### УДК 532.513

### Ф. Х. Нишонов

Ташкентский архитектурно-строительный институт, Ташкент, Республика Узбекистан

# СПОСОБЫ ПОНИЖЕНИЯ ВОЗНИКНОВЕНИЙ КАВИТАЦИИ И ГИДРАВЛИЧЕСКОГО УДАРА В ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЯХ

Исследуются способы понижения возникновений кавитации и гидравлического удара в гидротехнических сооружениях. Изучаются внутренние взаимодействия фаз смеси, анализируется возрастание внутренних сопротивлений, которые отрицательно влияют на кинетическую энергию потока, увеличивая тепловую энергию. Приводятся аналитические формулы, определяющие высоту отсасывания насосов.

Ключевые слова: кавитации, дисперсные смеси, фаза, одно- и многофазные среды, динамическое разрежение, взаимопроникающие движения, бескавитационные условия, объемные концентрации, жидкая и твердая фаза, давление парообразования, скоростные коэффициенты.

Интенсивное развитие кавитации в турбинах и насосах недопустимо, так как при этом появляется вибрация, снижается коэффициент полезного действия (КПД) и происходит быстрое разрушение деталей турбины, находящихся в области кавитации. Поэтому при выборе системы турбины и типа рабочего колеса, а также высот отсасывания стремятся к обеспечению бескавитационных условий работы турбины во всех режимах. Однако на практике полное исключение кавитации часто оказывается нерациональным, так как из-за этого пришлось бы значительно понизить отметку расположения турбины по отношению к нижнему бьефу и, следовательно, увеличить объем строительных работ в подводной части здания станции [1].

Для установления условия возникновения кавитации в дисперсной смеси рассмотрим состояние потока жидкости в точке *x* (рисунок 1), в которой имеет место минимальное давление, приводящее к наступлению кавитации.

Составим уравнение движения смеси жидкости для относительного движения потока между точкой x с минимальным давлением и точкой 2, находящейся на выходной кромке лопастей колеса, как показано на рисунке 1. Обозначим для точки x давление  $p_x$ . При этом скорость смеси примет вид:

$$\Theta_{\rm cmx}^2 = w_{\rm cmx}^2 - u_{\rm cmx}^2, \tag{1}$$

где  $\vartheta_{cMX}$  – скорость дисперсной смеси;

*W*<sub>смх</sub> – относительная скорость смеси;

 $u_{cmx}$  – переносная скорость смеси, а для точки 2 – соответственно  $p_2$ ,  $w_{cm2}$  и  $u_{cm2}$ .



### Рисунок 1 - К определению разрежения на лопасти рабочего колеса турбины

Примем плоскость сравнения 0–0 на отметке уровня смеси жидкости в отводящем канале и учтем также переменность приведенных плотностей и концентрации. При установившемся течении смеси эти параметры могут быть переменными. Тогда можно составить уравнение Д. Бернулли для смеси жидкости в виде [2]:

$$\frac{\vartheta_{c_{Mx}}^{2}}{2g} + \frac{p_{x}}{\gamma} + U + \frac{1}{2g} \sum_{S,n=1}^{m} \frac{\rho_{Si}\rho_{ni}f_{S}f_{n}}{\sum_{n=1}^{m} (\rho_{ni}^{\circ}f_{n})^{2}} (\vartheta_{S} - \vartheta_{n})^{2} + h_{x} = \frac{\vartheta_{2}^{2}}{2g} + \frac{p_{2}}{\gamma} + U + \frac{1}{2g} \sum_{S,n=1}^{m} \frac{\rho_{S-2i}^{\circ}\rho_{n-2i}f_{S-2}f_{n-2}}{\sum_{n=1}^{m} (\rho_{n-2i}^{\circ}f_{n-2})^{2}} (\vartheta_{S-2} - \vartheta_{n-2})^{2} + h_{w_{x-2}}, \qquad (2)$$

где  $\rho_{ni}^{\circ}$  – истинная плотность;

=

 $h_{w_{x-2}}$  – потери энергии на пути движения смеси от точки *x* до точки 2.

$$\vartheta = \vartheta_{cM} = \frac{\vartheta_1 + \frac{f_2}{f_1} \hat{\rho} \vartheta_2}{1 + \hat{\rho} \frac{f_2}{f_1}}, \qquad (2 a)$$
  
$$\eta_1 + \rho_2, \ \rho_1 = \rho_{1i} f_1, \ \rho_2 = \rho_{2i} f_2, \ \hat{\rho} = \frac{\rho_{2i}}{\rho_{1i}}, \ f_1 + f_2 = 1,$$

где  $\rho_{cM}$  – плотность дисперсной смеси;

 $\rho_{cM} = \rho$ 

ρ<sub>1</sub>, ρ<sub>2</sub>, ρ<sub>n</sub> – приведенные плотности первой, второй и *n*-й фаз смеси жидкости;

 $f_1,\ f_2$ – объемные концентрации первой и второй фаз смеси жидкости.

Из уравнения Бернулли (1) коэффициент взаимодействия фаз примет вид [2, 3]:

$$K = \frac{1}{2g} \sum_{S,n=1}^{m} \frac{\hat{\rho}_{Si} \hat{\rho}_{ni} f_S f_n}{\sum_{n=1}^{m} (\hat{\rho}_{ni} f_n)^2},$$
(3)

где К – коэффициент взаимодействия.

Согласно исследованиям [3, 4] потенциал скорости для дисперсной смеси жид-костей имеет вид [3]:

$$\varphi_{\rm cm} = \varphi_1 f_1^* + \varphi_2 f_2^*,$$

где  $f_1^* = \frac{f_1}{f_2 + \hat{\rho}f_1}, f_2^* = \frac{f_2}{f_2 + \hat{\rho}f_1}, \hat{\rho} = \frac{\rho_{1i}}{\rho_{2i}}.$ 

Таким образом, согласно уравнению Бернулли, для абсолютного движения между точками 2 и 5 имеем:

$$\frac{p_{2}}{\gamma} + \frac{\vartheta_{cM2}^{2}}{2g} + z_{2} + \frac{1}{2g} \sum_{S,n=1}^{m} \frac{\rho_{S-2i}^{\circ} \rho_{n-2i}^{\circ} f_{S-2} f_{n-2}}{\sum_{n=1}^{m} (\rho_{n-2i}^{\circ} f_{n-2})^{2}} (\vartheta_{S-2} - \vartheta_{n-2})^{2} =$$

$$= \frac{p_{5}}{\gamma} + \frac{\vartheta_{cM5}^{2}}{2g} - z_{5} + \frac{1}{2g} \sum_{S,n=1}^{m} \frac{\rho_{2-5i}^{\circ} \rho_{n-2i}^{\circ} f_{2-5} f_{n-5}}{\sum_{n=1}^{m} (\rho_{n-5i}^{\circ} f_{n-5})^{2}} (\vartheta_{2-5} - \vartheta_{5-2})^{2} + h_{w2-5}.$$
(4)

Решая совместно уравнения (2), (4) и принимая во внимание, что  $\frac{p_5}{\gamma} - z_5 = \frac{p_{ar}}{\gamma} = B$  –

барометрическое давление, а также учитывая незначительность величин коэффициентов взаимодействия фаз в точках 2 и 5 на отметке турбины, получим:

$$\frac{1}{2g}\sum_{S,n=1}^{m}\frac{\rho_{S-2i}^{\circ}\rho_{n-2i}f_{S-2}f_{n-2}}{\sum_{n=1}^{m}(\rho_{n-2i}^{\circ}f_{n-2})^{2}}(9_{S-2}-9_{n-2})^{2}-\frac{1}{2g}\sum_{S,n=1}^{m}\frac{\rho_{(2-5)i}\rho_{n-5i}f_{s-5}f_{n-5}}{\sum_{n=1}^{m}(\rho_{n-5i}f_{n-5})^{2}}(9_{2-5}-9_{5-2})^{2}\rightarrow 0,$$

т. е. расчетную формулу для определения коэффициента взаимодействия при Пуазейлевом течении:

$$K = \frac{8f_2^2\mu_0}{R^2} \frac{1}{\frac{f_2}{f_1} - \frac{Q_2}{Q_1}},$$
(5)

где  $\mu_0$  – вязкость несущей жидкости;

*R* – радиус трубы.

Если исследуемая смесь жидкости состоит из жидкой и твердой фаз, совершающих взаимопроникающие движения, то вязкость смеси отличается от вязкости жидкой (несущей) фазы и зависит от объемного содержания твердой фазы и физических свойств взвеси и т. д.

Расчетные формулы для коэффициента взаимодействия, приводимые в работе [1], полученные на основе формулы Эйнштейна, выглядят следующим образом:

$$K = \frac{8f_2^2 \mu_0}{R^2} \frac{1}{\frac{Q_{\rm cm}}{Q_1} - \frac{1}{f_1(1+2.5f_2)}}.$$
 (6)

 $Q_1 \quad J_1(1+2,5J_2)$ Для барометрического давления *B* на отметке установки рабочего колеса турбины получим выражение:

$$\frac{p_x}{\gamma} = B - h_x - \left(\frac{\vartheta_{\rm cm2}^2}{2g} - \frac{\vartheta_{\rm cm5}^2}{2g} - h_{w,2-5} + \frac{w_{\rm cmx}^2 - w_{\rm cm2}^2 + u_{\rm cm2}^2 - u_{\rm cmx}^2}{2g} - h_{{\rm cm},x-2}\right),\tag{7}$$

где  $h_x$  – теоретическая высота отсасывания;

$$\left(\frac{\vartheta_{cM2}^2}{2g}-\frac{\vartheta_{cM5}^2}{2g}-h_{cMW,2-5}\right)$$
 – динамическое разрежение, обусловленное формой и раз-

мерами отсасывающей трубы;

 $\left(\frac{w_{_{CMX}}^2 - w_{_{CM2}}^2 + u_{_{CM2}}^2 - u_{_{CMX}}^2}{2g} - h_{_{CMW,X-2}}\right)$  – динамическое разрежение, обусловленное раз-

мерами и формой лопастей рабочего колеса турбины.

Нужно отметить, что многочлены зависят, кроме того, еще и от режима работы турбины. Уравнение (7) можно записать иначе:

Процесс кавитации в турбине начнется тогда, когда абсолютное давление  $p_x/\gamma$  в точке *x* будет равно давлению парообразования, т. е. когда правая часть уравнения (8) обратится в нуль:

$$\frac{1}{H}\left(B-h_{x}-\frac{p_{n}}{\gamma}\right)-\frac{1}{H}\left(\frac{\vartheta_{cM2}^{2}}{2g}-\frac{\vartheta_{cM5}^{2}}{2g}-h_{w,2-5}+\frac{w_{cMx}^{2}-w_{cM2}^{2}+u_{cv2}^{2}-u_{cvx}^{2}}{2g}-h_{cMw,x-2}\right)\to 0.$$

Следовательно, в первой скобке заключены величины, характерные для данной установки: местное барометрическое давление B; высота расположения рабочего колеса над уровнем нижнего бьефа, называемая высотой отсасывания  $h_x$ ; давление парообразования  $p_n/\gamma$ ; напор H в данной установке. Выражение в первой скобке – кавитационный коэффициент установки:

$$\sigma_{\rm ycr} = \frac{B - h_x - p_n / \gamma}{H} \,. \tag{9}$$

Во второй скобке уравнения (8) содержатся квадраты скоростей в абсолютном, переносном и относительном движении и потеря энергии между точками x и 5, отнесенная к напору.

Потеря напора  $h_w$  может быть выражена через квадрат скорости смеси жидкости в любой точке потока и соответствующий этой скорости коэффициент сопротивления  $\xi$ :

$$h_{w,x-5} = \xi \vartheta_{cM}^2 / 2g$$
. (10)

Скорости воды в потоке смеси пропорциональны корню квадратному из величины используемого напора  $\eta_{\Gamma}H$ , где  $\eta_{\Gamma}$  – гидравлический КПД турбины. Поэтому все скорости могут быть представлены в виде скоростного коэффициента, соответствующего данной скорости в рассматриваемой точке. Соответствующий скоростной напор в той же точке имеет вид:

$$\frac{\vartheta_{\rm cM}^2}{2g} = K_{\vartheta} \eta_{\Gamma} \mathrm{H}.$$
<sup>(11)</sup>

В условиях кинематических подобных (изогональных) режимах работы для турбин данной серии все скоростные коэффициенты  $K_9$  и коэффициенты сопротивления  $\varsigma$  имеют постоянные значения,  $\sigma^*$  для турбин данной серии и изогональных режимов остается неизменным. Таким образом, кавитационный коэффициент турбины  $\sigma^*$  представляет собой отношение наибольшего динамического разрежения на лопасти рабочего колеса к используемому напору  $\eta_{\Gamma}$  H.

Если при каком-то режиме  $p_x = p_n$ , то динамическое разрежение имеет максимальное значение и возникает кавитация. При этом кавитационный коэффициент турбины для этого режима будет иметь критическую величину:

$$\sigma_{\rm kp}^* = B - \frac{p_n}{\gamma} - h_x / \eta_{\Gamma} H = \frac{\sigma_{\rm ycr}}{\eta_{\Gamma}}.$$
 (12)

Из этого выражения можно получить условие для максимально-допустимой высоты отсасывания  $h_x$ , при которой обеспечивается бескавитационная работа турбины:

$$H_s = h_x \le B - \frac{p_n}{\gamma} - \sigma_{\kappa p}^* \eta_{\Gamma} H.$$
(13)

Расчетным путем нетрудно также установить точку x, в которой можно ожидать наибольший вакуум. Поэтому в практике гидромашиностроения кавитационный коэффициент  $\sigma$  определяется путем испытания моделей гидротурбин на кавитационном стенде.

Приведем таблицу сопоставления значений кинетической энергии в точках 2 и 5 [1] со значениями кинетической энергии, вычисленной по формуле (2 a), т. е. с учетом взаимодействий фаз многофазного дисперсного потока при  $f_1 = 0.4$ ;  $f_2 = 0.6$ .

Установлено, что при наличии отсасывающей трубы под рабочим колесом создается дополнительное понижение давления, пропорциональное удельной кинетиче- $9^2_{\rm cm2}$ 

ской энергии  $\frac{\vartheta_{cM2}^2}{2gH}$ , оставшейся в потоке на выходе из рабочего колеса. Величина этой

энергии зависит от состава смеси, системы турбины, ее коэффициента быстроходности и пропускной способности, характеризуемой значением приведенного расхода  $Q'_1$ .

Ориентировочные значения удельной кинетической энергии на выходе из рабочего колеса, выраженные в процентах от рабочего напора для турбин различной быстроходности, приведены в таблице 1. Данные таблицы 1 показывают, что, если в отсасывающих трубах тихоходных турбин удельная кинетическая энергия в потоке за рабочим колесом составляет 1,5–3,0 % от рабочего напора, то по мере увеличения быстроходности турбины эта цифра увеличивается, доходя у быстроходных поворотнолопастных турбин до 50 % и более от всей энергии. Но из-за наличия внутренних взаимодействий фаз возрастают внутренние сопротивления, которые отрицательно влияют на кинетическую энергию потока, увеличивая тепловую энергию.

| Система    | Н,м | $Q_1'$ , | $n_1'$ , | $n_s$ | $\vartheta_{2}^{2}$  | По фор-                                         | $\vartheta_2^2$ 100 0/ | По форму-                                       |
|------------|-----|----------|----------|-------|----------------------|-------------------------------------------------|------------------------|-------------------------------------------------|
| турбин     |     | л/с      | об./мин  | 5     | $\frac{2}{2gH}$ 100% | муле (2 а)                                      | $\frac{2}{2gH}$ 100 %  | ле (2 а)                                        |
|            |     |          |          |       |                      | $\frac{\vartheta_{\rm cm2}^2}{2g{\rm H}}100~\%$ | 0                      | $\frac{\vartheta_{\rm cm2}^2}{2g{\rm H}}100~\%$ |
| 1          | 2   | 3        | 4        | 5     | 6                    | 7                                               | 8                      | 9                                               |
| Поворотно- | 5   | 2250     | 180      | 930   | 53,0                 | 52,7                                            | 4,00                   | 3,80                                            |
| лопастные  | 10  | 2010     | 170      | 830   | 43,0                 | 42,8                                            | 2,80                   | 2,50                                            |
|            | 15  | 1850     | 160      | 755   | 36,0                 | 34,8                                            | 2,30                   | 2,20                                            |
|            | 20  | 1750     | 150      | 695   | 32,0                 | 32,1                                            | 1,90                   | 1,80                                            |
|            | 30  | 1430     | 140      | 580   | 24,0                 | 20,8                                            | 1,40                   | 1,30                                            |
|            | 40  | 1240     | 130      | 500   | 20,0                 | 19,2                                            | 1,10                   | 0,90                                            |
|            | 50  | 1110     | 120      | 435   | 18,0                 | 17,6                                            | 0,90                   | 0,80                                            |
|            | 60  | 1040     | 112      | 395   | 17,0                 | 15,6                                            | 0,80                   | 0,75                                            |
|            | 70  | 940      | 107      | 355   | 16,0                 | 15,6                                            | 0,70                   | 0,70                                            |
|            | 80  | 830      | 105      | 350   | 14,0                 | 14,0                                            | 0,65                   | 0,65                                            |
| Радиально- | 30  | 1400     | 78       | 320   | 11,0                 | 10,9                                            | 1,50                   | 1,40                                            |
| осевые     | 45  | 1370     | 77       | 315   | 10,5                 | 10,0                                            | 1,40                   | 1,20                                            |
|            | 75  | 1250     | 75       | 290   | 8,5                  | 8,0                                             | 1,20                   | 1,10                                            |
|            | 115 | 1030     | 72       | 255   | 6,0                  | 5,8                                             | 0,80                   | 0,70                                            |
|            | 170 | 650      | 69       | 195   | 2,5                  | 2,3                                             | 0,40                   | 0,30                                            |
|            | 230 | 420      | 67       | 150   | 2,0                  | 1,8                                             | 0,20                   | 0,14                                            |

Таблица 1 – Сопоставление значений кинетической энергии в точках 2 и 5

| продолжение | raomi | L DI I |    |     |     |     |      |      |
|-------------|-------|--------|----|-----|-----|-----|------|------|
| 1           | 2     | 3      | 4  | 5   | 6   | 7   | 8    | 9    |
|             | 310   | 280    | 65 | 120 | 1,8 | 1,6 | 0,10 | 0,80 |
|             | 400   | 200    | 62 | 95  | 1,6 | 1,4 | 0,05 | 0,04 |
|             | 500   | 150    | 60 | 80  | 1,5 | 1,2 | 0,02 | 0,01 |

Продолжение таблицы 1

Взаимодействие фаз дисперсной смеси уменьшает высоту отсасывания, и часть выделяемой энергии преобразуется в тепловую энергию.

## Список использованных источников

1 Смирнов, И. Н. Гидравлические турбины и насосы / И. Н. Смирнов. – М.: Высш. шк., 1969. – 400 с.

2 Умаров, А. И. Об одном способе определения величины коэффициента взаимодействия вязко-идеальных сред. Гидроаэродинамика многофазных сред / А. И. Умаров. – Ташкент: Фан, 1987. – С. 34–39.

3 Хамидов, А. А. Плоские и осесимметрические задачи о струйном течении идеальной сжимаемой жидкости. – Ташкент: Фан, 1978. – 137 с.

4 Хамидов, А. А. Теория струй смеси вязких жидкостей / А. А. Хамидов, С. И. Худайкулов. – Ташкент: Фан, 2003. – 160 с.