya Rivers.

Kazakhstan. In the Aral Sea region, the project “Preservation of the Kokaral dam and restoration of the Syr Darya river delta” continues. Cleaning of the Tushchy, Saryteren, and Karasha-lan-1 canals has been completed and rehabilitation of the Tauir protective dam has been finished. Restoration and reinforcement of the Kokaral and Akshauit dams continues, as do the cleaning of the Karashalan-2 canal and construction of headworks on the four aforementioned canals. All work is scheduled to be completed by the end of 2026.

The Ministry of Water Resources and Irrigation of the Republic of Kazakhstan continues working on augmenting the volume of water in the North Aral Sea: since 2023, the volume of water increased to 24.1 bcm; 5 bcm has been delivered to the sea, exceeding the target indicators set out in the Water Management System Development Concept.

basin”, “Water Management Situation in the Syr Darya River basin” and in weekly newsletter 'Water Management, Irrigation, and Ecology in the EECCA Countries', which is distributed to 77 recipients.

⁶ under the project “Studies on priority issues in the field of water, energy and environment in the Amu Darya and Syr Darya basins as part of the regional program “Climate-Sensitive Water Resources Management in Central Asia”

A feasibility study for a project to preserve the North Aral Sea is under development (WB grant). Taking the views of local residents into account, the possibility of raising the Kokaral dam by 2 meters and constructing a hydroscheme to stabilize the water level in the Akshata and Kamystybas lake systems is considered.

The following initiatives are ongoing in **Turkmenistan**: (1) National program for the Aral Sea for 2021-2025. (2) National forest program for 2021–2025 and (3) Project “Conservation and sustainable management of land resources and high-nature value ecosystems in the Aral Sea basin for multiple benefits”, (UNDP/GEF, 2021-2027), as part of which the methodological recommendations for the restoration of Tugai forests in Turkmenistan were developed; a Contest “Green ideas: women and climate» was held for residents of Dashoguz and Lebap provinces of Turkmenistan with the aim of encouraging rural residents to develop and implement innovative ideas that are resilient to climate change and help to mitigate the effects of the Aral Sea crisis; roundtables on regional indicators of land degradation using the Neutral Land Degradation Balance approach; national seminar on water diplomacy and a meeting of the scientific-public council on desertification were held.

In **Uzbekistan**, the nationwide program “Yashil Makon”⁷. continues to be implemented during the Year of Environmental Protection and the Green Economy. The Aral School has been established as an educational initiative of the Uzbekistan Culture and Arts Development Fund (ACDF). The initiative's first two topics are the food system and water in the Aral Sea region.

SIC ICWC (1) continues its work on assessing the inflow from the Amu Darya River and its tributaries and the area of water surface, wetlands, and exposed land of the Aral Sea and the water bodies of the Aral Sea region, using satellite images; (2) under an agreement with GIZ⁸ research has been completed on the assessment of critical water-dependent ecosystems in the Amu Darya River basin and development of joint measures to ensure their long-term viability and preservation.

The first version of the summary report and film “From the Pamir Heights to the Amu Darya Lowlands” has been prepared on the results of field research. The results will be discussed at the Amu Darya River Basin Dialogue.

⁷ presented at the UN High-Level Forum “Her Land, Her Rights: Advancing Gender Equality and Land Restoration Goals” on the occasion of World Day to Combat Desertification and Drought (June 17, 2023, New York). The goal of the Program is to achieve up to 30% of greening of urban and rural areas by 2030

⁸ under the project “Studies on priority issues in the field of water, energy and environment in the Amu Darya and Syr Darya basins as part of the regional program “Climate-sensitive Water Resources Management in Central Asia (September 30, Astana)

5. Automation of gauging stations and promotion of advanced information and communication technologies

With the support of an EDB grant, a National Water Resources Information System (NWRIS) is being developed in **Kazakhstan**. To date, data on the Zhayik-Caspian, Shu-Talas, Tobyl-Torgay, Ishim, Ertis, and Balkhash-Alakol basins, as well as 500 water bodies with basic characteristics have been digitized.

For its effective functioning, an Information and Analytical Center (IAC) for water resources has been established to collect, process and analyze data. The project is scheduled for completion by the end of 2026. A digital system for monitoring the growing season is developed on the base of the National Water Resources Information System (NWRIS). In addition, plans are underway to resume the registration of rivers and lakes with the aim of creating a state water cadastre. A Memorandum of Understanding⁹ has been signed between the IAC and the Chinese company POWERCHINA Zhongnan Engineering Corporation Limited. The agreement provides for the establishment of a situation center at the IAC and the automation of gauging stations on transboundary water bodies.

Work has begun on reorganizing Su-Metrology (a branch of Kazvodkhoz RSE), which will be responsible for developing standards and requirements for water use accounting, providing services for the development and installation of metering accounting systems; verifying these systems, and producing the necessary components. More than 3,500 km of irrigation canals are being automated, including 367 facilities across all key provinces. Beginning in 2026, reconstruction and automation will commence on 103 canals, with the remaining 263 canals to be completed by the end of 2028. By 2030, the modernization and reconstruction of more than 14,000 km of irrigation canals is planned, reducing transportation losses from 50% to 35%.

With UNDP support, a flow forecasting system based on TALSIM-NG, designed to simulate water systems and predict floods and droughts, has been adapted for the Syr Darya basin. The system integrates with the Delft-FEWS (Flood Early Warning System) platform, developed by the Dutch institute Deltares, enabling the generation of forecasts for water levels, river flows, floods, and droughts. This will enhance the effectiveness of disaster prevention and the mitigation of their impacts. Currently, the system covers the Esil, Nura, Zhayik, Syr Darya, Shu, and Talas rivers, providing detailed forecasts at multiple points within the basins. Forecasting of inflows to reservoirs and

⁹ As part of the sectoral roundtable “Joint Initiatives for the Implementation of the New Water Code of the Republic of Kazakhstan: Implementation, Practice, Prospects”

control hydrological sites is conducted separately. By the end of the year, hydrological modeling is planned to be completed for the basins of two additional major rivers, the Ertis and Tobol. In total, eight river basins will be covered by year-end.

Flow forecasts are produced for short-term periods (7–15 days) and seasonal periods (3–6 months) using meteorological model data and actual observations. This enables the assessment of potential water scenarios, the determination of peak flow values and flood onset dates, as well as the calculation of possible reservoir volumes and discharge rates. It is important to note that the model serves as a supplementary source of hydrological forecasts. Its primary purpose is to support the operation of hydraulic structures (HS) and to enhance the flexibility and accuracy of water management decisions in the context of climate change and water scarcity.

Since 2024, design and estimate documentation has been developed for the reconstruction and automation of 264 irrigation canals. To date, 21 projects have received positive conclusions from the state expert review, 93 projects are under consideration, and the remaining projects are in the process of being submitted for review.

In parallel, under the Climate-Resilient Water Resources Development project, plans are underway to automate 103 canals across five provinces: Zhambyl, Turkestan, Kyzylorda, Almaty, and Zhetisu. Tenders are currently conducted in accordance with the procedures of the Islamic Development Bank, with work scheduled to begin in 2026.

Tajikistan. The Ministry of Energy and Water Resources of the Republic of Tajikistan, in collaboration with the IRDP/trigger (GIZ) project, has started applying SPHY¹⁰ and WEAP hydrological modeling tools at the basin level.

Turkmenistan. The 2026-2028 Concept for the development of the digital economy in Turkmenistan (October 8) has been approved, providing for the modernization of the legal framework, the development of the e-government system, digital education and the scientific sector, and the improvement of the data transmission network, among other measures, while taking into account international standards and national interests.

Uzbekistan. The “Program for Water Resources Management and Irrigation Sector Development in the Republic of Uzbekistan for 2025–2028,” Section II. “Digitalization of the sector” and Presidential Decree UP-183 dated October 13, 2025 “On measures to further accelerate the process of digitalization and ensure the sustainable development of the water sector”

¹⁰ The model allows determining the formation of water resources in the basin and the water balance.

provide for the transition of water management to a digital basis. Measures include the implementation of automated accounting, online monitoring, and “smart” gauging stations; accelerating the digitalization of the water sector, establishing a Center for Digitalization and Monitoring, launching the State Water Cadastre information system (April 2026), and integrating the Suv hisobi information system with the Digital Agriculture platform.

SIC ICWC (1) is completing the implementation of the World Bank and SEI project ¹¹ “Water–Energy Nexus Systems Modelling”, which aims to create a tool for comprehensive assessment of the impacts of various climate change and socio-economic development scenarios on water and energy management in the region.

A series of training sessions has been held for specialists from Central Asian countries on the application of the WEAP model (Water Evaluation and Planning System) in the Syr Darya and Amu Darya River basins. Recommendations have also been prepared on improving the model’s structure and information support.

Training sessions on the LEAP (Low Emission Analysis Platform) are ongoing; (2) in collaboration with experts from Kazakhstan, an assessment is conducted ¹² of the technical condition of gauging stations in the Syr Darya river basin and the need for automation. Similar work is planned in Tajikistan and Uzbekistan within the Syr Darya river basin.

6. Developing an integrated and mutually beneficial mechanism of cooperation on water and energy in Central Asia

Following a trilateral meeting between the energy and water ministries of **Kazakhstan**, **Kyrgyzstan**, and **Uzbekistan** in Cholpon-Ata on September 7, the three countries signed a package of protocols regulating the water and energy balance in the Syr Darya basin until 2026. The agreements define the parties’ obligations to ensure water releases from the Toktogul reservoir in exchange for electricity supplies from Kazakhstan and Uzbekistan to the Kyrgyz Republic, as well as the conditions for the transit of electricity from Russia to the Kyrgyz Republic through Kazakhstan’s energy system.

During a meeting between the energy ministers of **Kazakhstan** and **Tajikistan** on the sidelines of the Kazakhstan Energy Week – 2025 Eurasian

¹¹ Stockholm Environment Institute

¹² funded by the IKI project “Regional mechanisms for the low-carbon, climate-resilient transformation of the energy-water-land Nexus in Central Asia”

Forum (October 2–4, Astana), the Kazakh side announced its readiness to sign an intergovernmental agreement on electricity supplies from the Rogun HPP. The meeting also addressed prospects for synchronizing the energy systems of Kazakhstan, Tajikistan, and Uzbekistan.

7. Regional cooperation and water diplomacy

On October 10, 2025, the second meeting of the IFAS Board, chaired by Kazakhstan, was held in Astana. The meeting addressed preparations for the upcoming Council of Heads of IFAS founder-states in 2026 and reviewed progress on the EC IFAS Work Plan.

From August to November 2025, a series of events were held across Central Asian countries to coordinate joint actions in water and energy management, sustainable development, and water diplomacy. Notably:

September 4–5, Almaty – Ninth multilateral forum of North and Central Asia on achieving the SDGs themed “Transformative, equitable, innovative, and coordinated actions for the 2030 Agenda and its SDGs for a sustainable future for all.”¹³

September 7, Cholpon-Ata – a trilateral meeting of the ministers of energy and water resources of Kazakhstan, Kyrgyzstan, and Uzbekistan, at which a protocol on cooperation in the water and energy sector until 2026 was signed;

October 9, Dushanbe – first meeting of the Kyrgyz-Tajik Water Management Commission (the regulations governing the commission were approved by Decree No. 860-t of the Cabinet of Ministers of the KR dated October 4, 2025, and Resolution No. 534 of the Government of Tajikistan dated October 18, 2025);

October 15-16, Fergana – “Fergana Valley: Joining Forces for Peace and Progress” will lead to the creation of a permanent platform for the development of joint projects in the economic, humanitarian, and environmental spheres among Uzbekistan, Kyrgyzstan, and Tajikistan.

November 11, Manas – 7th meeting of the Joint Water Management Commission between the Ministry of Water Resources and Irrigation of the Kyrgyz Republic and the Ministry of Water Management of Uzbekistan.

On the international stage. Water agencies from Central Asian countries participated in the Fourth World Irrigation Forum, the 32nd meeting of the Asian Regional Working Group, and the 76th meeting of the International

¹³ organized by UNESCAP

Executive Council of the International Commission on Irrigation and Drainage (September 7-13, Kuala Lumpur).

At the SCO summit (September 1, Tianjin), **Kazakhstan** proposed the creation of an SCO Center for Water Analysis under the auspices of the SCO to strengthen regional cooperation in water management.

At the **80th session of the UN General Assembly** (September 23, New York), the following initiatives and plans were announced in speeches by representatives of the Central Asian countries:

Kazakhstan – hosting the Regional Environmental Summit in Astana in April 2026; declaring April 22 as International Planet Greening Day;

Tajikistan - High-level international conference in 2026 as part of the Dushanbe Water Process;

Turkmenistan – establishing a Regional Center for Combating Desertification for Central Asian countries;

Uzbekistan – establishing a regional hub for green technologies in cooperation with UNIDO; adopting programs for the rational use of water resources in the region; and holding a World Forum on Water Conservation.

During the 18th plenary meeting of the 80th session of the UN General Assembly (14.10.2025, New York), the resolution “Awaza political declaration” was adopted, reflecting the key conclusions and strategic directions outlined in the “Awaza program of action for 2024-2034”¹⁴. The resolution affirms decisions on a wide range of issues, including combating climate change and implementing the Sustainable Development Goals.

8. Capacity building and scientific cooperation

In **Kazakhstan**, following the amendments to the Law “On natural monopolies”, salaries for more than 25,000 employees providing regulated water supply and wastewater services will increase by an average of 35–50%, depending on the region, starting in September.

The Kazakh National University of Water Management and Irrigation in Taraz (KazNUWMI), in collaboration with the Hungary’s Corvinus University and with support from a European Commission grant, has begun developing a joint master’s program in water management and diplomacy. The establishment

¹⁴ Adopted following the Third UN Conference on Landlocked Developing Countries (LLDC3) held on August 5-8 in Turkmenbashi, Turkmenistan (Avaza Tourist Zone)

of a Joint Center for Water Management and Water Diplomacy, headquartered at KazNUWMI, is also under discussion.

As part of the Memorandum of Cooperation between the Ministry of Water Resources and Irrigation of Kazakhstan and the «Power China»¹⁵, 125 water industry specialists participated in advanced training courses (four groups starting on April 9) at production sites and facilities in China, funded by the Chinese side. The training topics included water planning, natural disaster prevention and mitigation, water management, and wastewater treatment.

The Islamic Organization for Food Safety organized an international seminar for 106 water sector specialists (incl. 66 participants from Kazakhstan) from 6 countries (Kazakhstan, Uzbekistan, Turkmenistan, Tajikistan, Kyrgyzstan and Azerbaijan). The seminar focused on public administration in sustainable irrigation and water management as well as the adoption of digital technologies (October 22-24, Astana).

Tajikistan. The pilot digital education platform was launched on Maktabmobile.tj.

The AI Council of Tajikistan under the Ministry of Industry and New Technologies, together with UNICEF and zypl.ai company, signed a Memorandum of Understanding on implementation of ProjectSoro - an artificial intelligence initiative for inclusive education in Tajikistan.¹⁶ The project represents the first systematic implementation of AI in the national education system in the region. Its goal is to make digital education accessible to every student and equip young people with the skills they will need in the future.

Turkmenistan. A new *2026-2052 Strategy for higher professional education in Turkmenistan* and its accompanying action plan were approved on October 17. The strategy aims to modernize the entire higher education system. Key areas of reform include: (1) Digital transformation; (2) International recognition; (3) State and international accreditation of education activities, and continuous professional development of teaching staff and administration; (4) Development of modern tools for science, education, industry and business interface; (5) Implementation of up-to-date planning mechanisms, taking into account demographic indicators, labor market development and economic planning.

Representatives of the Ministry of Education of Turkmenistan (1) and Turkmen Agricultural Institute studied international experience in the rational water use through the Central Asia – Italy seminars on sustainable water

¹⁵ as part of the Year of Working Professions and with a view to modernizing the water management sector

¹⁶ as part of the AI CONF 2025 conference (October 25, Dushanbe)

management (October, Viterbo); (2) jointly with UNICEF launched a new training program and methodological manual on climate adaptation.

The Ministry of Education of Turkmenistan and the National Institute of Education with the support of UNICEF launched the Green School program. The initiative aims to integrate environmental education and the principles of sustainable development into daily school life, fostering a culture of responsibilities and care for nature among students and teachers.

In **Uzbekistan**, the School of Water Workers continues to operate in all provinces¹⁷. A new course on cultivating climate-resistant cotton varieties has been developed in collaboration with the Cotton Research Institute. In 155 districts 7,000 ha of “smart” experimental fields will be arranged through their equipment with solar panels, water metering systems, and seasonal field shelters. Several training events and workshops were conducted: (1) Workshop “ Financing and government support of modern water-saving irrigation technologies in Uzbekistan” for specialists from Tajikistan (August 14-15, Tashkent) (2) Training courses for farmers in maize cultivation (September, Surkhandarya province) ; (3) Training seminar on hydrometry for specialists from subordinate organizations of the Ministry of Water Management of Uzbekistan (October 20, Tashkent); (4) Regional workshop on rational use of water resources, reduction of water loss and introduction of modern water-saving technologies for specialists from water management organizations of Bukhara, Samarkand, Navoi, Surkhandarya and Kashkadarya provinces (October 26).

In 141 districts, field training polygons are planned to be established on at least 3,500 ha. Starting November 1, training seminars will be organized for representatives of the water sector, as well as dehkan and farming enterprises. The seminars will explain the essence, content, and advantages, as well as the procedures and conditions for transferring pumping stations and irrigation networks to management on a public-private partnership (PPP) basis, following the Chartak experience (PPRUz – 302 of October 14, 2025).

A delegation from the Zarafshan River Basin Council (Uzbekistan) participated¹⁸ in the 41st meeting of the Balkhash-Alakol Basin Council, gaining practical experience in the basin approach under the new Water Code 2025 (October 15-18).

¹⁷ Established in May 2023 at the initiative of the President of Uzbekistan with the aim of improving the water-use culture and promoting the water-saving technologies

¹⁸ With the support of the CAREC and Caritas Switzerland as part of the project “Climate-Resilient Integrated Water Resources Management in the Zarafshan River Basin” (SDC)

SIC ICWC (1) assisted in conducting¹⁹ a training seminar on the provisions of the Water Code of the Republic of Kazakhstan in collaboration with the Ministry of Water Resources and Irrigation of Kazakhstan, the International Water Assessment Centre (IWAC), UNECE and the OECD (October 6-10, Astana); (2) continues implementing the CroWD (IHE Delft) project on training and research in the field of water diplomacy. SIC ICWC experts are conducting research on climate narratives and strengthening water security in transboundary basins.

Analysis of Water Management Situation in the Syr Darya and Amu Darya River Basins for the Growing Season 2025²⁰

1 Syr Darya River Basin

During the growing season, the actual inflow to the upper reservoirs of the Syr Darya River basin (Toktogul, Andijan, Charvak) was 14.47 km³ or 88 % of the forecast, 78 % of the norm (18.5 km³) and 3.76 km³ less than in the growing season 2024. Total lateral inflow to the Naryn and Syr Darya Rivers amounted to 5.7 km³ in the reaches up to the Chardara reservoir (4.8 km³ less than during the growing season 2024), including 0.9 km³ from the Karadarya River (Uchtepa g/s), 0.21 km³ from the Chirchik (Chinaz-Chirchik g/s) and 4.6 km³ refers to return flow and flow from small rivers.

Water accumulation in the upper reservoirs (Toktogul, Andijan, Charvak) was 10.3 km³ by the beginning of the growing season. By the end of the growing season, the water volume was 13.5 km³ in the upper reservoirs, i.e. water accumulation was 3.2 km³

The inflow to the Toktogul reservoir²¹ from the Naryn River reached 9.1 km³, which is 0.2 km³ less than the forecast and 93% of the norm (9.8 km³). Discharge from the reservoir amounted to 6.2 km³, which is 0.26 km³ (5%) more than scheduled by BWO Syr Darya. The total water withdrawal from the Naryn

¹⁹ As part of the project “Regional mechanisms for the low-carbon, climate-resilient transformation of the energy-water-land Nexus in Central Asia”

²⁰ Prepared by the SIC ICWC based on data from the BWO Syr Darya and BWO Amu Darya. Authors: A. Nazariy, A. Sorokin, I. Ergashev

²¹ Data on the Toktogul reservoir are based on calculations.

River made up 2.9 km³ (inflow – water releases: 9.1 – 6.2 = 2.9). This is 15% lower than scheduled by BWO Syr Darya.

In the Bakhri Tojik reservoir, the water volume was 3.5 km³ at the beginning of the growing season and 1.6 km³ by the end of the growing season. Inflow to the Bakhri Tojik was 5.7 km³, and total water releases amounted to 7.1 km³, including 6.5 km³ of water discharged into the river. Analysis of Bakhri Tojik operation shows that reservoir accumulated 0.5 km³ more water than planned by BWO and, accordingly, water releases from the reservoir into the river were 0.2 km³ more than scheduled.

Total water withdrawal from the Naryn and Syr Darya rivers in reaches up to Shardara reservoir amounted to 9.3 km³ or 78% of the limit. During the growing season 2025, the water withdrawal was 2.6 km³ less than planned limits approved at the ICWC meeting.

The total water withdrawal was 0.64 km³ for Kazakhstan (from the Dustlik canal), 0.2 km³ for the Kyrgyz Republic, 1.45 km³ for Tajikistan, and 7.01 km³ for Uzbekistan.

In the Shardara reservoir the water volume was 4.6 km³ at the beginning of the growing season and 0.4 km³ by the end of the growing season. Inflow to the Shardara reservoir amounted to 2.7 km³ or 73% of the plan. The discharge from the Shardara reservoir amounted to 4.3 km³.

According to the Committee for Regulation, Protection and Use of Water Resources of the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan, water supply to the Aral Sea and the Aral Sea region (Karateren g/s) was 0.59 km³ in the growing season.

Water use in the lower reaches of the Syr Darya (including water withdrawal plus water losses and minus lateral inflow) is estimated at 2.7 km³, which is 55% less than the plan.

Table 1.1

**Indicators of available water supply for the riparian countries
in the Syr Darya River Basin, growing season 2025**

Water user	Water volume, km ³	
	BWO schedule / Limit	Actual
1 Total water withdrawal (in the reach up to the Shardara reservoir)	11.88	9.30
2 By state:		
– <i>Kyrgyz Republic</i>	0.27	0.19
– <i>Republic of Uzbekistan</i>	8.80	7.01
– <i>Republic of Tajikistan</i>	1.91	1.45
– <i>Republic of Kazakhstan</i>	0.91	0.64
3 By river reach		
3.1 Toktogul reservoir. – Uchkurgan hydroscheme	3.99	3.24
<i>Including:</i>		
– <i>Kyrgyz Republic</i>	0.21	0.11
– <i>Republic of Tajikistan</i>	0.24	0.12
– <i>Republic of Uzbekistan</i>	3.55	3.02
3.2 Uchkurgan hydroscheme – Bakhri Tojik reservoir	1.05	1.01
<i>Including:</i>		
– <i>Kyrgyz Republic</i>	0.06	0.08
– <i>Republic of Tajikistan</i>	0.45	0.49
– <i>Republic of Uzbekistan</i>	0.54	0.43
3.3 Bakhri Tojik reservoir – Shardara reservoir	6.84	5.05
<i>Including:</i>		
– <i>Republic of Kazakhstan</i>	0.91	0.64
– <i>Republic of Tajikistan</i>	1.22	0.84
– <i>Republic of Uzbekistan</i>	4.71	3.56
4 In addition:		
– Inflow to the Shardara reservoir	3.69	2.70
– Discharge into Arnasay	0.00	0.12
– Water supply to the Aral Sea and Aral Sea region ²²	0.98	0.59

²² According to the data of the Committee for Regulation, Protection and Use of Water Resources of the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan

Table 1.2**Water balance of the Syr Darya River in the growing season 2025**

Balance item	Water volume, km ³		Deviation (plan-actual)	
	Forecast /plan	Actual	km ³	%
1 Inflow to the Toktogul reservoir	9.34	9.12	0.21	2
2 Lateral inflow in the Toktogul reservoir – Shardara reservoir reach (+)	8.31	5.73	2.58	45
<i>Including:</i>				
– <i>Discharge from the Karadarya river (Uchtepa g/s)</i>	0.95	0.90	0.05	5
– <i>Discharge from the Chirchik river (Chinaz-Chirchik g/s)</i>	1.00	0.21	0.78	370
– <i>Lateral inflow from CDN and small rivers</i>	6.36	4.62	1.74	38
3 Flow regulation by reservoir: recharge (+) or diversion of flow (-)	-2.38	-2.22	-0.16	7
<i>Including:</i>				
– <i>Toktogul reservoir</i>	-3.45	-2.97	-0.48	16
– <i>Bakhri Tojik reservoir</i>	1.07	0.75	0.32	42
4 Regulated flow (1+2+3)	15.27	12.64	2.63	21
5 Water diversion in the Toktogul – Shardara reach (-)	-11.88	-9.30	-2.58	28
6 Inflow to the Shardara reservoir	3.69	2.70	0.99	37
7 Water releases from Shardara reservoir (into the river and water withdrawal)	5.84	3.29	2.55	77
8 Water use (-) downstream of Shardara reservoir (water withdrawal - lateral inflow + losses)	-4.87	-2.70	-2.16	80
9 Water supply to the Aral Sea and Aral Sea region	0.98	0.59	0.39	65

Table 1.3**Reservoir water balance in the Syr Darya River basin for the growing season 2025**

Balance item	Water volume, km ³		Deviation (plan-actual)	
	Forecast/plan	Actual	km ³	%
1. Toktogul reservoir				
1.1 Inflow to the reservoir	9.34	9.12	0.21	2
1.2 Water volume in reservoir:				
– beginning of the season (1 April 2025)	8.45	8.45	0.00	0
– end of the season (1 October 2025)	11.90	11.37	0.53	5
1.3 Water releases from the reservoir	5.89	6.15	-0.26	4
1.4 Flow regulation: recharge (+) or diversion of flow (-)	-3.45	-2.97	-0.48	16
2. Andijan reservoir				
2.1 Inflow to reservoir	2.27	1.93	0.34	18
2.2 Water volume in reservoir:				
– beginning of the season (1 April 2025)	1.20	1.20	0.00	0
– end of the season (1 October 2025)	1.11	0.79	0.32	40
2.3 Water releases from reservoir	2.35	2.31	0.04	2
2.4 Flow regulation: recharge (+) or diversion of flow (-)	0.08	0.38	0.30	
3. Charvak reservoir				
3.1 Inflow to reservoir	4.80	3.42	1.38	40
3.2 Water volume in reservoir:				
– beginning of the season (1 April 2025)	0.66	0.66	0.00	0
– end of the season (1 October 2025)	1.80	1.37	0.43	31
3.3 Water releases from reservoir	3.64	3.11	0.54	17
3.4 Flow regulation: recharge (+) or diversion of flow (-)	-1.15	-0.31	-0.84	268
4 Bakhri Tojik reservoir				
4.1 Inflow to reservoir	5.23	5.74	-0.51	9
4.2 Lateral inflow	0.28	0.142	0.14	97
4.3 Water volume in reservoir:				
– beginning of the season (1 April 2025)	3.50	3.50	0.00	0
– end of the season (1 October 2025)	1.77	1.55	0.22	14
4.4 Water releases from reservoir	6.88	7.13	-0.25	3
including:				
– <i>water releases into the river</i>	6.30	6.49	-0.19	3
– <i>water withdrawal from the reservoir</i>	0.58	0.64	-0.06	9
4.5 Flow regulation: recharge (+) or diversion of	1.07	0.75	0.32	42

Balance item	Water volume, km ³		Deviation (plan-actual)	
	Forecast/plan	Actual	km ³	%
flow (-)				
5 Shardara reservoir				
5.1 Inflow to reservoir	3.69	2.70	0.99	37
5.2 Lateral inflow	0.00	0.00	0.00	
5.3 Water volume in reservoir:				
– beginning of the season (1 April 2025)	4.56	4.56	0.00	0
– end of the season (1 October 2025)	1.00	0.43	0.58	134
5.4 Water releases from reservoir	6.67	4.29	2.38	55
<i>Including:</i>				
– <i>discharge into Arnasay</i>	0.00	0.12	-0.12	100
– <i>water releases into the river</i>	5.84	3.29	2.55	77
– <i>water withdrawal from the reservoir</i>	0.83	0.88	-0.06	6
5.5 Flow regulation: discharge (+) or diversion of flow (-)	2.15	0.59	1.56	263
TOTAL flow regulation by reservoirs: recharge (+) or diversion of flow (-)	-1.30	-1.56	0.26	17

2 Amu Darya River Basin

For the period from April to September, the actual water content in the Amu Darya River ²³ at “nominal Kerki” g/s (upstream of water intake to Garagumdarya) was 43.64 km³, which is 1.01 km³ more than expected by BWO Amu Darya.

Inflow to Nurek HPP amounted to 17.22 km³ and was more than the projected flow by 2.44 km³. Water releases from the reservoir were 13.57 km³, which is 2.57 km³ more than scheduled by BWO Amu Darya. Diversion of river flow through accumulation of water in the Nurek reservoir amounted to 3.65 km³ (Table 2.3).

Based on data from Darganata g/s, inflow to the Tuyamuyun hydroscheme (TMHS) was 17.94 km³, which exceeded the expected inflow by 0.07 km³. As a result, 3.60 km³ more water was accumulated in the reservoirs of TMHS during the growing season, which is 0.05 km³ more than planned. Water releases from TMHS were 0.71 km³ less than planned, totaling 15.35 km³.

In the current water management situation, the established water withdrawal limit for the Amu Darya River basin was covered by 86% (Table 2.1). The total water withdrawal was 34.20 km³, including 27.55 km³ - downstream of Kerki g/s (starting from water intake to Garagumdarya). The average water availability was 83% for Tajikistan, 92% for Turkmenistan, and 82% Uzbekistan in the growing season.

From April to September, water supply to the Aral Sea region and the Aral Sea amounted to 0.99 km³ (flow of the Amu Darya River at Samanbay g/s plus discharge from CDN) or 47% of BWO Amu Darya forecast schedule.

²³ Flow of the Amu Darya (upstream of water intake to Garagumdarya) based on non-regulated flow at Nurek HPP (excluding consideration of Vakhsh River flow regulation).

Table 2.1

Indicators of available water supply for the countries of the Amu Darya River Basin from April to September 2025

Water user	Water volume, km ³		Water availability, %
	Limit/schedule	Actual	
1. Total water withdrawal	39.72	34.20	86
2. Breakdown by states:			
Kyrgyz Republic	-	-	-
Republic of Tajikistan	7.0	5.8	83
Turkmenistan	15.5	14.2	92
Republic of Uzbekistan	17.2	14.2	82
3. Downstream of nominal Kerki g/s	31.520	27.55	87
<i>including:</i>			
<i>Turkmenistan</i>	15.5	14.2	92
<i>Republic of Uzbekistan</i>	16.0	13.4	83
4. By river reach:			
Upper reaches	8.203	6.66	81
<i>Including:</i>			
<i>Kyrgyz Republic</i>	-	-	-
<i>Republic of Tajikistan</i>	7.00	5.84	83
<i>Surkhandarya province, Uzbekistan</i>	1.20	0.82	68
Middle reaches	16.207	15.85	98
<i>including:</i>			
<i>Turkmenistan</i>	10.47	10.41	99
<i>Republic of Uzbekistan</i>	5.73	5.44	95
Lower reaches	15.313	11.69	76
<i>including:</i>			
<i>Turkmenistan</i>	5.03	3.78	75
<i>Republic of Uzbekistan</i>	10.285	7.91	77
5. Additionally:			
Emergency-environmental flow to canals in the lower reaches	0	0	
<i>including:</i>			
<i>Turkmenistan</i>	0	0	
<i>Republic of Uzbekistan</i>	0	0	
Water supply to the Aral Sea region and the Aral Sea **	2.10	0.99	47

*) nominal Kerki g/s (upstream of water intake to Garagumdayra)

**) including discharge from CDN

Table 2.2**Water balance of the Amu Darya River from April to September 2025**

Balance item	Water volume, km ³		Deviation (actual-plan)	
	Forecast /plan	actual	km ³	%
1. Water content in the Amu Darya River – unregulated flow in nominal Kerki section*	42.63	43.64	1.01	2
2. Flow regulation by the Nurek reservoir: recharge (+) or diversion of flow (-)	-3.78	-3.65	0.13	4
3. Water withdrawal in the middle reaches (-)	-16.21	-15.85	0.35	2
4. Return flow in the middle reaches (+)	0.94	0.70	-0.24	34
5. River flow at Darganata g/s	17.87	17.94	0.07	0
6. Water releases from TMHS (including water diversion from the reservoir)	16.06	15.35	-0.71	5
7. Water withdrawal in the lower reaches, including water diversion from TMHS (-)	-15.31	-11.69	3.62	31
8 Supply to the Aral Sea region and the Aral Sea (Samanbay g/s)	1.00	0.36	-0.64	179

* Amu Darya River flow (upstream of water intake to Garagumdyra) based on non-regulated flow at the Nurek HPP (excluding Vakhsh River flow regulation).

Table 2.3

**Reservoir water balance in the Amu Darya River Basin
from April to September 2025**

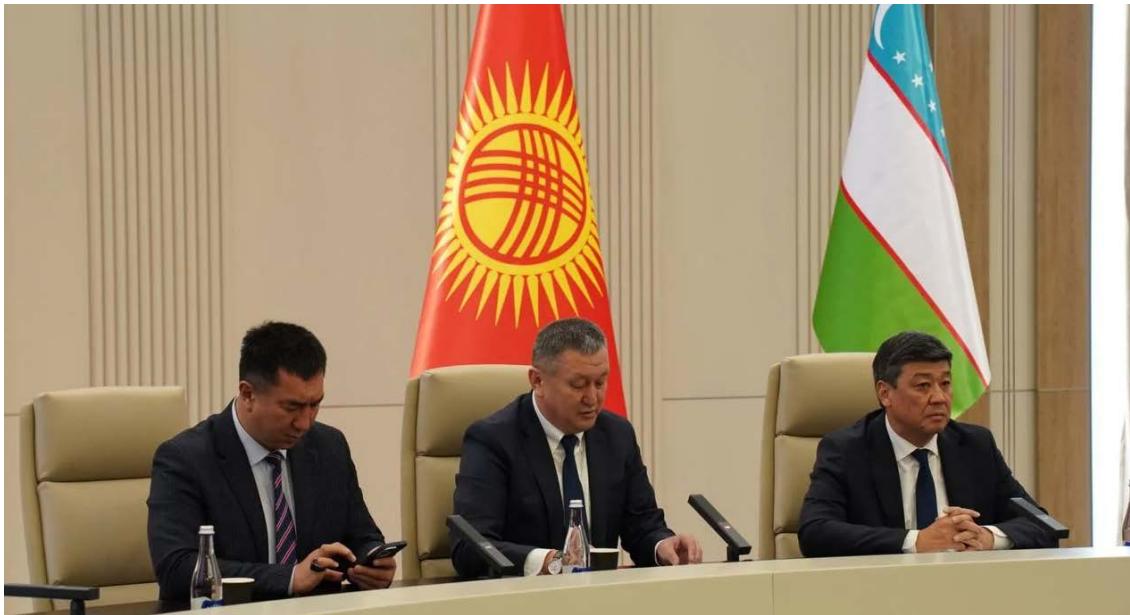
Balance item	Water volume, km ³		Deviation (actual-plan)	
	Forecast /plan	Actual	km ³	%
1 Nurek reservoir				
1.1. Inflow to the reservoir	14.77	17.22	2.44	14
1.2. Water volume in the reservoir:				
– beginning of the season (1 April 2025)	6.18	6.18	0.00	0
– end of the season (1 October 2025)	10.53	10.50	-0.03	0
1.3. Water releases from the reservoir	11.00	13.57	2.57	19
1.4. Flow regulation: recharge (+) or diversion of flow (-)	-3.78	-3.65	0.13	4
2 Reservoirs of TMHS				
2.1 River flow at Darganata g/s	17.87	17.94	0.07	0
2.2 Water volume in the reservoirs:				
– beginning of the season (1 April 2025)	3.81	3.81	0.00	0
– end of the season (1 October 2025)	3.56	3.60	0.05	1
2.3 Water releases from the hydroscheme including:	16.06	15.35	-0.71	5
– water releases into the river	11.19	11.34	0.15	1
– water withdrawal	4.87	4.01	-0.86	22
2.4 Flow regulation: recharge (+) or diversion of flow (-)	-6.68	-6.60	0.09	1

Cooperation Between Central Asian Countries on Water and Energy

Cooperation between Kyrgyzstan and Uzbekistan discussed in Manas²⁴

The 7th meeting of the Joint Kyrgyz-Uzbek Water Commission was held in Manas. The main objective of the meeting was to strengthen cooperation on the rational use of water resources and to ensure water and energy security in the context of climate change.

During the meeting, the parties discussed key issues of bilateral cooperation, including sustainable management of water resources, ensuring water and energy security under conditions of climate change, and prospects for regional development.



²⁴ Source:

<https://www.akchabar.kg/news/v-manase-obsudili-razvitie-sotrudnichestva-kirgizstana-i-uzbekistana-v-sfere-vodnikh-resursov-sonjlylpvifwdlzm>

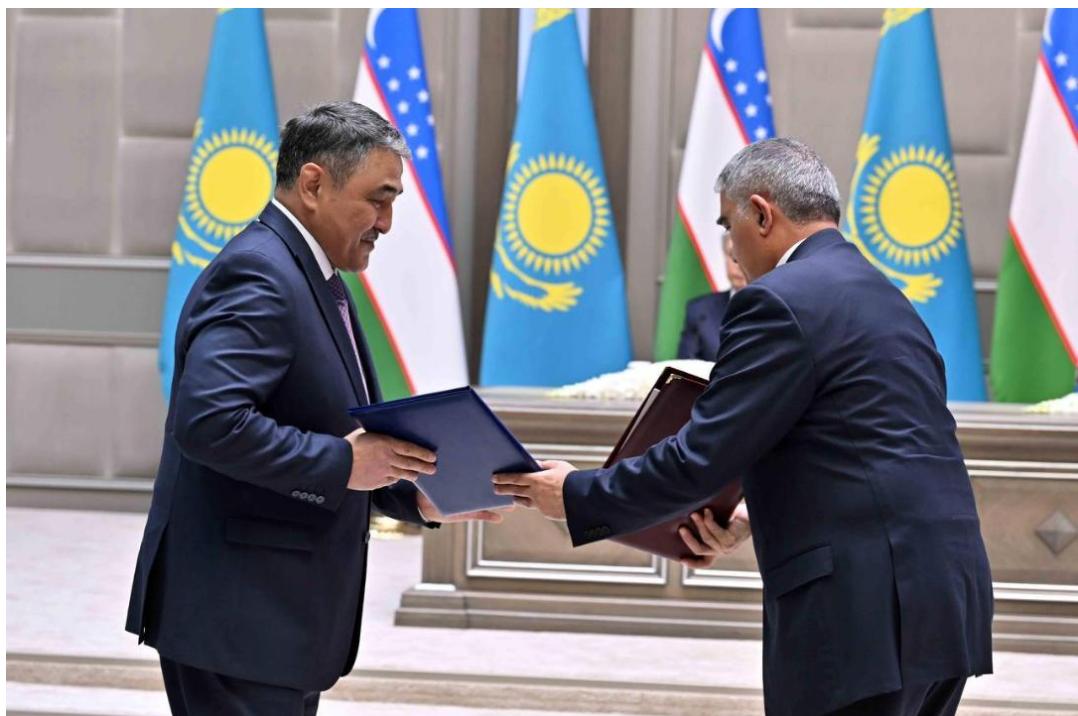
<https://ru.kabar.kg/news/v-manase-obsudili-razvitie-sotrudnichestva-kyrgyzstana-i-uzbekistana-v-sfere-vodnyh-resursov/>

<https://agro.kg/ru/news/35869/>

To enhance the effectiveness of cooperation, the Kyrgyz side proposed:

- Introducing drip and automated irrigation systems in border areas.
- Creating a “Green Belt of Friendship” along the Kyrgyz-Uzbek border to restore forests and combat desertification.
- Further developing cooperation between authorized state water and energy bodies.

Kazakhstan and Uzbekistan Signed Agreement on Joint Management and Rational Use of Transboundary Water Bodies²⁵


The Second Meeting of the Supreme Intergovernmental Council of Kazakhstan and Uzbekistan took place during the state visit of President Kassym-Jomart Tokayev to Uzbekistan. During the meeting, Nurzhan Nurzhigitov, Minister of Water Resources and Irrigation of Kazakhstan, and Shavkat Hamraev, Minister of Water Management of Uzbekistan signed an intergovernmental agreement on the joint management and rational use of transboundary water bodies.

The agreement establishes the agreed mechanisms for cooperation on

²⁵ Source: <https://www.gov.kz/memleket/entities/water/press/news/details/1106037>

transboundary rivers and canals that supply water to populations and agricultural regions in both countries. It provides for the coordination of operating regimes of interstate waterworks facilities, regular joint inspections and the adoption of preventive measures to ensure their reliable operation and prevent emergencies.

Additionally, the parties agreed to develop a joint automated water accounting system for monitoring water delivery and withdrawals, with real-time data exchange. The implementation of this system will enhance control over water use and contribute to building trust between the water management agencies of Kazakhstan and Uzbekistan.

The agreement also provides for coordinated measures on modernization and repair of water infrastructure, reduction of water losses, introduction of water-saving technologies, and reclamation of irrigated land. The parties will coordinate efforts to prevent and mitigate the impacts of floods, droughts, and other natural hazards.

To implement the agreement, an Intergovernmental Kazakh-Uzbek Commission will be established. The commission will coordinate the implementation of the agreement, make decisions on the operation of interstate waterworks facilities, form specialized working groups, and facilitate dialogue between the competent authorities of both countries. The commission will meet twice a year, alternately in Kazakhstan and Uzbekistan.

Kazakhstan, Kyrgyzstan, and Uzbekistan Agree on Cooperation in the Water and Energy Sector²⁶

A meeting of the heads of water and energy agencies of Kazakhstan, Kyrgyzstan, and Uzbekistan was held in Almaty, chaired by Erlan Akkenjenov, Minister of Energy of the Republic of Kazakhstan, according to the Ministry of Energy's press service.

The meeting was attended by: Nurzhan Nurzhigitov, Minister of Water Resources and Irrigation of the Republic of Kazakhstan; Taalaibek Ibraev, Minister of Energy of the Kyrgyz Republic; Jurabek Mirzamahmudov, Minister of Energy of the Republic of Uzbekistan; Shavkat Khamraev, Minister of Water Management of the Republic of Uzbekistan and Almaz Zheenaliev, Deputy Minister of Water Resources, Agriculture, and Processing Industry of the Kyrgyz Republic.

The parties agreed on parameters for further cooperation in the water and energy sectors. In view of the challenging situation at the Toktogul reservoir, the participants decided to support each other through mutual electricity supplies and coordinate joint efforts to successfully manage the heating season and prepare for the upcoming agricultural growing season.

The Ministry of Energy reported that Kazakhstan and Uzbekistan confirmed their readiness to supply electricity to Kyrgyzstan during the autumn and winter period.

In addition, the parties agreed on joint measures to reduce consumption and save energy in the region.

Following the meeting, a trilateral protocol was signed, legally confirming the volumes of winter electricity supplies and water storage for the 2026 growing season.

²⁶ Source: <https://www.tazabek.kg/news:2368849/>

Editorial Board:

D. Ziganshina
I. Beglov
Sh. Muminov
A. Nazariy
A. Galystyan

Translation: G. Yuldasheva

Layout and design: I. Beglov, A. Degtyareva

Editorial office:

SIC ICWC Karasu-4, B 11-A, Tashkent 100 187, Republic of Uzbekistan

sic.icwc-aral.uz