В. М. Котляков
Избранные сочинения
Книга 2
Снежный покров и ледники Земли
«НАУКА»
В. М. Котляков

ИЗБРАННЫЕ СОЧИНЕННИЯ

В ШЕСТИ КНИГАХ

Книга 1. ГЛЯЦИОЛОГИЯ АНТАРКТИДЫ
Книга 2. СНЕЖНЫЙ ПОКРОВ И ЛЕДНИКИ ЗЕМЛИ
Книга 3. ГЕОГРАФИЯ В МЕНИЮЩЕМСЯ МИРЕ
Книга 4. ЛЬДЫ, ЛЮБОВЬ И ГИПОТЕЗЫ
Книга 5. В МИРЕ СНЕГА И ЛЬДА
Книга 6. НАУКА — ЭТО ЖИЗНЬ

В. М. Котляков

ИЗБРАННЫЕ СОЧИНЕННИЯ

Книга 2
СНЕЖНЫЙ ПОКРОВ И ЛЕДНИКИ ЗЕМЛИ

МОСКВА «НАУКА» 2004
Книга вторая

Снежный покров и ледники Земли

Часть 1. Сезонный снежный покров Земли

Часть 2. Снежный покров на ледниках

Часть 3. Глобальные изменения и судьба ледников

Часть 4. Снег и лед в жизни людей

Котляков В.М.
Избранные сочинения в шести книгах
ISBN 5-02-002478-3
ISBN 5-02-008767-X (Кн. 2)

Во второй книге шеститомника избранных сочинений академика В.М. Котлякова рассматриваются процессы формирования и развития сезонного снежного покрова, особенности аккумуляции и абляции, баланса массы и режима ледников. Рассказывается о становлении космической геоэкологии и опыте исследований колебаний ледников, в том числе динамически нестабильных, на базе аэрокосмической информации и гляциологического прогноза, а также о ресурсовом значении снега и льда и возможных путях их использования.

Для специалистов в области наук об Земле и читателей, интересующихся земной природой.

Табл. 32. Ил. 129. Библ. 427 назв.

Kotlyakov V.M.
Selected works in six books
ISBN 5-02-002478-3
ISBN 5-02-008767-X (Book 2)

In the second volume of his "Selection of the Works", Academician Vladimir Kotlyakov presents results of his studies into seasonal snow cover, as well as into glacial accumulation, ablation and mass balance. Inception and development of space glaciology are also described, together with studies into glacier fluctuations including glacial surges. Information from space images was used in these studies, which also permitted to evaluate snow and ice resources and discuss the ways of their utilisation.

Intended for specialists in Earth sciences and for those who are interested in the Earth nature.

Tabl. 32. Fig. 129. Ref. 427.
ПРЕДИСЛОВИЕ

Исторически сложилось так, что Россия стояла в первых рядах исследователей снега и льда, а в изучении непосредственно снежного покрова была впереди большинства стран. Работы А.И. Воейкова, Г.Д. Рихтера, П.П. Кузьмина, А.К. Джонина служат лучшими образцами мировой литературы по проблеме изучения снега. Само снеговедение как учение о снежном покрове, зародившееся в России, изучает широкий круг явлений и процессов, связанных с возникновением, существованием и сходом снежного покрова.

В силу трудностей исследования природы зимой и исторически сложившейся практики летних географических экспедиций зимние особенности природы изучены недостаточно. Более полу века назад Г.Д. Рихтер (1948) писал, что попытки объяснить те или иные факты только процессами летнего периода часто могут приводить к ошибкам, так как зимние процессы протекают отлично от летних и накладывают большой отпечаток на развитие всей природы. В такой же мере это замечание относится и к исследованию ледников. Отсутствие зимних или в крайнем случае ранневесенних работ приводит к неполной характеристике эволюции ледников, а часто и к ошибочным выводам относительно роли зимних и летних процессов в их режиме.

Иногда говорят об объединении всех «зимних» проблем в специальное научное направление — «зимоведение» (Осокин, 1964). Подобное предложение нельзя признать удачным. Зима как время года в разных местах земного шара совершенно разная и часто может быть весьма далекой от нашего представления о зиме как о сезоне, когда на поверхности лежит снег. Однако по существу весь круг действительно «зимних» проблем связан со снежным покровом и рассматривается снеговедением.

Снеговедение, в свою очередь, тесно связано с ледниковедением, поскольку основным источником питания ледников служит снежный покров. Задачи изучения снежного покрова на ледниках и инеледниковой поверхности различны, хотя процессы его формирования и преобразования имеют одну физическую основу. В этой книге главное внимание обращено не на детальное исследование процессов льдообразования и роли в них снежного покрова, а на изучение снега...
как природного феномена, являющегося основой зимних процессов в умеренных и полярных широтах. Совместное рассмотрение сезонного и многолетнего снежного покрова имеет существенное значение не только при анализе эволюции современного оледенения, но и при рассмотрении причин и механизма развития древних оледенений.

Здесь я рассматриваю общие проблемы формирования и режима сезонного снежного покрова на равнинах и в горах, говорю о снежности как комплексе природных явлений, связанных с наличием на земной поверхности снега, анализирую его климатическую роль и место ледников в глобальных моделях климата. Снежный покров на ледниках рассматривается отдельно для периодов аккумуляции и аблиции, а снежно-ледовые образования выступают как важный объект географической оболочки и служат основой гляциологического районирования земного шара. В качестве примера комплексного исследования крупной природной нивально-глациальной системы я предлагаю территорию Памира и Гиссаро-Алая.

Две первые части книги в значительной мере базируются на материалах экспериментальных исследований, полученных на южном склоне Эльбруса, где я с небольшой группой сотрудников вели наблюдения в течение двух полных лет — с сентября 1961 г. по сентябрь 1963 г.

В 1980-90-е годы произошло становление космической гляциологии, что открыло новые перспективы в исследованиях современного и прогнозов будущего режима ледников. В книге я также рассматриваю некоторые вопросы изучения как баланса массы и колебаний ледников, в том числе на базе спутниковых наблюдений, так и концепцию гляциологической геоинформационной системы, позволяющей, помимо прочего, вести компьютерный анализ динамики ледников. Особое место занимает проблема гляциологического прогноза и судьбы ледников в условиях меняющегося климата.

В последней части книги я останавливаюсь на вопросах инженерной гляциологии в связи с хозяйственной деятельностью людей в нивально-глациальных условиях. Одна из главных задач этой отрасли гляциологии — использование снега и льда как источников пресной воды: от способов получения дополнительной воды путем искусственного усиления таяния ледников до проблемы транспортировки айсбергов к берегам Африки и Азии. Здесь и проблемы ледяного строительства, и борьба с грозными явлениями природы, вызываемыми стихийными нивально-глациальными явлениями, и использование снега и льда в экологических и рекреационных целях.

Глава 1
НЕКОТОРЫЕ МЕТОДИЧЕСКИЕ ПРИЕМЫ ИЗМЕРЕНИЯ СНЕЖНОГО ПОКРОВА

Снегомерные наблюдения в горах

Снегомерные наблюдения в горных районах вследствие большой расчлененности рельефа значительно сложнее, нежели на равнинах. В горах приходится учитывать абсолютную высоту, конфигурацию, экспозицию и крутизну склонов, их положение по отношению к влажностным воздушным массам и к господствующим ветрам, а также структуру поверхности, на которой откладывается снег. Снегозапасение здесь отличается большой пестротой, связанной главным образом с метелевым перераспределением снега, при этом снегозапасы могут различаться в несколько раз даже на рядом лежащих участках.

Маршрутные снегосъемки по долинам не дают реальной картины распределения снега в горах. Очень часто долины оказываются
Глава 1. Методика измерения снежного покрова

Сезонный снежный покров Земли

гораздо менее заснеженными, чем склоны, в других случаях благодаря ладинам на днищах долин скапливаются огромные отложения снега, снегозакопанных и склонов. В связи с этим встает задача такой организации снегоземки, при которой наблюдения были бы охвачены все части долины и водораздела. Как указывают климатологи (Дроздов и др., 1958), целесообразны наблюдения по поперечным профилям от подобной высоты вдоль склона через 100-200 м по высоте с захватом различно ориентированных склонов и описанием встречающихся по маршруту форм рельефа.

Снегоземки, охватывающие участки с характерными для данного района рельефом и растительностью, получили у метеорологов название ландшафтных. В отличие от снегоземок по замкнутому маршруту и тем более по треугольнику они дают материалы, значительно более близкие к действительности. При этом важно, чтобы маршрут пересекал все основные формы рельефа, и баланс переноса снега в целом на его протяжении был близок к нулю. Как показали экспериментальные исследования Главной географической обсерватории (Калинин, Зацц, 1959), в пересеченных районах снегоземки надо определять раздельно для разных форм рельефа, а затем суммировать их для всего района исследований, учитывая при этом соотношение основных форм рельефа на изучаемой территории.

Серьезную помощь могут принести повторные фотоземлистые съемки небольших горных бассейнов. Такой уникальный эксперимент был проведен в мае 1969 г. на Поллярном Урале (Ходиков, Цветков, 1970). Точность снежного покрова по стереофотограмметрической съемке, выполненной весной и летом, вполне соответствовала данным стандартных наземных измерений, а детальность фотоземлистой съемки по всей площади исследований была нехарактерна выше.

Выбор интервалов между снегоземками зависит от типа климата, характера рельефа и времени года. В горах с жарким климатом, отличающимся большой изменчивостью условий по сравнению с континентальными районами, снегоземки должны проводиться чаще. Еще чаще они должны быть в безлесных и сильно расчлененных рельефных районах. Точность определения характеристик снежного покрова по одному и тому же маршруту в течение зимы может изменяться (Трифонова, 1962). Поэтому для выбора наиболее репрезентативного маршрута необходимо использовать материалы снегоземки, проведенные в этом районе в течение нескольких зим, различных по характеру снежности и ветровым условиям.

Из всех снегоземок, проводимых в горах на протяжении зимы, наиболее значимое значение имеет измерение максимума снегоземок, приходящегося на разные даты в зависимости от абсолютной высоты места. В связи с этим важно правильно выбрать время проведения весенней снегоземки в бассейне, чтобы получить результаты, близ-
Часть 1. Сезонный снежный покров Земли

ческих наблюдений, нужно проводить комплекс наблюдений за формированием и развитием снежной толщи (измерения выпадающих осадков, прироста и убыли снега, плотности и твердости снежной поверхности, а также проходка контрольных шурфов) и составлять профиль ее развития.

В отечественной литературе графики, изображающие развитие снежной толщи, мы находим в работе Г.К. Тушинского с соавторами (1953). На этих графиках однотипные горизонты соединяются по формальному – структурному – признаку, что не позволяет проследить за развитием каждого слоя в отдельности. Выделение на графиках участков снега одинакового строения вместо подчеркивания схожести толщи, вероятно, помогает определить периоды спаввы опасности, возникающей при разрыхлении снежной толщи. Однако этот способ построения графиков не вскрывает генезиса снежного покрова, что весьма важно при гляциологических исследованиях, а также для использования стратиграфических материалов при косвенных способах подсчета выпавших твердых осадков. Поэтому при составлении профиля развития снежной толщи я использовал методику шведских археологов (Haefeli et al., 1939), дополненную некоторыми собственными приемами.

Первый такой профиль я построил по материалам наблюдений в районе Мирного (Антарктида) с 1 февраля 1957 г. по 15 января 1958 г. Он приведен в докладе в первой книге этого же издания (см. рис. 154, с. 144, книга 1, 2000). Природные условия района Мирного весьма сходны с природными условиями ряда арктических районов, поэтому профиль дает представление о процессах, протекающих в течение года в снеговом покрове на территории прибрежных районов Антарктиды и в большинстве районов Арктики.

В дальнейшем опыт построения таких профилей был распространен на горные районы. В 1961–1963 гг. на южном склоне Эльбруса были получены все необходимые материалы, давшие возможность построить профили развития снежной толщи для двух балансовых лет (один из них показан здесь на рис. 1.1, вкл.к.с. 16), характеризующие особенности развития снежной толщи в физиографической области высоцкокоренных ледников умеренного пояса.

Глава 1. Методика измерения снежного покрова

ных по снегомерным наблюдениям. Среди исследователей существуют мнения о выделянии осадков из снегомеров, о непопадании в него снега и наледи снега (Кузьмин, 1960). Все три положения имеют место в действительности. Ошибки измерений возникают в результате нескольких причин: а) во время снегопада, происходящего при ветре, большинство снега попадает над прибором, не попадая в него; б) вследствие турбулентности снеговетрового потока во время снегопада части отложенных в приборе осадков может выделяться; в) во время сильных ветров метели много снега, поднятого с поверхности, попадает внутрь прибора; г) снегомер с большими ошибками фиксирует образующуюся изморозь и выпадающие ледяные иглы; д) снег, попавший в снегомер, частично испаряется.

Особенно велико влияние первой причины, заключающейся в образовании вокруг приемной части прибора «воздушного кольца» – вихревого поля, которое препятствует попаданию осадков в прибор, особенно при больших метелях. Недоучет осадков в снегомере быстро растет с увеличением скорости ветра. Уже при ветре в 3 м/с в снегомере не попадает около 35% твердых осадков. При установке снегомеров в горах в показаниях возможна дополнительная ошибка, связанная с непараллельностью приемной поверхности прибора линиям тока воздуха. При сильных ветрах даже небольшая непараллельность приемника прибора линиям тока воздуха ведет к ошибке, сопоставимой с величиной осадков (Ходаков, 1963). Поэтому данные снегомера, расположенного на склоне или вблизи него, не могут быть верными. Они в большей степени зависят от ветра, чем от количества осадков. В результате в горных районах суммы зимних осадков по снегомерам на склонах нередко получаются вдвое меньше, чем по снегомерам в долине.

Таким образом, суммы твердых осадков, измеренные на горных склонах с помощью снегомеров, почти всегда оказываются заниженными, причем величину ошибки, как правило, определить невозможно. На плоских ледниковых куполах, наоборот, очень часто происходит надувание снега в снегомер, наблюдаемое как при обычных условиях, так и особенно при низовых метелях. Показания снегомеров в таких ветреных областях, как Арктика и Антарктика, обычно значительно превышают истинное количество осадков из-за попадания в прибор снега, поднятого с поверхности во время метелей. В Мирном в 1958 и 1959 гг., когда учитывались все осадки, попавшие в снегомер, их годовая сумма составила 600–700 мм, в то время как в 1957 г., когда совсем не учитывались осадки, собраные снегомером при низовых метелях, годовая сумма была равна приблизительно 400 мм.

Малая достоверность снегометных наблюдений в горных и полярных районах до сих пор мешает получению достаточно точных величин выпадающих осадков, и поэтому весьма интересны любые
Часть 1. Сезонный снежный покров Земли

Рис. 1.1. Характеристика погоды и развитие снежной толщи на южном склоне Эльбруса в районе Ледовой Базы зимой 1961/62 г.

A — ход температуры воздуха (1); Б — скорость ветра (2); В — синоптическая обстановка; 3 — теплый фронт, 4 — фронт окклюзии, 5 — холодный фронт, 6 — антициклон, 7 — малоградиентная область повышенного или пониженного давления, 8 — циклон; Г — ход атмосферного давления; Д — облачность; 9 — 8—10 баллов, 10 — 3—7 баллов, 11 — 0–2 балла; Е — снегопады, 12 — общие метели, 13 — низовые метели; Ж — снежный покров: 15 — свежевыпавший снег с преобладанием необломанных снежинок, 16 — то же, с преобладанием обломанных снежинок, 17 — снег мелкозернистый, 18 — снег среднезернистый, 19 — фибрильный снежник, 20 — снег крупнозернистый (простого типы), 21 — гребенчатый снежник, 22 — ветровая сплошность, 23 — вертикальная структура, 24 — насыщенный ветровая корка, 25 — радиационная корка, 26 — граница между слоями снега по изменению текстуры или плотности снега, 27 — граница переохлаждения скопления низовой метели, 28 — прослойка разрыхления, 29 — снег, пропитанный водой, 30 — граница появления в снеге талой воды, 31 — ледяные прослои, 32 — плотность снега, г/см³.

косвенные способы их определения. Один из таких способов — нормальная снегометрия — предложен П.П. Кузьминым (1960, 1963). Этот вид снегометрии позволяет определить снегозапасы на данной площади с заданной точностью и получить надежные значения, дающие объективо оценить ошибки полученного результата по формулам теории ошибок, чего нельзя сделать при всех других способах снегометрии.

Метод нормальной снегометрии можно применить и для определения суммы выпадающих твердых осадков (пренебрегая испарением), если снегомерная съемка производится на так называемом индикаторном участке, на котором баланс переноса снега равен нулю. Нормальная снегометрия предполагает равномерное размещение по площади промерных точек; число точек не зависит от величины участка исследований, зато для расчета параметров снегометрии нужно знать коэффициент вариации \(c \), характеризующий неравномерность залегания снежного покрова.

Зимой 1962/63 г., в числе прочих экспериментальных работ, мы провели нормальную снегометрию на южном склоне Эльбруса (Котляков, Плам, 1965). В высокогорье, отличающемся значительным расчленением, наиболее выровненные пространства, пригодные для постановки осадкономерных и метелемерных наблюдений, находятся именно на ледниках. Для проведения опытных работ мы выбирали ровное фильтровое поле площадью 400 х 600 м, лежащее на высоте 3750—3790 м на ледоразделе ледников Гарабаш и Терскол (рис. 1.2). Оно имеет небольшой уклон к юго-востоку; наиболее выровненный участок вытянут с запада на восток — в направлении, совпадающем с господствующими здесь зимой ветрами. Последнее обстоятельство особенно важно, так как оно означает, что снег во время метелей переносится вдоль длинной оси поля, а не поступает на него со стороны. В непосредственной близости к полю крутие склоны отсутствуют.
Глава 1. Методика измерения снежного покрова

Рис. 1.2. Общий вид фирнового поля на южном склоне Эльбруса. Снятого со склона Эльбруса в южном направлении

Расчет параметров снегосъемки был выполнен по данным снегомерных наблюдений на фирновом поле зимой 1961/62 г.; коэффициент вариации для этого периода равнялся 0,35–0,40. Исходя из формул и номограмм П.П. Кузьмина, на всем поле необходимо было установить 42 рейки на расстоянии 40–50 м одна от другой. Однако из-за открытых трещин на некоторых участках поля абсолютной правильности в размещении рейок достичь не удалось, а общее количество сократилось до 39 (рис. 1.3, а). Исключительная снежность зимы 1962/63 г. не позволила получить данные за весь период аккумуляции.

Сопоставление результатов этих наблюдений показало, что наиболее верно отражают условия снеготаяния наблюдения за период одной общей метели, не осложненной переносом снега низовой метелью. По полученным данным были подсчитаны отклонения показаний в каждой точке в процентах от среднего для всего фирнового поля. Эти величины были нанесены на план (рис. 1.3, б), на котором наглядно видно расположение участков поля, находящихся в разных условиях снеготаяния.

Хотя нормальные снегосъемки не позволили подсчитать количество осадков, выпавших на фирновом поле за весь период аккумуляции, они помогли оценить условия снеготаяния на участке снегомерной площадки. Из рис. 1.3, б видно, что снеготаяние на этом участке в целом сходное с общим, и исключение наиболее...
Глава 1. Методика измерения снежного покрова

Рис. 1.3. Снегонакопление на фирновом поле Эльбруса зимой 1962/63 г.

Расчет количества осадков по ежечасным снегомерным наблюдениям

В результате стационарных исследований на Эльбрусе в 1961/62 и 1962/63 гг. были получены материалы, позволившие рассмотреть два косвенных способа определения сумм выпадающих осадков (Котляков, Раз, 1965а). Первый способ расчета осадков по ежечасным измерениям на площадке основан на том, что при снегопадах и облаках снег отлагается достаточно равномерно. Действительно, при данной скорости ветра в воздухе может удерживаться лишь ограниченное количество снега; избыток же его, поступающий сверху, откладывается на поверхности. Это служит причиной более или менее равномерного отложения снега на облаках, даже несмотря на значительные скорости ветра. Теоретический анализ А.К. Дюнина (1963) также говорит о том, что твердый расход снегопада через горизонтальную поверхность при ветре и без ветра одинаков.

Правильность предлагаемого способа подтверждается уравнением баланса массы снега во время облаков метели в параллелепипеде $lxhxl$ при отсутствии поступления снега сбоку (рис. 1.4)

$\left(H_l - H_0 \right) l = Q_1 - Q_2 + \left(X_p - f_n \right) l + zl$,

где H_l и H_0 – толщина аккумулированного снега до начала облаков метели и в конце ее; Q_1 и Q_2 – общий перенос снега во время облаков метели в слое высотой 2–4 м через два поперечника, ограничивающие выбранный параллелепипед; X_p – количество выпавших твердых осадков; f_n – испарение снега; z – перенос вещества вверх через границу $a-a$.
Глава 1. Методика измерения снежного покрова

плотности снежно-фирновой толщи и ее развития во времени, для чего на опытной площадке нужно регулярно рыть шурфы, составлять их между собой и строить профиль развития снежной толщи.

Используя кривую прироста и убыли снежного покрова, построенную по данным средних из ежедневных измерений по тромам*, для вычисления количества выпадающих осадков и величины дефляции снега необходимо учитывать осаждение снежного покрова, так как видимое понижение уровня поверхности может происходить вследствие двух причин: дефляции и осаждения снега. Поправку на осаждение можно получить в результате анализа изменения плотности снега на временных профилях.

Однако снегозапасы не всегда соответствуют аккумуляции снега (осадки минус снега) даже после внесения поправок на осаждение. Для точных расчетов необходимо учитывать и количество вещества, поступающего в снежный покров из прошлогоднего фирина (особенно когда он сильно трещиноват), а также вес снега, испаряющегося с поверхности снега. Эти данные могут быть получены путем анализа изменения водозапаса сезонного снега на временному профиле.

Вычисление количества выпадающих за год осадков с учетом осадков, поступающих на ледник в теплое время, требует анализа хода снеготаяния, в процессе которого часть талой воды просачивается в грунт, что значительно уменьшает видимый остаток снежного покрова. Эту поправку можно внести после учета инфильтрационного уплотнения и количества переотложенной талой воды, для чего также необходим анализ процессов таяния на временному профиле.

Методика вычисления выпадающих осадков, осаждения и снега заключается в следующем. На кривой хода толщины снежного покрова выбираются периоды с приростом снега. Произведены величины каждого прироста (до пика) на плотность накопленного за этот период снега дает величину аккумуляции снега, откладываемого в результате снеготаяния в общих метрах, которые мы считаем равной количеству выпавших осадков. Если площадка располагается на участке, куда во время низовых метелей приносится дополнительное количество снега, должны быть поставлены более детальные наблюдения за метеозондами, анализ которых позволит отличить снег выпавший во время общих метелей, от снега, отложенного при низовых метелей.

На участках снега за каждым пиком (максимумом снегонакопления того или иного периода) следует понижение высоты поверхности, обусловленное снегом и осаждением снега. Наиболее ярким приме-

*Подробно об этом способе снегомерных наблюдений сказано в первой книге этого шеститомника.
ром понижения поверхности вследствие осадения служит ее понижение в январе 1962 г. (см. рис. 1.1), когда на поверхности длительное время существовала радиационная корка и низовых метелей не было. Тем не менее поверхность снега за 30 дней понизилась на 12 см.

Для вычисления массы снегенного снега нужно определить разность высот между ним и последующим наивысшим положением поверхности. Умножив эту разность на плотность поверхностного слоя снега за этот период, получаем какое-то количество снега, которое всегда больше истинной величины снега, поскольку частью понижение поверхности произошло вследствие осадления нежелательных (в основном самых верхних из них) слоев снега. Поэтому для них, когда поверхность осадка закончилась, необходимо вычислить снегозапас в верхнем слое. Две полученные цифры — количество «снегенных» осадков и величину водозапаса в снеге — следует сравнять. Разница между ними и составляет необходимую поправку на осадение, которая позволяет определить дефляцию снега.

Рассмотрим пример. В период с 19 октября по 4 ноября трюды выпадали осадки, в результате отложения которых поверхностность снежного покрова повысилась на 15 см, или отложилось 27 шт. осадков в слое воды (см. рис. 1.1). 7-8 ноября под влиянием низовой метели произошло резкое понижение поверхности на 9 см; учитывая плотность снега в это время (0,20 г/см³), мы получаем снос, равный 18 шт. осадков. Но правильно ли это? Ведь за прошедшее с 19 октября по 8 ноября время происходило и осаждение снега. Как видно на профиле, 8 ноября был перенос, акумулировавшийся на леднике с 19 октября. Водозапас вновь образовавшийся слой составил не 18 шт. осадков, как мы счинаяли, а 27 шт. и 18 шт. = 9 шт. Это и есть истинная величина снега.

Подобные вычисления были сделаны для всех случаев отложения и сноса снегенного снега; проанализировано также изменение водозапаса в слоях снегового слоя. В конце каждого месяца величины акумулированного снега составлялись с водозапасом во всех толщах сезонного снега, что позволило, с известным приближением, вычислить также и поступление вещества на границах сезонного снега с прошлогодним фирном и воздухом (табл. 1.1).

Как видно из таблицы, величины акумуляции, рассчитанные как разность осадков и снега снега и непосредственно измененные в шурфах, не равны между собой и в целом за зиму отличаются друг от друга на 36 шт. Возможно, что эта разница обусловлена поступлением вещества в сезонный снегенный покров из нежелательных прошлого года инфильтрационного фирна вследствие миграции водяных паров низу вверх, однако она настолько мала, что правильнее ее отнести за счет ошибок измерений, но при этом способе ошибок в 5—10% вполне возможны и допустимы.

Второй способ основан на анализе связи поглощенных осадков с количеством снега, отлагающегося на таком участке ледника, где метельный снос и принос снега отсутствуют. Эта связь существенно зависит от скорости ветра. Ежедневные снегомерные наблюдения на площадке, проведенные в 1961—1963 гг. в Эльбрусе, показали необходимость для сравнения показаний осадомера и хода снегонакопления. Осреднение находилось на meteorологической станции Ледовая База, расположенной в 50 шт. от фирнового поля на высоте 3680 шт. Метеоплощадка открыта воздействию господствующих ветров. Она расположена на узком гребне с крутыми северными и южными склонами. Подлещающая поверхность служит моренный чехол, зимой слабо заносимый снегом.

На основании исследований 1961/62 г. оказалось, что прямой связи между ежедневным количеством выпавшего на фирновом поле снега и количеством осадков в осадомере не существует. По данным
Часть 1. Сезонный снежный покров Земли

метеорологических наблюдений, на Эльбрусе очень много дней с осадками: с сентября 1961 г. по май 1962 г. осадки отмечались 184 дн., или 70% времени. Число дней, когда наблюдалось отложение снега на площадке, за тот же период составляло 102, или 38%. Следовательно, в отдельные дни выпавшие осадки никак не регистрируются в снегонакоплении. Вместе с тем в другие дни (обычно во время сильной общей метели) при сравнительно небольшом выпадении осадков отлагается мощный слой снега. За 82 дня с неутлерными на площадке осадками их выпало (по измерениям осадомера) около 80 мм, т.е. средняя их интенсивность была около 1 мм в день. Эта величина меньше точности снегомерных измерений (так как 1 мм воды при плотности 0,20 г/см³ равен 0,5 см снега). Величина неутлерных осадков (80 мм) составляет 7,7% суммы зимних осадков, равной 1036 мм. Очевидно, что для практических расчетов количества осадков в горах этой величины можно пренебречь.

Вместе с тем несоответствие показаний осадомера и данных по снегомерной площадке может объясниться следующим образом. Небольшое (несколько миллиметров) количество свежевыпавшего снега никогда не отлагается на ледяники, даже при равном снегу, и образует пятна, характер которых зависит от микрорельефа. При этом очевидно, что в местах такого отложения количество снега будет больше количества осадков. Если эти пятна оказались вне снегомерной площадки, на ней, естественно, отложения не будет, несмотря на прошедший снегопад. Если же пятна образовались в пределах площадки, то будет отмечено повышенное снегонакопление. Дни с продолжительными снегопадами малой интенсивности чередуются с сильными общими метелями, во время которых перераспределяется и отложенный ранее (в пятнах) снег. В результате метели снег откладывается довольно равномерно и в большом количестве, чем его выпадало во время этой метели. Именно в таких дни с общими метелями происходит массовое снегонакопление, фиксируемое изменением отсчетов по тросам. На подобных периодах на ледяном наличии немного, поэтому кривая снегонакопления прерывиста, имеет резкие пики и длинные позитивы участки. Описанный процесс получает косвенное подтверждение при сравнении количества осадков по осадомерам и по тросам за каждый день и за отдельные периоды (от пика до пика).

Связь между данными ежедневных наблюдений за осадками на фирновом поле и в осадомере установить не удалось даже с учетом средней суточной скорости ветра. Не установлена также зависимость между соответствующими месячными суммами осадков. В то же время нами было показано, что если между данными величинами в ежедневные периоды, включающие дни с снегонакоплением и дни с дефилиацией снега (рис. 1.5), например, с 3 по 23 октября, с 22 января по 1 февраля, с 26 февраля по 4 марта и т.д. (см. рис. 1.1).

Глава 1. Методика измерения снежного покрова

Рис. 1.5. Связь между суммами осадков за естественные периоды снеготаяния зимой 1961/62 г. по осадомеру X и по снегомерным наблюдениям на фирновом поле южного склона Эльбруса (H)

Мы сопоставили со скоростью ветра на высоте флюици U_0**, две величины: во-первых, отношение количества осадков на фирновом поле H к количеству осадков по осадомеру X; во-вторых, отношение разности между суммами осадков на фирновом поле и в осадомере (H - X) к сумме осадков на фирновом поле H. Количество которых мы считаем близким к действительному. В обоих случаях использовались суммы осадков за отдельные периоды снеготаяния, а скорость ветра бралась только за дни с накоплением снега на фирновом поле. Как и в первом, так и во втором случаях зависимости получились удовлетворительными (рис. 1.6). С некоторой осторожностью полученные зависимости можно применять и к месячным величинам, ибо продолжительность периодов, включающих дни с снегопадами и дни с дефилиацией, более или менее постоянна: на один месяц приходится 2–3 таких периода. Расчет, выполненный для зим 1961/62 и 1962/63 гг. по первому отношению H/X, дал результаты, приведенные в табл. 1.2.

Вычисленные таким образом суммы осадков для зим 1961/62 и 1962/63 гг. весьма близки к количеству осадков, полученных по ежедневным наблюдениям на площадке (1036 и 2152 мм соответственно); разность между ними меньше точности наших измерений.

Предложенный метод исправления показаний осадомера мы применяем для вычисления интенсивных сумм осадков в области аккумуляции ледника Федченко. Данные снегосъемка на станции Ледник Вятковского, находящейся в период МТГ на высоте 4900 м, на 55% превышают показания ее осадомера, а на станции Ледник Федченко-1 (4170 м) — лишь на 8% (Ледник Федченко, т. 2, 1962). Эти различия авторы объясняют особенностями орографии и отчасти различными конструкциями осадков.

*Здесь и далее индекс У обозначает скорость ветра, измеренную в метрах на некоторой высоте (в данном случае на высоте 11 м).
Глава 1. Методика измерения снежного покрова

Таблица 1.2

Количество осадков на южном склоне Эльбруса за зимы 1961/62 и 1962/63 гг. после внесения поправки в показания осадкомера

<table>
<thead>
<tr>
<th>Месяц</th>
<th>Сумма осадков по осадкомеру, мм</th>
<th>Средняя месячная скорость ветра, м/с</th>
<th>H/Xt</th>
<th>Исправленное количество осадков, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961/62 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сентябрь</td>
<td>44</td>
<td>4,7</td>
<td>2,3</td>
<td>101</td>
</tr>
<tr>
<td>Октябрь</td>
<td>30</td>
<td>4,6</td>
<td>2,3</td>
<td>69</td>
</tr>
<tr>
<td>Ноябрь</td>
<td>50</td>
<td>7,2</td>
<td>3,1</td>
<td>155</td>
</tr>
<tr>
<td>Декабрь</td>
<td>58</td>
<td>7,5</td>
<td>3,1</td>
<td>180</td>
</tr>
<tr>
<td>Январь</td>
<td>20</td>
<td>6,4</td>
<td>2,8</td>
<td>56</td>
</tr>
<tr>
<td>Февраль</td>
<td>30</td>
<td>5,9</td>
<td>2,7</td>
<td>78</td>
</tr>
<tr>
<td>Март</td>
<td>39</td>
<td>5,9</td>
<td>2,7</td>
<td>105</td>
</tr>
<tr>
<td>Апрель</td>
<td>58</td>
<td>2,4</td>
<td>1,7</td>
<td>98</td>
</tr>
<tr>
<td>Май</td>
<td>82</td>
<td>4,2</td>
<td>2,2</td>
<td>180</td>
</tr>
<tr>
<td>Весь период</td>
<td>411</td>
<td>5,4</td>
<td>2,6</td>
<td>1022</td>
</tr>
<tr>
<td>1962/63 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Октябрь</td>
<td>40</td>
<td>4,1</td>
<td>2,2</td>
<td>88</td>
</tr>
<tr>
<td>Ноябрь</td>
<td>17</td>
<td>2,8</td>
<td>1,3</td>
<td>31</td>
</tr>
<tr>
<td>Декабрь</td>
<td>9,4</td>
<td></td>
<td>3,7</td>
<td>63</td>
</tr>
<tr>
<td>Январь</td>
<td>213</td>
<td>9,1</td>
<td>3,6</td>
<td>767</td>
</tr>
<tr>
<td>Февраль</td>
<td>134</td>
<td>5,6</td>
<td>2,6</td>
<td>350</td>
</tr>
<tr>
<td>Март</td>
<td>86</td>
<td>8,0</td>
<td>3,3</td>
<td>84</td>
</tr>
<tr>
<td>Апрель</td>
<td>49</td>
<td>3,3</td>
<td>2,0</td>
<td>98</td>
</tr>
<tr>
<td>Май</td>
<td>77</td>
<td>2,2</td>
<td>1,6</td>
<td>123</td>
</tr>
<tr>
<td>Весь период</td>
<td>714</td>
<td>5,6</td>
<td>2,6</td>
<td>2104</td>
</tr>
</tbody>
</table>

Из данных табл. 1.2 (Ледник Федченко, 1962, т.2, с. 165-166) было отобрано 14 периодов, для которых имелись показания осадкомера и сведения о количестве снега, отложенного на площадке. Сравнение отношений этих величин со скоростью ветра позволило вычислить соответствующие коэффициенты (рис. 1.7), которые по абсолютной величине оказались меньше эльбрусских и менее изменчивыми в зависимости от скорости ветра. Это можно объяснить тем, что станция Ледник Витковского более закрыта, чем Ледовая База, и режим ветра здесь однороднее. Кроме того, материалы наблюдений, данные которых используются, на Леднике Федченко более продолжительны, чем на Эльбрусе, что должно уменьшать угол наклона прямой на рис. 1.7.

Поскольку на станции Ледник Витковского в течение круглого года господствуют отрицательные температуры и дождей не бывает,
Глава 1. Методика измерения снежного покрова

Полученные коэффициенты можно использовать и для периода абляции. Вычисленная таким образом сумма осадков за 1958/59 балансовый год оказалась равной 1470 мм (табл. 1.3). С января по август 1959 г. здесь выпало 970 мм осадков, а за тот же период 1958 г. – 1080 мм (вычислено этим же способом).

Связь метелевого переноса с твердыми осадками

Между переносом снега при общих метелях и количеством выпавших осадков существует определенная связь, которую можно использовать для вычисления одного из этих показателей по известной из наблюдений величины другого. Выше показано, что на равных пространствах при общей метели и установившемся снеговом потоке все время происходит отложение снега, равное количеству выпадающих осадков. Но весь выпадающий снег, прежде чем отложиться на поверхности, вовлекается в снеговом потоке. Невозможно же, и следовательно, дальность переноса не равна нулю, выпавший снег сначала переносится, а только потом закрепляется в снежном покрове. Отсюда следует, что в потоке находится весь выпадающий в данный момент снег, а, возможно, и снег, выпавший ранее (в ту же метель).

В высокогорье интенсивность выпадания снега весьма велика. В районе Эльбруса, например, в среднем за период аккумуляции 1961/62 г. она составляла 12 мм/сут (с учетом продолжительности снеготалов и общих метелей 2083 часа, или 87 суток). Такая высокая интенсивность выпадений снега тем более способствует насыщению потока за счет выпадающего снега.

Коэффициент связи метелевого переноса и осадков k представляет собой линейную величину, он равен:

$$k = \frac{Q_s}{X_s}$$ \hspace{1cm} (1)

где Q_s – количество снега, перенесенного общими метелями, г/см, а X_s – количество осадков, выпавших за то же время, г/см. Очевидно, чем больше снега собирает метелемер, тем больше коэффициент связи. С другой стороны, если при том же количестве собранных метелемером снега выпадает больше осадков, коэффициент связи уменьшается.

На участках ледника, подверженных регулярному снегопаду, подобным же образом можно вычислить и коэффициенты связи между количеством снега Q_a, перенесенного во время низовой метели, и количеством снега X_{sa}, снесенного в данном месте. Оказалось, что эти коэффициенты связи при разных условиях погоды изменяются незначительно, а в целом за период аккумуляции они должны сохра-
Часть 1. Сезонный снежный покров Земли

ниться более или менее постоянными для данного места. Следовательно, их можно использовать при расчетах осадков и дефляции снега по данным о метелевом переносе в любой год. При расчетах осадков или дефляции снега в целом за период аккумуляции можноользоваться также осредненными значениями коэффициентов, полученными по нескольким метелям.

Для зимы 1961/62 г. в районе фирнового поля на южном склоне Эльбруса коэффициент связи между количеством выпавших осадков и суммарным переносом во время обычных метелей составил 45 м, а между общим количеством снега и снегом, перенесенным во время низовых метелей, - 103 м. Полученные линейные коэффициенты связи имеют определенный физический смысл: они отражают дальность переноса снега. Естественно, что в одном и тех же условиях дальность переноса снега при низовых метелях больше, чем при обычных.

Расчеты коэффициентов связи при отдельных метелях показывают, что чем они меньше, тем более равномерно откладывается снег и тем ниже коэффициент вариации распределения снежного покрова. Поскольку коэффициенты связи изменяются в разных условиях рельефа, последнее заключение имеет большое значение при выборе места для метелевых и других измерений, по которым в дальнейшем можно вычислить количество выпадающих осадков.

Изложеный здесь способ применялся для расчета осадков на фирновом поле в периоды аккумуляции 1958/59 и 1962/63 гг. Первый из этих периодов был близок по условиям к 1961/62 г., а второй был резко аномальным - он отличался исключительно высокой снежностью. На основе метелемных наблюдений, выполненных на фирновом поле Эльбруса (Котыкин, Платам, 1965), были приняты следующие расходы снеговертного потока q в зависимости от скорости ветра U:

\[U, m/s \]
\[6 7 8 9 10 11 12 13 14 \]
\[q, z/(msec) \]
\[4 9 15 23 32 41 52 65 82 \]

Результаты расчетов приведены в таблицах 1.4 и 1.5. Полученная этим способом сумма осадков за 1958/59 г., как и следовало ожидать, была близка к их сумме за 1961/62 г. В то же время в аномально снежном 1962/63 году осадков выпало почти вдвое больше - около 2100 мм. Последняя цифра очень близка к сумме осадков за период аккумуляции 1962/63 г., полученной иным способом (см. табл. 1.2). Из этого следует, что коэффициент связи, определенный нами, достаточно надежен и, во-вторых, что формула (1) вполне пригодна для расчета количества твердых осадков.

Данные табл. 1.5 свидетельствуют о том, что за зиму 1958/59 г. на фирновом поле было снесено около 31% выпавшего снега – почти

Таблица 1.4

| Мес
| Пролонгирование осадков, часов |
|------|--------------------------------|
| Сентябрь | 20 |
| Октябрь | 9,5 |
| Ноябрь | 5 |
| Декабрь | 120 |
| Январь | 123 |
| Февраль | 9 |
| Март | 78 |
| Апрель | 180 |
| Май | 56 |
| Весь период | 765 |
| 1958/59 г. | | | | |
| Сентябрь | 6 | 5 | 432 | 126* |
| Октябрь | 9,5 | 27 | 4277 | 95 |
| Ноябрь | 5 | 12 | 2176 | 48 |
| Декабрь | 120 | 12 | 5184 | 17 |
| Январь | 123 | 9 | 3985 | 89 |
| Февраль | 9 | 23 | 7369 | 64 |
| Март | 78 | 12 | 3370 | 75 |
| Апрель | 180 | 15 | 9720 | 216 |
| Май | 56 | 12 | 2419 | 171* |
| Весь период | 765 | | | |
| 1962/63 г. | | | | |
| Октябрь | 46 | 9,5 | 28 | 4637 | 103 |
| Ноябрь | 6 | 6 | 4 | 110 | 3 |
| Декабрь | 147 | 10,5 | 37 | 19048 | 423 |
| Январь | 295 | 10 | 32 | 34304 | 762 |
| Февраль | 147 | 10 | 32 | 16934 | 376 |
| Март | 135 | 10 | 32 | 15552 | 346 |
| Апрель | 15 | 7 | 9 | 3427 | 76 |
| Май | 34 | 9,5 | 28 | 3427 | 76 |
| Весь период | 821 | | | |

*Сумма осадков за сентябрь 1958 г. и май 1959 г. взята по осадкомеру (с поправкой на скорость ветра), так как основное снегонакопление в эти месяцы шло при снегопадах и не сопровождалось общими метелями.
Глава 1. Методика измерения снежного покрова

Таким образом, опыт работ на Эльбрусе показывает, что правильная постановка снегомерных и метелемерных наблюдений в удобном месте дает возможность не только исследовать ход процессов аккумуляции на леднике, но и вычислить величину выпадающих твердых осадков, которую далеко не всегда удается получить с помощью осадкомеров.

Некоторые замечания к речным измерениям

Общую картину аккумуляции и абляции на леднике можно получить с помощью маршруточных наблюдений по заранее расставленной сети сечей. Однако при измерениях возникают известные трудности из-за того, что снежные покровы, в котором они установлены, неравномерно оседают. Пока толщина сезонного снежного покрова невелика (менее 2 м), достаточную точность при вычислении определяют по наработкам только в поверхностных слоях свежего лежащего снега (см. выше). Но при подсчете осадков, дефляции и годовой аккумуляции в мощном снежном покрове нужно учитывать осадения во всех многометровой толще этого покрова (Котляков, 1966).

Необходимость введения поправки на такое оседание видна из рис. 18. Отсчитывая толщину снежного покрова по рейкам или по геометрическим точкам, мы получаем привычный для снежной поверхности, но не горизонтальный линии (а – а'). В действительности же вследствие оседания покрова со временем изменяется (а – б). К концу месяца толщина снежного покрова за истекший месяц [a – c] из-за интенсивного оседания свежеформированного снега сокращается, и к концу месяца высота прыжка варьируется в широте близке значения (с – б). Это прыжок, а также величина a – b будет искаженной поправкой. Подставляя в кинематическое уравнение для перемещений водяных уровней, получаем смещение сечения покрова. Использовать ее следует лишь в дни с приростом снежного покрова, так как иное понижение снежной поверхности складывается из оседания покрова и снега и, следовательно, не требует введения вычисленной поправки.

Поправка на оседание всего снежного покрова удобнее всего вычислить в конце каждого месяца периода аккумуляции. Методика расчета рассмотрим на конкретном примере. Толщина снежного покрова, отложенного за текущий сезон, в широте 22 апреля 1963 г. составила 319 см, а в широте 29 мая – 343 см. В мае происходит толщина снега, отложенного до 22 апреля, была равна 405 см; следо-
Глава 1. Методика измерения снежного покрова

Таблица 1.6

<table>
<thead>
<tr>
<th>Месец</th>
<th>Сумма осадков</th>
<th>Поправка на осадение</th>
<th>Сумма осадков (с введенной поправкой)</th>
<th>Слой снега, мм</th>
<th>Слой отложения снега</th>
</tr>
</thead>
<tbody>
<tr>
<td>Октябрь</td>
<td>174</td>
<td>21</td>
<td>195</td>
<td>9</td>
<td>186</td>
</tr>
<tr>
<td>Ноябрь</td>
<td>45</td>
<td>15</td>
<td>60</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>Декабрь</td>
<td>438</td>
<td>32</td>
<td>470</td>
<td>6</td>
<td>464</td>
</tr>
<tr>
<td>Январь</td>
<td>627</td>
<td>138</td>
<td>765</td>
<td>43</td>
<td>22</td>
</tr>
<tr>
<td>Февраль</td>
<td>129</td>
<td>27</td>
<td>156</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Март</td>
<td>240</td>
<td>30</td>
<td>270</td>
<td>56</td>
<td>14</td>
</tr>
<tr>
<td>Апрель</td>
<td>87</td>
<td>32</td>
<td>119</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>Всей период</td>
<td>1780</td>
<td>322</td>
<td>2102</td>
<td>145</td>
<td>1957</td>
</tr>
</tbody>
</table>

Количество осадков, величины сноса и водозапаса в снегово-фирновой толще (мм слоя воды) по данным наблюдений на снегомерной площадке на южном склоне Эльбруса зимой 1962/63 г.

наблюдений на снегомерной площадке на южном склоне Эльбруса зимой 1962/63 г.

Понятие "снежный покров" и его аблици. Первую величину отражает лишь видимое понижение поверхности, обязанное воздействию многих причин и совершенно не обязательно совпадающее с действительным таянием снега и тем более с аблицией. Таяние может происходить и в приповерхностном слое снега, и в более глубоких слоях снегового покрова. При этом талььные воды просачиваются в глубь снега и фрина и частично там замерзают. Поэтому аблиция, или убывание вещества, в целом для ледника весьма близка к величине к стоку тальных вод, зависит не только от величины таяния (а также испарения), но и от структуры, физических свойств снега и его температурного режима.

С помощью речных измерений мы получаем сведения лишь о видимом понижении поверхности снега, в разной мере характеризующего таяние в зависимости от типа погody и от хода аблици. Как правило, в начале периода аблици наблюдается резкое снижение поверхности снега, связанное с просачиванием тальных вод в глубь толщи, что ведет к быстрому изменению структуры снега, его осаданию и инфильтрационному уплотнению. В дальнейшем происходит насыщение снегового покрова водой, и таяние в этот период сопро-
Глава 1. Методика измерения снегового покрова

эти условия не характерны, поэтому пренебрежем изменениями плотности во времени, т.е. основываясь свои суждения об изменениях только на результатах речных измерений, нельзя. Ошибки измерений по рейкам могут достигать 65% для коротких периодов наблюдений и 15–20% для более длительных (Hubley, 1954).

Таким образом, при увлажнении периода наблюдений результаты речных измерений приближаются к истине, и в целом для сезона наблюдений дают представление о суммарном таянии и абляции, если измерения сопровождаются определением плотности сезонного снегового покрова перед началом таяния вплоть до окончания таяния. В тех случаях, когда также воды просачиваются на глубину нескольких метров и замерзают в слоях фильтрации, отложенные в прошлые годы, наблюдения плотности за фильтрацией аккумулированных вод не являются значимыми, поскольку некоторая часть воды, попадающая на инфильтрационную аккумуляцию, учитывается как составляющая расхода, тогда как в действительности она остается в пределах ледника.

В период интенсивного таяния на ледниках умеренных широт в области фильтрационной линии за день обычно ставит слой снега толщиной в несколько сантиметров. При установившемся режиме таяния это количество талой воды не превышает 1,5%. Значит, в разгар таяния об интенсивности аблации можно судить по данным о снижении снежной поверхности, полученными из речных измерений. Однако для пересчета снижения поверхности в соответствующий водный эквивалент необходимо иметь среднее значение стаивающего снега за сутки слоя снега — это величина, которую можно получить из разовых измерений плотности в определенное время суток. Чтобы отметить наилучшее время для такого измерения, в области аккумуляции ледников краткосрочной эксплуатации Эльбруса и Западного Алтая были исследованы характер изменения плотности поверхностного слоя снега в период таяния (Голдковская, 1964). Плотность снега измерена в 5 раз в 7 час. и 18 час. 30 мин. — до начала дневного таяния и после его окончания. Обычно к вечеру плотность верхнего слоя снега увеличивалась за пропитыванием его талыми водами, но к утру она снова понижалась, что объясняется стеканием воды за ночь. Специальное окрашивание снега и послойные измерения его плотности показали, что благодаря ночной просачиванию воды плотность снega уменьшается в верхних 5 см. Ниже она остается без изменений, так как фильтрация в более глубокие горизонты компенсируется притоком воды сверху.

Для вычисления снижения поверхности снеговой толщи, выраженной в процентах, были использованы уравнения измерения плотности снега, поскольку именно они характеризуют слой стаивающего за период

вождается незначительным понижением поверхности снега. С началом водотока из снежного покрова кривая понижения поверхности снега в общем следит за ходом таяния и абляции. Однако периодические походы в летние и заморозки, такие же как и смена типов погоды, нарушают правильность увлажненных взаимоотношений.

Различают два основных типа таяния: адабатическое и радиационное. В первом случае таяние концентрируется на поверхности, что облегчает его измерение. Во втором случае из-за проникновения в глубь снеговой толщи солнечной радиации таяние частично происходит во внутренних слоях снега. Внутреннеугловую составляющую таяния с помощью рек учесть нельзя. Поэтому данные речных измерений при радиационном типе таяния оказываются заниженными. Эту закономерность наглядно показала И.М. Лебедева (1963), которая сопоставила на леднике МГУ (Полярный Урал) средний слой стаивания снега, измеренный по рекам, со стоком ледникового ручья. В солнечные дни сток ручья, как правило, оказывался больше, а в пасмурную погоду сток и стаивание были в общем равны.

При измерении таяния снега с помощью рек за определенный промежуток времени следует помнить, что убыль запаса воды в верхнем слое снега, равная произведению понижения высоты поверхности на среднюю плотность снега, соответственно количество растаявшего покрова за тот же период только в том случае, если в снеге в начале измерений не было свободной воды. Это условие автоматически соблюдается в целом для периода абляции, но при измерениях за короткие промежутки времени могут быть те или иные отклонения, требующие дополнительных исследований. Отсюда видно, что точность измерения таяния по рекам зависит от продолжительности периода наблюдений.

При длительных измерениях таяния по рейкам результаты содержат ошибку, обусловленную оседанием снежного покрова при инфильтрационном уплотнении. Для определения этой ошибки Л. Шапель (La Chapelle, 1959) рекомендовал проводить наблюдения по нескольким рейкам, забуренным в снег на разную глубину. В принципе методика таких наблюдений аналогична той, что я применял для определения величиной оседания снега в период аккумуляции.

При коротких периодах наблюдений значительных отклонений по рейкам недостаточно. Для измерения потери воды во всех ее фазах поверхностным слоем определенной толщины нужны также сведения об изменениях плотности исследуемого слоя снега по глубине в начале и в конце периода наблюдений. Известно (Кузьмин, 1961), что в период абляции снежного покрова плотность таяющего снега изменяется мало при определенных условиях: крупнозернистый пере- кристаллизовавшийся снег, интенсивное таяние, не перекрывающихся ночной заморозками и возвратом холодов. Для ледников
Глава 1. Методика измерения снежного покрова

Метод теплового проявления снежно-ледовых объектов

Широкое использование дистанционных методов в гляциологии позволило и при измерении снегозапасов уйти от непосредственных ручных измерений. С этой целью был разработан метод теплового проявления, названный так по аналогии с фотографическим проявлениям (Котляков и др., 1981).

Метод основан на свойстве конформности рисунка изолиний высоты границы сезонного снега с рисунком изогипс. Еще X. Альман (1962) эффективно использовал это свойство для картографирования осадков, а в более ранней своей работе (Ahlmann, 1924) использовал для построения карт осадков и стока изолиний температур лета на высоте «предела озеленения» — поверхности, близкой к поверхности пости равной снежной толщине.

Сущность предложенного нами метода состоит в следующем. Зная с наперед заданной точностью в избранных точках пространства величину зонального импульса снегозапаса $|b|$ и притращения снегозапаса за период снеготаяния Δb, мы утверждаем, что в момент исчезновения снежного покрова в этой точке талый сток составил

$$Y_t = b_w + \Delta b - E_h,$$

где E_h — весеннее испарение. Механический перенос снега водой, ветром или силой собственной тяжести в этом утверждении игнорируется, хотя при необходимости может быть учтен специальными измерениями. Бессильное испарение может быть рассчитано.

Во время МГТ в опытном бассейне в горах Урала ежегодно измеряли величину b_w, Δb и уменьшение снегозапаса в серии снежных шаров, вырытых от поверхности снега до грунта или ледниковой поверхности (вирна или лыжа). Измеренные величины глушины от 0,5 до 12 м с помощью линейных меридиан и уклонов горных склонов. Величина b_w измерялась также на многих линейных маршрутах в пределах опытного бассейна на водоразделах. Характер (площадь бассейна 135 км^2) и по разрезу на этой широте (67° 30' с. ш.) от западных до восточных предгорий Урала, а в некоторые годы и на обширных пространствах тундры, лесотундры и тайги (до 10 тыс. почти единообразных измерений за весну).

Поскольку величина Δb измерялась над искусственно маркированной в шурфе поверхностью снега в момент максимального снегозапаса и суммировалась за все периоды весеннего снегопада и летом, то величина расчетного или измеренного весенного испарения E_h вычиталась из всей суммы Y_t. Зимнее же испарение снега автоматически учитывалось в величине b_w. Таким образом, величина таяния снега и талого снегового стока в данной точке соответствует формуле (2).

Далее мы утверждаем, что во всех точках пространства с условиями теплообмена снегового покрова с окружающей средой, аналогичными данной точке, талый сток также равен Y_t, а геометрическое место одинаковых значений Y_t в этих точках есть изоляция величины талого стока данного года. Более того, зная интенсивность таяния снега $\frac{dY_t}{dt}$ по ежедневным измерениям в шурфах, мы можем провести аналогичные изоляции величины талого стока по данным об изменении положения границы сезонного снега за любой интервал времени с момента начала снеготаяния и до его окончания.

Впервые метод теплового проявления снегозапасов и талого снегового стока в таком варианте был использован В.Г. Ходаковым (1962). Изменения границы сезонного снега фиксировались по крупносоставной карте по наблюдениям с господствующей верхней через $\Delta t = 5$ суток.

Практически одновременно и независимо метод теплового измерения снегозапасов в другом варианте был предложен Ю.М. Денисовым (1963) и реализован в виде детальной карты для опытного бассейна р. Кызыла на Тань-Шане (Гапишко, 1975). Этот вариант имеет некоторые отличия. В нем используются материалы повторных аэрофотосъемок при сходе снега через равные промежутки времени (Δt) для рисования положительных положений границы сезонного снега, а компоненты Y_t получены по локальным эмпирическим формулам в зависимости от температуры воздуха t и снега солнечной радиации $B = Q(t - A)$. Величины Q определяли по регистру снегомет стаций с учетом роста прозрачности атмосферы с высотой. Величину альбедо поверхности снега A вычисляли по эмпирической формуле в зависимости от интенсивности таяния снега.
Нередко приводится в каталогах ледников. Вариант расчета снегозапасов по высоте границы питания был доведен до практического применения А.Н. Крепке (Начальный..., 1967) по отношению к определению крупных регионов. В дальнейшем такой расчет был опубликован В.Г. Ходаковым (1968) для опытного бассейна р. Варзоб в Гиссаро-Алее, а также А.Н. Крепке для Кавказа (Крепке и др., 1970), Средней Азии (Крепке, 1973) и других горно-ледниковых районов.

Рассмотрим теперь возможность применения метода теплового проявления для интерпретации аэрокосмической информации. Первый опыт использования высококачественных снимков с космического корабля «Союз-11» на район Алтая для построения карты талого стока принадлежит И.С. Гарелиусу и соавторам (1975). Размер снимка 5 × 5, полученному с использованием локальной высоты температурных градиентов и постоянного температурного коэффициента снеготаяния Кп, 1/градус. Построенная карта, в частности, выявила неизвестную ранее, басовую заснеженность южных склонов Алтая по сравнению с северными (см. рис. 2.11 на с. 212 в третьем книге этого шеститомника).

Предлагаемый здесь вариант метода теплового проявления снегозапасов применим также для наледей, крупных скоплений заторможенных льдов в поймах рек и, возможно, других льдов водоемов. В его реализации главными служат два аспекта: 1) планово-высотное положение снежно-ледовых объектов и фиксация их изменений через заданные интервалы времени (обычно не реже чем через 5 сут); 2) измерение и/или расчет интенсивности таяния. В принципе оба аспекта могут и должны решаться на базе космических материалов. К этому есть все предпосылки. Улучшение качества фотоизображения и трансформации снимков в стандартизованную картографическую проекцию решает первую задачу даже без получения спектра, а только методом совмещения снимка с топографической картой.

Радиационный баланс снеготаяния также может быть получен непосредственно по космическим данным, если передаточная функция атмосферы будет определяться на основе измерения яркости природных опорных объектов. Эксперименты в бассейне р. Большой Халдана на Урале (Определение Урала, 1966), ледников Марух на Кавказе и Наван в Гиссаро-Алее показали, что важнейший параметр таяния — альбедо — тесно скоррелирован с оптической плотностью фотоизображения при наземной, авиационной и космической съемках в видимой части спектра.

Для установления зависимости между оптическими плотностями и величинами альбедо различных поверхностей снежного покрова и ледников мы разработали методику синхронных воздушных фотографических и наземных альбедосъемок с последующей фотограмметрической и фотометрической обработкой полученных съемочных материалов.
Глава 1. Методика измерения снежного покрова

нашим многолетним наблюдениям, отличается высоким постоянством от года к году. Пробелы в полученной информации (грандиозные редкие снежные лавины, заторы и пр.) могут быть восполнены косвенными, а также космическими данными: методами фито-, гео-, термоиндикации.

Предлагаемый проект позволит составить достоверные и достаточно детальные карты с разрешением порядка 10 м по пространству и порядка 5 г/см² по удельной массе снега и льда. Карты найдут применение в гидрометеорологии (корректировка наблюдательской сети, гидропрогнозы); при проектировании промышленного, бытового и транспортного строительства (учет мест схода лавин, снежных заносов, заторов льда на реках, развития опасных наледных процессов, подвижек ледников); в сельском хозяйстве (оценка эффективности снегозапасения и снегозадержания в сельских хозяйствах); при решении экологических проблем, особенно проблемы индикации сильного аэрозольного загрязнения атмосферы в зимний период по его следам на тающем снеге. Естественно, перед организацией глобального проекта подобные работы следует поставить в региональном масштабе.

Рис. 1.9. График связи оптической плотности D и логарифма альбедо A, построенный по измерениям в поле альбедо и соответственно плотностям шести верхних снимков ледника Абрамова на Гиссаро-Алае. Прямой участок сенситометрической кривой полностью совпадает построенным графиком.

В целом отчетливо вырисовывается обширный проект наземно-космической реализации метода теплового проявления сезонных снежно-ледовых ресурсов Земли. Приведение его результатов к средним многолетним не представляет сложным, если использовать карты с изолиниями твердых осадков. Тонкая структура полей снега и льда (зоны лавинных конусов, крупных снежных заносов, наледей, заторов льда на реках, навалов морских льдов), по
Глава 2. Снежный покров на равнинах

Понятие снежность объединяет комплекс природных явлений, связанных с существованием на земной поверхности снежного покрова. Сюда относятся условия выпадения и отложения твердых осадков, возникновения, развития и схода снежного покрова, данные о количестве выпадающих из атмосферы льда и снегопадах на поверхности земли. В понятие снежность включается также круг явлений, своим возникновением обязаны снежному покрову: снегозапись, снежные лавины, снежные сёла и т.п. Наконец, со снежностью Земли тесно связано существование ледников. В соответствии с закономерным изменением климата в разных частях нашей планеты изменяется и снежность отдельных территорий; вместе с колебаниями климата снежность изменяется во времени (от года к году и в различные эпохи).

Формирование снежного покрова

Зимой, так же как и в другие сезоны года, на земном шаре господствует зональное распределение атмосферного давления, приводящее к преобладанию зонального характера атмосферной циркуляции. Подобный характер циркуляции нарушает формирование и перемещение циклонов и антициклонов, но большей частью и в Северном и в Южном полушариях в тропосфере господствует западный перенос. Влага на материка приносится с океаном; основным поставщиком влаги в Евразию служит Атлантический океан, а в Америку — Тихий.

В поясе от экватора до 23° с.ш. зональный поток влаги в зимнее время направлен с востока на запад. В более северных широтах влага переносится с запада на восток; этот поток достигает максимума на 35° с.ш., а далее к северу постепенно ослабевает, и на 73° с.ш. его направление вновь меняется на восточное. Таким образом, западный поток влаги зимой преобладает именно на тех широтах, где расположены основные массивы покрывающихся снегом материков Северного полушария.

Меридиональный поток влаги в зимнее время в экваториальной зоне направлен к югу. С 27-28° с.ш. направление потока меняется на северное; максимум этот поток достигает на 47-50° с.ш., и далее к северу он уменьшается. Севернее 77° с.ш. влага вновь переносится с севера на юг. Следовательно, на основные пространства Северной Америки и Евразии влага зимой поступает с запада и юга, что способствует повышенному увлажнению именно этих частей материков.

Основным источником влаги для твердых осадков в Северной Америке служат океанические воздушные массы, поступающие с Тихого океана. Значительную часть влаги они теряют на западных склонах Кордильер, но некоторую часть переносят к востоку. Зональный поток влаги над Северной Америкой в зимнее время достигает максимума на 45° с.ш. на уровне 850 м. Много влаги на Североамериканский континент поступает с Мексиканского залива. Зимой поток влаги отвода увеличивается по сравнению с летом. Однако влагосодержание тихоокеанских воздушных масс меньше, чем масс, поступающих с Мексиканского залива (рис. 1.10), — это связано с более низкой температурой первых, а также с обезвоживанием их в результате выпадения значительного количества осадков на западных склонах Кордильер.

Зимний поток влаги над северной частью Евразии направлен с запада на восток; он постепенно уменьшается по абсолютной величине (рис. 1.11). Соответственно и влагосодержание атмосферы уменьшается в этом направлении, достигая минимума во внутренних частях Якутии (Дроzdов, Григорьев, 1963). В зимнее время значительная часть территории Азии находится под влиянием континентальных воздушных масс, приток влаги здесь невелик. В зависимости от характера циркуляции атмосферы, помимо западного переноса, влага во внутренние районы Азии может поступать и с юга, и с севера. Последнее бывает при преобладании континентального зимнего муссона, вызывающего северные и северо-западные ветры, довольно устойчивые, но приносящие мало влаги. Большую роль играет воздушный поток с южных морей, снабжающий влагой значительную часть территории Восточного Китая (Hsü Shu-yung, 1958). В доставке влаги к восточному побережью Азии в зимнее время определенное значение имеют воздушные массы, поступающие с Тихого океана, однако далеко в глубь материка они не распространяются.

В холодный период влагоснабжение воздушных масс, поступающих на материк с запада, прогреты значительно больше, чем сам континент, что способствует усилению конденсации водяных паров. Поэтому западные, наиболее увлажненные части континентов максимум влаги получают в осенне-зимний период, хотя они хорошо увлажняются и в другие сезоны года. Воздушные массы, проходя над материком, неизбежно обладаются влагой. Воздух удаляется от состояния насы-
Часть 1. Сезонный снежный покров Земли

Глава 2. Снежный покров на равнинах

Рис. 1.10. Зимние потоки влаги, г/(см²с), над Северной Америкой
По G. Benton, M. Estoque (1954)

Восточных частях материков создается муссонная циркуляция, которая препятствует переносу влаги в глубь материков в зимнее время. Максимум увлажнения здесь приходится летом, зимой осадков выпадает мало. Однако влияние муссонной циркуляции очень быстро затухает по мере движения от берега в глубь материка. Так же быстро меняются условия и по мере увеличения океаничности. Выступающие в океан части материков и близлежащие острова (например, Камчатка, Сахалин, Корея, Япония) отличаются большим количеством твердых осадков и повышенной снеговязкостью. В условиях океанического климата умеренных широт зимние осадки вообще преобладают над летними.

Помимо общих закономерностей циркуляции, на выпадение твердых осадков существенное влияние оказывает рельеф. Количество выпадающих снежных осадков возрастает при приближении даже к небольшим возвышенностям, не говоря уже о горных хребтах. В результате так называемое передеоносения-колювое осадков увеличивается с наивысшей стороны возвышенностей. На Русской равнине замкнутые области повышенного снеготложения существуют на значительном расстоянии перед Валдайской, Среднерусской возвышенностью, Уральскими горами. Западные склоны большинства горных хребтов Евразии и Америки, обращенные в сторону влажных воздушных масс, отличаются повышенной снеговязкостью.

Вместе с тем для районов, расположенных непосредственно к востоку от меридионально направленных горных хребтов, характерно небольшое снеготложение. Воздушные массы, поступающие сюда,
Глава 2. Снежный покров на равнинах

Рис. 1.12. Годовая сумма твердых осадков в России и сопредельных странах

Рис. 1.13. Годовая сумма твердых осадков в Северной Америке

отличаются пониженным влагосодержанием из-за обильного выпадения осадков на наветренной стороне хребтов и возвышенностей. Это своеобразные зоны «теней» осадков. Зона пониженного снегонакопления протягивается к востоку от Урала на несколько сотен километ-
Часть 1. Сезонный снежный покров Земли

Различное сочетание циркуляционных факторов и особенностей рельефа той или иной территории приводит к сложным закономерностям в выпадении твёрдых осадков на материках, отличным от особенностей выпадения жидких осадков. Детальные карты твёрдых осадков во всех регионах земного шара впервые представлены в Атласе снежно-ледовых ресурсов мира (1997), где публикуются данные о спектре твёрдых осадков, а их доли в годовой сумме. Здесь я привожу генерализованные варианты карт количества твёрдых осадков для Евразии (рис. 1.12) и Северной Америки (рис. 1.13) из упомянутого Атласа.

Во многих районах на земном шаре максимум снегозапасов пропорционален продолжительности залёгания снежного покрова, что говорит о близких значениях интенсивности выпадения твёрдых осадков. Однако так бывает далеко не всегда. Во внутренних частях континентов длительный морозный период сопровождается малым выпадением осадков, в связи с чем снежный покров здесь бывает очень мал, несмотря на большую длительность его залегания.

В распределении снежного покрова в Северной Америке и Евразии есть много общего, что связано с циркуляцией атмосферных масс в этих широтах. Общим является интенсивное влажное атмосферное воздуха с океанов над западными частями континентов и развитие муссонной циркуляции на их восточных берегах. Однако интенсивность проникновения этих процессов различна.

Основные зимние осадки на территорию Северной Америки приносят циклоны, возникающие на тихоокеанском полярном фронте. В тылу этих циклонов морские воздушные массы выносятся на материк. Основной путь полярно-фронтовых циклонов проходит через пониженную часть Кордильер в Британской Колумбии и далее на восток. К северу от небольшого числа проходящих циклонов уменьшается, что прямо отражается на увлажнении зимних осадков. Мягкое влияние океана в Северной Америке не проникает так далеко, как в Европе. Кроме того, на пути тихоокеанских воздушных масс идут высокие горы (Кордильеры), чего нет в Европе. Все эти причины приводят к значительному выпадению осадков зимой на западном побережье Северной Америки и быстрому убеживанию их в глубь Североамериканского континента. Поэтому снегозапасы во внутренней Канаде невелики, особенно в сравнении со снегозапасами в Северной Евразии (рис. 1.14 и 1.15).

В связи с преобладанием западного переноса воздушных масс над Европой и постепенным убыванием океанического влияния к востоку в распределении выпадающих зимних осадков и снежного покрова в Европе отчётливо прослеживается меридиональная изменчивость. Изолинии толщины снежного покрова и продолжительности его залегания (см. рис. 1.14) часто направлены под большим углом к параллелям.

Наиболее снежным районом Западной Европы является Скандинавия. Продолжительность залегания снежного покрова на низменной территории Западной Европы увеличивается с запада на восток. Снегопады возможны во всей Западной Европе, исключая лишь самую южную оконечность Пиренейского полуострова.

Из-за развития антициклонических условий внутри материка и муссонной циркуляции у восточного побережья большая часть территории Азии обделена зимними осадками, мощный снег покров образуется здесь лишь на высоких склонах гор. Большой снег покров особенно отличается южным и восточным побережьем Камчатки, куда обильные зимние осадки приносят циклоны из районов Японских и Курильских островов, а также с северо-востока, из акватории Тихого океана (Виноградов, 1964). Много снега выпадает на островах Японии, которая оказывается одной из самых «снежных» стран Азии. Особенно обильно снегопады на западных берегах Японских островов, где проходит одна из ветвей теплой Курои. Неустойчивость воздушных масс в этом районе вызывает значительную облачность и интенсивное твёрдые осадки, намного превышающие соответствующие суммы на восточном побережье, что хорошо видно из сравнения некоторых метеорологических показателей для Японии по двум станциям: Цурута (западное побережье) и Токио (восточное побережье), расположенным почти на одной и той же широте – 35° (Витвицкий, 1960):

<table>
<thead>
<tr>
<th>Цурута</th>
<th>Токио</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число пасмурных дней</td>
<td>22</td>
</tr>
<tr>
<td>Число дней с оттепелями</td>
<td>15</td>
</tr>
<tr>
<td>Сумма осадков, мм</td>
<td>301</td>
</tr>
</tbody>
</table>

Основное снегонакопление на большей части России происходит в первой половине зимы из-за усиленной циклонической деятельности. Вторая половина зимы менее активна в этом смысле; количество циклонов на Европейской части уменьшается, а в Сибири господствующим становится антициклон. Соотношение осадков, выпадающих с ноября по январь и с января по март (Копанев, 1964а), на Европейской территории России различается примерно в 1,35 раза, в Западной Сибири – в 1,7 раза, в Восточной Сибири – в 1,5 раза и в Казахстане – в 1,4 раза.
Глава 2. Снежный покров на равнинах

Рис. 1.14. Максимальные снегозапасы в России и сопредельных странах

Рис. 1.15. Максимальные снегозапасы в Северной Америке

В разных условиях для формирования снежного покрова требуется разное количество осадков. Это количество возрастает с севера на юг; оно всегда больше на открытых участках, чем на защищенных. Причина первая — осенние оттепели, а вторая — ветровой перенос снега. Так, в средних широтах на открытых пространствах в Европейской части России для образования сантиметрового слоя снега нужно
Часть 1. Сезонный снежный покров Земли

4,5 мм твердых осадков, а в Сибири – 2,1 мм. Соответственно в южных широтах этих областей для образования 1 см снежного покрова нужно 9,1 и 3,0 мм (Копанев, 1964а).

Важнейшая характеристика снежного покрова как сезонного явления — его устойчивость. Эта характеристика по своему существу сложна. Она включает такие параметры, как даты образования и схода снежного покрова, продолжительность его существования в среднем и отклонения в отдельные годы, массу накапливающегося снега и его соотношение с выпадающими твердыми осадками. В конечном счёте, устойчивость снежного покрова в том или ином районе зависит от соотношения прихода тепла (вернее, холода) и влаги и должна закономерно изменяться с изменением типа климата.

Первое появление снежного покрова на равнинных территориях связано с переходом средней суточной температуры воздуха через 0 °С, хотя в целом с ней совпадает. В районах с малым количеством осадков снежных покров впервые образуется уже при устойчивых отрицательных температурах, а в местах с обильными осадками, наоборот, при положительных температурах воздуха. Так, в южной части Скандинавии, отличающейся сравнительно высокой снежностью, первый снежный покров появляется на 1–2 недели раньше устойчивого перехода средней суточной температуры через 0 °С, а на крайнем юге Швеции эта разница достигает 3–4 недель (Глебова, 1958 а). На Европейской территории России севернее 53–55° с.ш., даты самого раннего появления снежного покрова почти совпадают с переходом температуры через 0 °С, а в малоснежной южной и особенно юго-восточной частях этой территории первый снежный покров устанавливается на 20–25-й день морозной погоды (Щербакова, 1959).

Устойчивый снежный покров образуется спустя некоторое время после появления первого снега, обычно при температурах от 0 до –5 °С, причем здесь выделяется также закономерность. В Северной Финляндии (Nordman, 1959), например, к моменту установления снежного покрова температура воздуха в среднем (данные 159 метеостанций) равна –3,9 °С. При этом во внутренних районах страны, отличающихся относительно малым количеством снега, он устанавливается при более низких температурах.

Разница между самым ранним и самым поздним появлениеем снежного покрова увеличивается по мере движения от многоснежных районов к районам с неустойчивым снежным покровом: в Восточной Европе от 35 дней на северо-востоке до 100 дней в Крыму (Щербакова, 1959), а в Азиатской части от 20 дней на севере Красноярского края до 70 дней в Южном Казахстане (Пушков, 1964). Следовательно, многоснежные районы отличаются не только большей устойчивостью залегания снежного покрова зимой, но и сравнительно малой изменчивостью его из года в год.

Глава 2. Снежный покров на равнинах

Аналогично датам установления, начальные и конечные сроки схода снежного покрова сильно разнятся в зависимости от максимальных снегозапасов. Чем меньше снегозапасы к концу периода снегонакопления, тем быстрее, при прочих равных условиях, сходит снег. Но в зависимости от конкретных условий погоды в той или иной весной эти сроки условно не остаются редкими, что приводит к различной длительности периода разрушения снежного покрова. Отклонения в сроках схода снега в разных районах подобны отклонениям в датах его установления: в малоснежных областях они больше (до 60 дней), чем в многоснежных (до 20 дней).

В период схода снега велика роль выпадающих в это время твердых осадков, увеличивающих длительность снеготаяния. В направлении с юга на север по мере роста снегозапасов и увеличения продолжительности периода таяния снежного покрова этот процесс возрастает (Смирнов, 1960). Из-за осадками заснеженных циркуляции и различий в факторах снеготаяния период между датами разрушения устойчивого снежного покрова и окончательного его исчезновения на противоположных склонах горных хребтов бывает далеко не одинаков. Например, на восточном склоне Среднего Урала он значительно дольше, чем на западном, несмотря на большую величину снегозапасов последнего (Бушманов, 1959).

Сроки разрушения снежного покрова связаны со сроками его установления: чем раньше образуется снежный покров, тем дольше он лежит. Эта закономерность проявляется и в области неустойчивого снежного покрова (Antonik, 1961). Весьма тесная связь этих сроков для северных склонов Западного и Дальневосточного Алатау получила В.И. Коровин (1964) на основе средних многолетних значений за 1935–1955 гг. Сравнение соответствующих дат за отдельные годы, проведенное нами для нескольких станций в заекзаке по опубликованным данным метеорологических ежегодников, естественно, не показывает такой строгой зависимости (рис. 1.16), но характерно, что, как правило, с более ранним установлением снежного покрова связан более поздний его сход. Этим весьма важной особенностью в значительной мере объясняется влиянием самого снежного покрова. Как видно из рис. 1.16, общий ход связи между установлением схода снежного покрова в Западном и Дальневосточном Алатау и в Закавказье аналогичен, с той лишь разницей, что закавказские точки лежат ниже прямой Коровина. Последнее может объясняться большей снежностью Кавказа.

Для характеристики устойчивости снежного покрова неоднократно предлагались различные коэффициенты. Г.Д. Рихтер (1948) предложил называть коэффициентом устойчивости отношение разности между наибольшим и наименьшим продолжительностью непрерывного залегания снежного покрова к средней его продолжительности. Однако использование этого коэффициента неудобно по двум причи-
Глава 2. Снежный покров на равнинах

Ветровой перенос и испарение снега

Важнейшим зимним процессом в областях со снежным покровом является ветровой перенос снега. Для возникновения метелей необходимо достаточно большое количество способного к переносу снега, сильные ветры и соответствующие температурные условия, в частности отсутствие оттепелей. Подобные условия в зимние месяцы создаются на значительных равнинных пространствах Северной Америки и Евразии, где метелевый перенос достигает больших размеров.

Критические скорости ветра, при которых возникают облед метелей, в областях с различным климатом разнятся. В то же время со времени исследований (1969) и представляя собой производное продолжительности периода с устойчивым снежным покровом на среднюю толщину снежного покрова, деленная на 100. В общем виде такой безразмерный коэффициент можно назвать показателем снегности широких периодов, снегности:

\[s = bT_{сн} h_{ср} \]

где \(b = 0,001 \text{ cm}^{-1} \text{ cm}^{-1} \text{ cm}^{-1} \); \(T_{сн} \) — продолжительность периода с устойчивым снежным покровом, сутки; \(h_{ср} \) — средняя толщина снежного покрова за тот же период, см. В областях с сезонным снежным покровом значения \(s \) лежат в пределах 0—20; в некоторых ледниковых районах \(s \) может достигать 100.

Одно и то же значение показателя снегности \(s \) могут давать разные сочетания \(T_{сн} \) и \(h_{ср} \), однако для тех или иных областей изменения длительности периода с устойчивым снежным покровом и изменения его средней толщины заключены в определенных пределах. Поэтому, например, при значениях \(s = 2 \) наиболее вероятны колебания 100 > \(T_{сн} > 50 \) и 20 < \(h_{ср} < 40 \), но совершенно невероятно \(T_{сн} = 200 \) и \(h_{ср} = 10 \text{ см} \).

Показатель снегности \(s \) растет в направлении с юга на север и с переходом от континентальных к морским климатическим условиям. В этом отношении он, как и снежно-температурный коэффициент Рихтера (последний коэффициент с обратным значением), хорошо характеризует закономерные изменения снегности земного шара.

На основе исследований в степной зоне И.С. Гришин (1966) пришел к заключению, что суммарный перенос снега пропорционален общей продолжительности метелей, которая по сравнению с другими факторами наиболее полно отражает особенности переноса снега. Однако в действительности перенос снега, так же как и объем снеготаяний, существенно зависит от вида метелей. Как правило, вклад обледенных метелей в суммарный перенос в несколько раз больше, чем вклад низовых метелей и поземок. Поэтому при снегопадах достаточной интенсивности (8—10 мм/сут) обледенные метели за несколько
часов создают такие снеготалки, которые при низовых метелях формируются за несколько десятков часов. В целом для равнинных территорий можно сказать, что в среднем многолетнем выводе продолжительность метелей определяется скоростью ветра и длительностью холодного периода, а суммарный перенос снега также и количеством выпавших твердых осадков.

Во время метелей частицы снега переносятся на ограниченные расстояния, поскольку по пути они измельчаются, испаряются или закрепляются в снежном покрове. Дальность переноса снега на равнинах достигает нескольких километров; она увеличивается с ростом интенсивности и продолжительности метелей и количества переносимого снега. В умеренных широтах дальность переноса в среднем равна 1–3 км (Гринев, 1966; Комаров, 1954), она больше при общих метелях, чем при низовых. Последнее связано с тем, что в равнинных районах интенсивность и скорость переноса при общих метелях, как правило, больше, чем при низовых. В полярных областях, а также на некоторых высокогорных ледниках, где низовы метели особенно широко распространены, дальность переноса снега при них больше, чем при общих метелях (см. главу 1 второй части этой книги).

Масса снега, накапливающаяся в лесу, всегда больше, чем в поле, что объясняется главным образом сносом снега с полей в лес. Однако из-за различий в интенсивности метелевой деятельности, рельефа поверхности и характера распределения соотношение между снегозапасами на разных элементах рельефа в тех или иных районах неодинаковы. Так, в балках и оврагах в центральной части Русской равнины снегозапасы в 2–4 раза больше, чем на междуречьях (Кузьмин, 1960), тогда как в Сибири снегозапасы в оврагах и западинах лишь на 60–70% превышают снегозапасы на открытых участках (Коломыц, 1966).

В целом метелевой перенос снега на равнинах приводит к его перераспределению, особенно в условиях рассеченного увлажненного рельефа, при этом некоторая часть снегозапасов бессознательно транспортируется путем испарения (Дюдин, 1961). Важность такого процесса при хозяйственном использовании территории очевидна, поэтому возникает необходимость углубленного изучения метелей и составления карт снеготалки и факторов, его определяющих. Среди факторов, которые могут быть нанесены на карту, А. К. Дюдин (1963) называет количество твердых осадков, коэффициент показания, потери снега на испарение, розы метелевых ветров.

Глава 2. Снежный покров на равнинах

Рис. 1.17. Максимальные объемы снегопереноса на территории России и сопредельных стран

(Кузьмин, 1953; Сабо, 1956). Это, в частности, может объясниться тем, что слабые ветры не всегда бывают над равнинами, не успевший еще уплотниться снегом, внутри которого велики направленный вверх поток влажного пара, способствующий усилению испарения из всего приповерхностного слоя снега. Сильные же ветры чаще развиваются над уже уплотненным снегом, покрытым ветровой коркой, препятствующей переносу водяного пара снизу вверх. В целом доля диффузного выноса водных паров из толщи снежного покрова в суммарном испарении с его поверхности может достигать нескольких десятков процентов (измерения на Кавказе и в Становом нагорье).

Испарение с поверхности рыхлого свежеотложенного снега обычно несколько меньше, чем с поверхности уплотненного снежного покрова. Причину этого П.П. Кузьмин (1960) видит в меньшей теплопроводности рыхлого снега, замедляющей теплообмен с нижележащими слоями, что приводит к охлаждению поверхности снега и уменьшению скорости испарения. Однако большую роль здесь играет пониженное значение альбедо старого снега из-за существенной зависимости интенсивности испарения от воздействия солнечной радиации.

На рост испарения с поверхности снега в зависимости от солнечной радиации указывает существование связи величин испарения с количеством ясных дней. По наблюдениям в Поволжье (Сабо, 1956), суммарная величина испарения в солнечные дни была на 24,2% больше, чем в пасмурную погоду. Воздействие солнечной радиации приводит к суточному ходу испарения с поверхности снежного покрова, а также к различиям его величины на склонах разной экспозиции. Как правило, интенсивность испарения на южном склоне (в Северном полушарии) больше, чем на северном.

Интенсивность испарения закономерно изменяется в течение зимы под влиянием изменения радиации, термических и ветровых условий. В первые месяцы зимы над устойчивым снежным покровом преобладает конденсация: на Европейской территории России вплоть до декабря (Алиянов, Первенок, 1963), а в Сибири даже до января (Коломыцев, 1966). В дальнейшем конденсация сменяется испарением с поверхности снега, что связано с уменьшением влажности воздуха зимой, возрастанием солнечной радиации, а в средней полосе Европейской России и в Казахстане — также и с усилением ветров. Величины испарения быстро растут и достигают максимума в начальный период таяния снега.

Весеннее испарение снега зависит от характера весны: при преобладании пасмурной погоды, как правило, конденсация превышает испарение, а при радиационном типе весны в начале периода снего-
Глава 2. Снежный покров на равнинах

Рис. 1.18. Возможные объемы снегозаполнений в пререград на территории России и сопредельных стран

Рис. 1.19. Метеор на Восточно-Европейской равнине
1 – изолинии числа дней с метелями за зиму, 2 – равнодействующая метелевых ветров

Таяние господствует испарение с поверхности снега, и лишь в конце этого периода преобладает конденсация. Как показала М.И. Иверонова (1961), проанализировав данные П.П. Кузьмина, по мере
Часть 1. Сезонный снеговой покров Земли

повышения температуры воздуха при постоянной относительной влажности обязательно наступает момент, когда испарение становится превосходной влажности на снежной поверхности. При более высокой относительной влажности воздуха этому моменту соответствует более низкая положительная температура. Так, при относительной влажности 30% конденсация влаги на поверхности тающего снега начинается при температуре воздуха 17 °C, а при относительной влажности 60% — при 7 °C. Это свойство приводит к резкому различию особенности процессов влажности тающего снега в районах морского и континентального климата.

В районах с устойчивым снежным покровом сумма испарения с поверхности снега за зиму невелика: в южной части Германии, например, с ноября по апрель она равна 4—7 мм (Kemp, 1959). В областях с устойчивым снежным покровом суммарная величина испарения снега за зиму растет с повышением средней температуры зимы, в первую очередь с продолжительностью залегания снежного покрова, и при этом уменьшается при повышении абсолютной влажности. В Европейской части России решающими оказываются два первых фактора; за счет первого из них величина испарения увеличивается к западу, а за счет второго — к северу (Алпатов, Перченок, 1963). На этой территории суммарное испарение за зиму с юго-востока к северо-западу увеличивается в 2—3 раза, тогда как продолжительность залегания устойчивого снежного покрова в этом направлении возрастает лишь в 1,7 раза.

Средняя суточная величина испарения за зиму в большинстве случаев колеблется от 0,2 до 0,4 мм/сут, а суммарное испарение в равнинных районах России не превышает 25—30 мм. По мере увеличения абсолютной высоты интенсивность испарения снегового покрова уменьшается, пропорционально распределению по высоте абсолютной влажности воздуха: с уменьшением влагосодержания приземных слоев атмосферы интенсивность испарения растет. Иная картина в горах Сибири. Здесь вплоть до высот 1000 м влагосодержание атмосферы с высотой уменьшается, и лишь в более высоких слоях плотность воздушного пара начинает уменьшаться. На высотах 900—1100 м, где влагосодержание атмосферы максимальное, испарение достигает минимальных величин, а выше и ниже этого уровня оно уменьшается (Коломыцев, 1966). Очевидно, подобная особенность режима испарения характерна для горных районов в областях резко континентального климата.

Суммарная величина испарения с поверхности снежного покрова в горах на высотах 1500—3000 м значительно больше, чем на равнине, что, помимо прочего, объясняется уменьшением плотности воздуха. В большинстве случаев она равна 45—60 мм за год, однако относительная роль испарения в балансе снежного покрова на этих высотах меньше, чем на равнинных районах, из-за большой величины снегозапасов в горах.

Глава 2. Снежный покров на равнинах

Колебания снежности на равнинах

В средних широтах при определении границ зимнего сезона надо учитывать два основных фактора: переход температуры воздуха через 0 °C и существование устойчивого снежного покрова. В условиях умеренно континентального климата за начало зимы следует принять момент установления снежного покрова, несколько обогащающийся появление устойчивых морозов, а в условиях резко континентального климата — переход максимальной температуры воздуха через 0 °C (до установления снежного покрова).

С ростом снежности зимы увеличиваются деби континентальности климата, в чем немалую роль играет и существование снежного покрова. В зависимости от продолжительности периода с устойчивым снежным покровом, а также от его толщины (снегопада) зимы могут быть и мало- и многоснежными. Эти понятия относятся к тому, что зона приходится на абсолютную величину увлажнения покрытой, а от их отклонения от многолетних средних значений, характерных для данного района. Поэтому при определении зим по характеру их снежности правильнее всего использовать, как это делал Н.Н. Галаков (1961), относительные показатели, а не абсолютные.

Классификация зим Н.Н. Галакова основана на двух признаках: толщине снежного покрова и ее изменении в течение зимы. Мало- или многоснежной зимой он называет такую зиму, когда средняя декадная толщина снежного покрова больше чем на 25% отличается от среднедекадной величины в течение 2/3 зимы. Если же отклонение не достигает 25%, зима считается среднеснежной. Выделены также неустойчивые снежные зимы, отличающиеся резкими колебаниями толщины снежного покрова. Малоурожайная зима может быть связана либо с антициклоническим состоянием погоды и соответственно с малым количеством выпадающих осадков (1-й подтип), либо с частыми оттепелями и некоторым станованием снега (2-й подтип).

Повторяемость таких типов зим в северной Евразии (рис. 1.20) тесно связана с общим характером зимней циркуляции над этой территорией. Количество малоурожайных зим уменьшается к югу и к западу и восточному периферийному континенту. Повторяемость многоурожайных зим на востоке нашей страны наиболее велика на Охотском побережье и на Камчатке, что вызвано влиянием зимних циклонов, перемещающихся с юго-востока на северо-запад через Сахалин, Охотское море, Камчатку и Алеутские острова. На западе многоурожайные зимы чаще всего бывают в полосе, идущей с Балтики к востоку, что связано с дугообразными траекториями циклонов и влиянием Урала, тормозящего движение воздушных масс и фронтов. Среднеурожайные зимы характерны для большей части Азиатской
Глава 2. Снежный покров на равнинах

многоснежные зимы превышают соответствующую величину на водораздельных пространствах почти втрое, а в средних и малоснежных зимах — лишь в 1,5 раза (Разумихин, 1960). Эти особенности снегозапасов по элементам рельефа связаны с усилением метелевого переноса в многоснежные зимы. Таким образом, с ростом снегозапасности увеличивается неравномерность распределения снежного покрова в речных бассейнах. В многоснежные зимы вместе с возрастанием снегозапасов должны увеличиваться и коэффициенты вариации их распределения.

Изменения характера и интенсивности атмосферной циркуляции приводят к снежным зимам с различными характеристиками снегозапасов. Основные формы общей циркуляции атмосферы, выделенные Г.Я. Вентгейзером (1952), в разных областях проявляются неодинаково, что приводит к неоднаковому ходу изменений снегозапасов. При формах W (западная циркуляция) и восточной сектор Евразии в западной части поступает большое количество влаги и зимой выпадает много снега. При формах E (восточная циркуляция) на месте Евразии зимой возникают блокирующие антициклоны, по западным перифериям которых происходит мощные ветры, и снега выпадает меньше. При формах S (меридиональная циркуляция) на западную половину Евразии снега выпадает меньше, но снегиевая влага с севера.

В целом для существования снежного покрова формы циркуляции W и S более благоприятны, чем форма E. Однако в зависимости от общего характера климата региона их относительный вклад в снегозапасы той или иной территории может отличаться. В районах с неустойчивым снежным покровом, к которым относится значительная часть Евразии, наиболее снежность связана с господством меридиональной формы циркуляции, при которой поступающие с севера массы холодного воздуха способствуют уплотнению периода снеготаяния и вызывают возникновение устойчивого снежного покрова, хотя и на небольшой срок.

В умеренных континентальных районах, где зимой почти все время господствуют отрицательные температуры, возрастает относительное влияние западной формы циркуляции в установлении и сохранении устойчивого снежного покрова. При формах циркуляции W на Европейской территории России в начале зимы господствует пасмурная погода с осадками, что при обычных в ноябре отрицательных температурах воздуха приводит к раннему установлению снежного покрова. Но в то же время, при преобладании форм C и особенно E снег выпадает значительно меньше, и снегиевая влага уплотняется значительно позже. Анализ, проведенный в Главной геофизической обсерватории (Афанасьева, Есакова, 1964), показал, что в годы раннего установления снежного покрова на Европейской России количество дней с формой циркуляции W составляло 62%, а с формами циркуляции C и E — 38%, тогда как в годы с поздним
установлением снежного покрова соотношение дней с этими формами циркуляции было соответственно 19 и 81%.

Далее к востоку по-прежнему наиболее благоприятными для снегоналожения оставляются формы циркуляции W и C. При этом в более южных районах, где температуры в начале зимы весьма высоки, основную роль в раннем установлении снежного покрова играет меридиональная форма циркуляции атмосферы, в то время как восточная и западная формы приводят к более высокому температурному режиму и задержке в появлении снежного покрова, даже несмотря на относительно большее количество выпадающих осадков.

В Татарстане, например, многолетним зимам свойственна повышенная повторяемость формы циркуляции C (102—176% нормы) и в меньшей степени форма W. В малоснежные зимы развита форма E, а активность двух других форм циркуляции подавлена (Степанова, 1963).

Точно так же и в Казахстане многолетние зимы наблюдаются в годы наибольшей повторяемости меридиональной формы циркуляции, а малоснежные — при преобладании зональных форм, вызывающих повышение температуры воздуха (Кузнецов, 1961). Наконец, в резко континентальных условиях Сибири повышенная снегозапасность, как правило, связана с господством западной формы циркуляции осенью и весной, когда происходит основное снегоналожение. Поэтому в многоснежных зонах еще большая доля снега накапливается здесь в начале зимы, тем самым увеличивая неравномерный ход аккумуляции.

В соответствии с разным характером зависимости снегозапасности зим от смены форм циркуляции атмосферы температурный режим в многолетних зимах континентального и морского климатов различен. В условиях морского и умеренно континентального климата большая снегозапасность связана прежде всего с вторжениями воздуха с севера, ведущими к понижению температуры. Поэтому многолетние зимы в Европе и отчасти в Европейской России обычно бывают и наиболее холодными. Точно так же в большинстве многоснежных районов Японии (рис. 1.21) в более сухие зимы устанавливается более мощный снежный покров, а в теплые зимы толщина снега невелика (Fukuda, 1960).

В условиях резко континентального климата, где большая снегозапасность всегда связана с повышенной повторяемостью западного переноса, многолетние зимы одновременно и более теплые, а малоснежные — холодные. Так, по подсчетам Э.Г. Коломышч (1966), на севере Забайкалья в отдельные месяцы многолетней зимы 1958/59 г. температура воздуха была на 3—4° выше нормы, а в малоснежную зиму 1956/57 г. — до 2° ниже нормы.

Колебания снегозапасности в целом на земном шаре следуют за изменением климата Земли. Это особенно хорошо видно на рис. 1.22, составленном на основе данных Х. Аракавы (Arakawa, 1956), Даты наиболее раннего снежного покрова в Токио год от года испытывают значительные колебания. Но в целом за 300 лет прослеживается явная тенденция к переходу их на более поздние сроки, что соответствует увеличению температуры воздуха в этом районе на 1—2° за столетие.
Часть 1. Сезонный снежный покров Земли

Со второй половины XIX в. во многих районах мира начали проводить инструментальные наблюдения за метеорологическими явлениями, в том числе и за количественной характеристики изменения снегозапаса. Так, на основе анализа наблюдений за снегом на горе Вашигтон в Антарктике, начатых еще в 1876 г., было установлено, что средняя дата его исчезновения, приходившаяся в 1878–1906 гг. на 11 августа, в 1922–1958 гг. переместилась на первую неделю августа, что соответствует повышению весенних и летних температур на 0,5° (Havens, 1960). В средней части Швеции в 1929–1948 гг. средние сроки наступления зимы задерживались на 10–15 дней по сравнению с 1901–1936 гг., а в южной части Швеции разница составляла примерно 5 дней. Различия в температурах осени и начала зимы за эти периоды достигали 0,40–0,64° (Johnson, 1956).

Изменение снегозапасов в отдельных частях крупной равнинной территории не всегда происходит синхронно, что объясняется сложным характером развития атмосферных процессов. Зимы 1895/96 г. были малоснежными на северо-востоке Европейской России и многоснежными на юго-западе (Галахов, 1961). Подобные условия складывались и в другие зимы. Это дало основание Г.Д. Рихтеру (1948) говорить о том, что в годы с длительным залеганием снежного покрова на севере Европейской территории СССР на юге снежный покров бывает очень непродолжительным, и наоборот. Косвенным подтверждением этого служит асинхронный характер весеннего стока в северной и южной частях Европейской части СССР (Быков, Ходаков, 1957).

На основе материалов, опубликованных в двух атласах снежного покрова Европейской территории СССР (Атлас..., 1946; Карты..., 1961), мы провели анализ изменения снегозапасов в разных частях Русской равнины на протяжении первой половины XX столетия (Горева, Котляков, 1966). Были подсчитаны средние снегозапасы за каждую зиму с 1904/05 по 1959/60 год по параллелям 14°, 60, 56 и 52° с. ш. и по меридианам 44°, 44° и 52° в.д. Среднее извлечение из семи результатов давало среднюю величину, характеризующую снегозапас на всей Русской равнине.

На рис. 1.23 приведены изменения снегозапасов от года к году по трем выбранным профилям и суммированное среднее. Кривые далеко не всегда согласуются, что свидетельствует о неоднородном характере изменения снегозапаса по территории как в широтном, так и в меридиональном направлениях. Вместе с тем некоторые наиболее аномальные зимы резко выражены на всей территории Русской равнины. Таковы многолетние зимы 1928/29, 1946/47, 1951/52 и 1956/57 гг., а также малоснежные зимы 1924/25, 1930/31 и 1953/54 гг. Сравнивая эти лет с эпохами господства тех или иных форм циркуляции по Ваитинге им вновь подтверждает, что наиболее благоприятны для повышенной снегозалежи в Европейской России западная и меридиональная формы, а самая неблагоприятная – восточная. Именно в

Рис. 1.23. Изменение снегозапасов от года к году по трем профилям на Русской равнине и в целом на всей ее территории
1 - ежегодные данные, 2 - осредненные за 5 лет, 3 - среднее снегонакопление за отдельные эпохи господствующих форм циркуляции атмосферы
Глава 2. Снежный покров на равнинах

в среднем за год в 1968—1971 гг. и 33 млн км² в 1972—1975 гг.). Эти результаты широко обсуждались в печати (Kukla, Kukla, 1974; Wiesnet, Matson, 1980).

А в конце XX столетия спутниковые данные показали генеральную тенденцию: неуклонное сокращение площади залегания снежного покрова в Северном полушарии — более 100 тыс. км² за каждый год (Armstrong et al., 1996).

Перераспределение влаги между океанами через снежный покров материков

Снежный покров служит одним из важных каналов перераспределения влаги на земном шаре. В процессе снегонакопления и последующей водоотдачи идет перераспределение влаги между океанами, имеющими глобальные масштабы. Расчеты этого процесса еще недавно были невозможны из-за почти полного отсутствия исходных данных. Положение резко изменилось после выхода в свет Атласа снежных и ледовых ресурсов мира (1997), в котором, в числе прочего, впервые удалось собрать либо получить расчетным путем информацию о глобальном распределении средних многолетних величин максимальных сезонных снегозапасов.

В названном атласе в качестве одной из основных выделена граница между регионами с преобладанием твердых осадков, приходящих из разных океанов. Она проводится по климатическим признакам — смене направлений горизонтальных градиентов поля атмосферных переносов сопоставимости снежных и ледовых систем в снегозапасы и снежники. Области с разными источниками питания отличаются характером многолетних колебаний снежности, следующих за циклами токов океанических центров действия атмосферы. Сравнение положений этой границы, определенной гляциологическими методами, с положением основных океанических водоразделов (рис. 1.25) и подсчет объемов снегозапасов в пределах тех и других контуров позволяют сопоставить объемы талой воды, стекающей в тот океан, откуда пришли осадки, с объемами талой воды, стекающей в другие океаны. Тем самым исследуется не изученное и даже не упоминавшееся ранее звено мирового влагооборота — обмен водой между океанами через сушу, в свою очередь, в которой влага задерживается в твердой фазе на несколько месяцев, т.е. звено обмена водой между океанами через снежный покров.

Таким образом, удалось установить, используя таблицы к картам запасов природных льдов в нашем Атласе, где указаны объемы снежных снегозапасов в районах и областях в соответствии с гляциологическим районированием земного шара (рис. 1.26), о котором подробно говорится в гл. 3 второй части этой книги.
Рис. 1.25. Соотношение снежного покрова и некоторых континентальных границ в Северном полушарии
1 – граница бора-раздела между океанами, 2 – материковые водоразделы, 3 – южная граница распространения снежного покрова. Террито- рии, на которых снежный покров формируется из влаги одного океана, растягивается в другой океан или бесточную область: 4 – из Атлан- тического в Северный Ледовитый, Тихий и Индийский океаны, 5 – из Тихого в Северный Ледовитый и Атлантический океаны, 6 – из Индийского в Тихий океан, 7 – из Атлантического в бесточную область, 8 – из Индий- ского в бесточную область

Согласно гляциологическому районированию, предложенному в Атласе снежно-ледовых ресурсов мира, на земном шаре выделяются поясь и зоны, различающиеся по набору нивально-глациальных явлений. Поясов выделяют пять: постоянные (A) и временные (B) нивально-глациальные явления Северного полушария, постоянные (B) и временные (T) нивально-глациальные явления Южного полушария

Рис. 1.26. Гляциологическое районирование Северного полушария
1–4 – границы поясов (1), зон (2), водораздела между океанами (3) и между провинциями Евразии и Северной Америки (4); 5 – условные обозначения поясов, зон и провинций (см. текст)

и нивально-глациальные явления в экваториальном и тропическом поясе (D). В пределах пояса A выделяются три зоны: зона материкового покровного оледенения и постоянных морских льдов (А1); зона покровного, горно-покровного оледенения, многолетних и сезонных морских льдов (АП) и зона многолетних мерзлоты, устойчивого снежного покрова, сезонных морских льдов и горного оледенения (АПП). В пределах пояса B выделяются: зона устойчивого снежного покрова, горного оледенения, сезонных морских, озерных и речных льдов (В1) и зона неустойчивого снежного покрова и горных ледников (ВН).
Часть 1. Сезонный снежный покров Земли

Уточненное выше деление водораздела делит зоны в пределах каждого из материков на провинции по преобладающим источникам питания — океанам, дающим влагу в снежный покров суши, ледяные и водные льды (на рис. 126: b, г — атлантическая влага; в, д — атлантическая влага; е — индюкская влага). Так, снежный покров, сформированный из индюкской влаги, в Северном полушарии, есть только в Азии — в Гималаях и Тибете. Граница, разделяющая атлантическую и индюкскую влагу в Евразии, сильно сдвигнута в востоке материка: она проходит восточнее Тибета, оз. Байкал и долины р. Лены. В Северном Ледовитом океане к западу от границы останутся Новосибирские острова, она протягивается между Северным полюсом и побережьем Аляски и, доходя до Северной Америки в форме синусоиды, несколько раз отклоняется к западу и востоку относительно меридиана 100° з.д.

Границы между провинциями не совпадают с границами, определеными по преобладающим водозапасам на основе аэрогидологических данных. В целом в Северо-Востоке Азии большую часть года западный (атлантический) перенос преобладает вплоть до берегов Тихого океана (Кузнецов, 1978). УССР. В то же время в Северо-Востоке Азии океаны выпадают чаще при тихоокеанском переносе — в связи с большей облачностью и тихоокеанских воздушных масс. Поэтому границы между провинциями с преобладающими тихоокеанскими и атлантическими осадками проходят западнее тихоокеанского побережья — между горами Орулган и Черского и далее по направлению к верховьям Амура. Положение этой, так же как и других провинциальных границ, определено по климатическим признакам (Кренке, 1982) — направлению градиентов полей акумуляции в ледниковых системах, распределению по экспозиции ледников и снежников.

Полевые наблюдения (табл. 1.17) показывают, что Евразия, рельеф которой благоприятен для поступления влаги с западным переносом, получает 75% снега из атлантической влаги, только 20% — из тихоокеанской и 5% твердых осадков — с Индийского океана. При этом в Атлантический океан стекает не более 1/4 атлантической влаги. Основная же часть снега атлантического происхождения, а также атлантического атлантической влаги попадает в Северный Ледовитый океан и внутренние регионы средиземноморской бестолицовой области. Главной зоной, поставляющей при таянии атлантическую влагу в Северный Ледовитый океан, служит зона вечной мерзлоты, где снег тает только в безмерзлотной зоне. Очевидно, продолжительные низкие температуры способствуют не только промерзанию, но и накоплению снежного покрова. Таким образом, в отличие от снеговых покровов в глобальных масштабах не находится в «оппозиции» к вечной мерзлоте. Вынос атлантической влаги в Тихий и Индийский океаны ничтожно мал.

Глава 2. Снежный покров на равнинах

Таблица 1.7

<table>
<thead>
<tr>
<th>Источник</th>
<th>Объем снегозапасов, км³</th>
<th>Доля возврата в тот же океан с талым стоком, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Атлантический океан</td>
<td>3000</td>
<td>4880</td>
</tr>
<tr>
<td>Тихоокеанский океан</td>
<td>860</td>
<td>2720</td>
</tr>
<tr>
<td>Индийский океан</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Всего</td>
<td>4060</td>
<td>3740</td>
</tr>
</tbody>
</table>

Тихоокеанская влага, зафиксированная в снежном покрове, наполовину возвращается с талыми водами обратно. Другая половина попадает в Северный Ледовитый океан. И здесь основное перераспределение влаги между океанами происходит в зоне вечной мерзлоты. Также, четверта часть снегоцентрализованная влаги, способствующая возврату тихоокеанских вод в Атлантику. Очевидно, что перенос возвратного ведущего в кривой по стоковому стоку. По этой же причине в Северной Америке в снежном покрове возврат стока воде обратно составляют около половины суммарного стока. Атлантическая влага только на 1/3 возвращается назад. Остальные 2/3 направляются в Северный Ледовитый океан.

Общий объем сезонных снегозапасов Южной Америки 390 км³ (в водном эквиваленте). Его заснеженная территория входит в 60% гидрографической сети, разделенных на три провинции (рис. 126). Северная часть материка, большая часть которой расположена на 5–10° с. ш., включает в Атлантическо-Южноамериканскую провинцию; далее, до 30° ю. ш., площадь составляет Атлантико-Южноамериканскую провинцию; юг материка и о. Огненная Земля от 30 до 57° ю. ш. занимает Тихоокеанско-Южноамериканскую провинцию.
Рис. 1.27. Соотношение снежного покрова и некоторых континентальных границ в Южной Америке
1 — граница пояса Д; 2 — граница влагораздела между океанами; 3 — материковый водораздел; 4 — часть бассейна Атлантического океана, снежный покров которой сформирован из влаги Тихого океана; 5 — часть бассейна Тихого океана, снежный покров которой сформирован из влаги Атлантического океана; 6 — изолинии аккумуляции снега, см слоя воды.

Тихоокеанская влага служит источником 92% объема снегозапасов, формируя устойчивый сезонный снежный покров на площади более 1 млн км². Средний снегозапас достигает 30 см (в слое воды), максимумы — 300—400 см. Они приурочены к абсолютной высоте 1000 м на 55° ю.ш., 1500—2000 м на 35—50° ю.ш. и 4000—5000 м между 32° и 35° ю.ш. (Каломцева, 1987). К северу от 30° ю.ш. господствуют атлантические источники питания снежного покрова. Встречаются лишь ограниченные ареалы снежного покрова вокруг высочайших вершин. Подчеркнуто, что при смене атлантического питания тихоокеанским вблизи 30° ю.ш. резко увеличивается объемы снегозапасов и площадь сезонного снежного покрова, снижается высотная граница его формирования, увеличивается общая продолжительность залегания.

Максимальная продолжительность залегания снежного покрова характерна для Антарктиды, где сезонные снегозапасы увеличиваются от полюса к границам материка (рис. 1.28). Область минимального (менее 5 см в.э.) снегонакопления сдвинута от полюса к Индийскому океану: объем и удельное значение снегозапасов, площадь формирования снежного покрова из индоокеанской влаги наименьшие из трех — 0,58 тыс. км², 12 см в.э. и 4,96 млн км². Более обширна область снежного покрова, сформированного атлантической влагой, — 3,79 млн км². Для нее характерны и больший объем (0,7 тыс. км² в.э.), и большие сезонные снегозапасы — 18 см в.э. Наибольший объем и площадь, а также удельный снегозапас сформированы здесь влагой Тихого океана: 1,02 тыс. км², 5,25 млн км², 19 см в.э.
Глава 2. Снежный покров на равнинах

При проведении границ на рис. 1.28 учитывался характерный путь испарившейся влаги вокруг Антарктиды до ее выпадения в виде осадков. Приняв длину этого пути по аналогии с субполярными широтами Северного полушария в 4000 км, мы считаем, что над океаном граница преобладания осадков, питающих влагой соответствующего океана, отводится вдоль потока от границы между океанами на половину этого расстояния, т.е. на 2000 км. За этой границей преобладают "местные" осадки – из влаги того же океана, в бассейне которого они выпадают. На побережье эта граница согласовывалась с границей, проведенной по полю аккумуляции.

Сопоставление положения океанических влагоразделов Антарктиды относительно ледоразделов показывает, смещение всех влагоразделов к востоку, т.е. наличие постоянного переноса влаги в атмосфере через ледоразделы и формирование каждого из океанических секторов антарктического льда влагой по крайней мере двух океанов (все цифры в водном эквиваленте): в Тихоокеанском секторе – 830 км² из Тихого, 80 км² из Индийского и 90 км² из Атлантического океанов; в Атлантическом секторе – 510 км² из Атлантики и 190 км² из Тихого океана; в Индийском секторе – 500 км² из Индийского и 100 км² из Атлантического океана. Положение влагоразделов в общем совпадает с максимальными отметками рельефа ледниковой поверхности, в ледоразделах – с отметками ледникового ложа. На рис. 1.28 в обобщенном виде показан общий сдвиг осей максимумов ледниковой поверхности относительно осей максимумов подземного рельефа.

Суммирование результатов по Северному и Южному полушариям дает глобальные оценки перераспределения влаги между океанами (табл. 1.8). Максимально перераспределение в Евразии и Северной Америке. Из 4880 км² атлантических твердых осадков лишь 1260 (26%) отлаживаются в бассейне Атлантического океана, 3000 км², или 61%, служат источником воды в Северный Ледовитый океан, 500 км² (10%) – во внутренние бассейны, 20 км² – в Тихий и 100 км² – в Индийский океаны.

Доля перераспределения тихоокеанских твердых осадков Евразии и Северной Америки меньше – 31% от 2750 км², из них 660 км² в бассейн Северного Ледовитого океана и 200 км² в бассейн Атлантического океана. Из 200 км² индийских твердых осадков 120 км² (60%) служат источником воды в Индийский океан, 50 км² – во внутренние бассейны, 30 км² – в Тихий океан. В целом 58% от 7,8 тыс. км² твердых осадков Северного полушария, выпадающих на материк, не попадают обратно в "север" океан.

В Южном полушарии и объемы твердых осадков, выпадающих на материк Южной Америки и Антарктиды, и доля их перераспределения скромнее: из 2,7 тыс. км² 81% отлаживается в бассейн океанистичности. Доля перераспределения атлантической влаги составляет 27% от 730 км², тихоокеанской – 17% от 1380 км², индийской – 14% от 580 км².

В целом можно заключить, что 48% приносимых на материк твердых осадков переносятся через океанические водоразделы, чтобы стать источником воды в другие океаны, 10% из них – в Южном полушарии.

Таблица 1.8

<table>
<thead>
<tr>
<th>Океан-источник</th>
<th>Океан, в бассейне которого отлаживается снеговой покров</th>
</tr>
</thead>
<tbody>
<tr>
<td>Атлантический</td>
<td>Северный Ледовитый</td>
</tr>
<tr>
<td>всего</td>
<td>3020</td>
</tr>
<tr>
<td>Евразия</td>
<td>1740</td>
</tr>
<tr>
<td>Северная Америка</td>
<td>1280</td>
</tr>
<tr>
<td>Южная Америка</td>
<td>-</td>
</tr>
<tr>
<td>Антарктида</td>
<td>-</td>
</tr>
<tr>
<td>Тихий</td>
<td>всего</td>
</tr>
<tr>
<td>Евразия</td>
<td>-</td>
</tr>
<tr>
<td>Северная Америка</td>
<td>380</td>
</tr>
<tr>
<td>Южная Америка</td>
<td>-</td>
</tr>
<tr>
<td>Антарктида</td>
<td>-</td>
</tr>
<tr>
<td>Индийский</td>
<td>всего</td>
</tr>
<tr>
<td>Евразия</td>
<td>-</td>
</tr>
<tr>
<td>Антарктида</td>
<td>-</td>
</tr>
<tr>
<td>Все океаны</td>
<td>всего</td>
</tr>
<tr>
<td>Евразия</td>
<td>1980</td>
</tr>
<tr>
<td>Северная Америка</td>
<td>1660</td>
</tr>
<tr>
<td>Южная Америка</td>
<td>-</td>
</tr>
<tr>
<td>Антарктида</td>
<td>-</td>
</tr>
</tbody>
</table>
Глава 3. Сезонный снежный покров в горах

Факторы снегонакопления в горах

В горных районах снежный покров распределяется гораздо более пестро, чем на равнинах. Это обусловливается одновременным воздействием ряда факторов, среди которых основными служат: а) абсолютная высота местности, б) расположение ее на периферии или внутри горного массива, в) экспозиция склона по отношению к влагоносным воздушным массам, г) экспозиция по отношению к странам света, д) экспозиция по отношению к господствующим ветрам, е) уклон поверхности, ж) расчлененность рельефа и характер растительности.

Воздействие первых трех факторов проявляется через изменение основной составляющей баланса массы снега — выпадающих твердых осадков. Общизвестна их роль в абсолютной высоте (до некото рого предела), однако конкретное проявление этой связи зависит от влияния факторов б) и в). Лучше всего рост осадков с высотой выражена на склонах периферийных хребтов, обращенных в сторону влагоносных воздушных масс. Наоборот, в нижних частях подветренных (относительно потока влаги) склонов и в глубоких закрытых долинах выпадающие осадки почти не зависят от высоты. В глубине горной страны различия в экспозиции склонов реальны, но в общем, воздействие воздушных масс влияет на выпадение твердых осадков весьма мало. Поэтому многие горные котловины, как, например, котловина в Средней Сибири, отличаются однообразным увлажнением.

Степень сохранности выпадающих твердых осадков и закрепления их в снежном покрове существенно зависит от воздействия солнечной радиации и, следовательно, от экспозиции склона по отношению к странам света. По максимальным снегозапасам склоны одинаковой крутизны в горах умеренного пояса Северного полуарктического пояса можно поставить в ряд такой последовательности: северо-западные и северо-восточные, до долины, восточные и западные и, наконец, южные.

Максимально различаются снегозапасы на северных и южных склонах. В Заилийском Алатау продолжительность залегания снега
Глава 3. Сезонный снежный покров в горах

Величины изменения снегозапасов с высотой в различных горных странах

<table>
<thead>
<tr>
<th>Горная страна</th>
<th>Интервал высот, м</th>
<th>Градиент снегозапасов, мм/100 м</th>
<th>Литература</th>
</tr>
</thead>
<tbody>
<tr>
<td>Большой Кавказ</td>
<td>1000–2400</td>
<td>25–125</td>
<td>Хмадалде, 1961</td>
</tr>
<tr>
<td>Сьерра-Невада</td>
<td>1400–2700</td>
<td>21–84</td>
<td>Court, 1963</td>
</tr>
<tr>
<td>Итальянские Альпы</td>
<td>1200–2100</td>
<td>40–70</td>
<td>Zanon, 1962</td>
</tr>
<tr>
<td>Шуши (Южная Чехия)</td>
<td>400–1100</td>
<td>30–100</td>
<td>Нековч, 1957</td>
</tr>
<tr>
<td>Полиартур Урал</td>
<td>200–750</td>
<td>25–40</td>
<td>Оледенение Урала, 1966</td>
</tr>
<tr>
<td>Западный Алтай</td>
<td>1000–3000</td>
<td>15–25</td>
<td>коломыцы, 1966</td>
</tr>
<tr>
<td>Алтай</td>
<td>1000–2000</td>
<td>17–27</td>
<td>Худомисю, 1959</td>
</tr>
<tr>
<td>Хребет Приамурья</td>
<td>500–1500</td>
<td>12–16</td>
<td>Гаршман, 1963</td>
</tr>
<tr>
<td>Сочет-Альпий</td>
<td>500–1000</td>
<td>4–10</td>
<td>Гаршман, 1954; Ульянов, 1964</td>
</tr>
<tr>
<td>Малый Кавказ</td>
<td>1200–2800</td>
<td>8–25</td>
<td>Агаш, Гаджиджеков, 1963; Хмадалде, 1961</td>
</tr>
</tbody>
</table>

В общей сумме. Так, в горах Средней Азии вертикальный градиент снегозапасов на высотах 1500–2500 м составляет 6 мм/100 м, а на высотах 2500–4000 м – 30 мм/100 м.

Уровень максимума снегозапасов в горах лежит ниже уровня максимума количества выпадающих твердых осадков, что связано с продольным переносом снега. Как правило, наиболее мощный сезонный снежный покров откладывается вблизи верхней границы леса, куда снег сносится метелями с безлесных пространств горных пород и субальпийских. Благодаря этому в верхней части лесного пояса вертикальный градиент снегозапасов достигает очень больших величин, а в горах в низовых он нередко превышает отрицательные значения, несмотря на продолжающийся рост с высотой твердых осадков.

Вертикальные градиенты снегозапасов в разных горных странах неодинаковы. В табл. 1.9 приведены данные об изменении снегозапасов на западных и северных склонах, обращенных к влагоносным воздушным массам. На противоположных склонах градиенты снегозапасов, как правило, меньше и имеют большие пределы изменений. Как видно из таблицы, величина градиентов закономерно уменьшается.
Глава 3. Сезонный снежный покров в горах

Субконтинентальный в отличие от резко континентального климата окружающих котловин и низменностей.

Большинство внутренних котловин Алтая, Западного Саяна, Прибайкалья и Забайкалья отличается исключительным малооснежем, а на склонах рядом лежащих гор отмечается значительное количество снега. Это создает в горах Сибири достаточно высокие значения градиентов осадков (в особенности твердых) и снегозапасов. На высотах 2000–2500 м снежный покров в 3–5 раз превышает количество снега в межгорных впадинах, расположенных на 1000 м ниже. Годовая сумма осадков в верхних частях хребтов достигает в Сибири и на Северо-Востоке Азии 1000 мм, из них до 50% выпадает в твердом виде. Таким образом, большая снегость в горных областях является общей закономерностью, присущей и горным странам континентальных областей.

Хионосфера и снежная линия

Снежник как переходная стадия к леднику

Неравномерный характер залегания снега приводит к тому, что в местах его повышенной концентрации возникают снежники, характерные как для горных, так и для равнинных районов. В соответствии с общепринятым определением, под снежниками понимается всякое неподвижное скопление снега и льда, сохраняющееся на земной поверхности при слевающийся окружающего снежного покрова. Снежники могут сохраняться и в течение части лета, могут и передвигаться. В горах снежники из года в год существуют в одних и тех же местах, из-за чего их иногда путают с ледниками. Но ледники - это многолетнее скопление льда атмосферного происхождения, обладающие собственным движением. Надежным признаком ледника служит наличие областей аккумуляции и аблиции, разделение на которые возникает лишь в процессе движения льда. В снежниках же разделение на области питания и стания отсутствует.

Как известно (Шумский, 1955), в одинаковых природных условиях характер режима (процессов снегонакопления, таяния и льдообразования) ледниковых и снежников в общем одинаков. Вместе с изменением внешних условий строение снежников, так же как и строение ледников, изменяется в широких пределах. Так, на хр. Сунтар-Хац, для которого характерен инфилтрационно-конденсационный (ледяной) тип льдообразования, снежники почти целиком состоят изо льда, прикрытого к концу лета тонким покровом снега (Корейча, 1963), а в оазисах Антарктиды, где льдообразование
Часть 1. Сезонный снежный покров Земли

Глава 3. Сезонный снежный покров в горах

Практика может играть либо зимние, либо летние условия. Снегири, обнаруженные в результате внимательной метелевской концентрации, могут существовать при высоких летних температурах (иногда до 20 °C). Снегири северных склонов (в Северном полушарии), сохраняющиеся в глубоких запущенных местах, весьма чувствительны к малейшему улучшению погоды в теплый период. В Южных Альпах, где снегири встречаются на высотах 865–2800 м, в зависимости от местоположения выделены две большие группы: 1) снегири скопликов, цирков и карстовых депрессий, залегающих в захламленных местах, и 2) снегири подошв склонов и глубоких ущельев, залегающих в местах повышенной концентрации снега, лежащих благодаря метелам и падению лавин. По сравнению с началом XX в. снегири первой группы сильно уменьшились в размерах, тогда как другие сократились в очень малой степени (Gans, 1961). Причина этого – общее потепление климата первой половины XX столетия, значительно усилившееся аблияцию, при почти незначительных (а возможно, несколько увеличенных) количестве твердых осадков и повторяемости метелей. Таким образом, метеорологические условия начальной половины и особенно середины XX столетия были благоприятны для существования навязанных снегири.

Переход от снегири к леднику происходит незаметно. Совершенно правильно подчеркивает М. М. Корейша (1963), что между ледником и снегирем не существует разных либо промежуточных фаз, имеющих самостоятельные особенности режима и развития. Такое промежуточное образование не может быть устойчивым из-за большей изменчивости снегири-ледников. В эпоху уменьшения снегири оно может перейти в категорию снегири, в эпоху увеличения снегири превратится в ледник.

Снегири — необходимый промежуточный этап между существованием сезонного снежного покрова и возникновением ледников. Снегири распространены во всех современных ледниковых районах и занимают более широкую область (по сравнению с ледниками) высотный пояс. Так же как и ледники, они существуют в своеобразных метеорологических условиях, которые можно назвать ледниковым климатом.

Ледниковый климат — это климат тихо-гладкого покоя. Он формируется в условиях большей снегозапасности и наличия в течение всего года подстилающей поверхности в виде снега и льда. Наши исследования, в частности работы М. В. Троянова, А. Н. Кренке, В. Г. Ходакова и других, показывают, что ледниковый климат в разных районах Земли обладает рядом общих черт, дающих право на его выделение. Эта общность определяется тем, что для существова...
Часть 1. Сезонный снежный покров Земли

ледниковых. Она окружает нашу планету непрерывной облачной разной мощности. Верхняя граница хионосферы определяется тем, что количество осадков, достигнув определенной высоты (неоднократной в разных районах Земли), максимума, далее с высотой уменьшает-ся и на некотором уровне вновь оказывается равным их убыли, происходящих здесь вследствие испарения под воздействием солнеч-ной радиации.

Аэрологических данных, собранных к настоящему времени, недостаточно для определения верхней границы хионосферы. Можно предполагать, что выше всего она располагается в тропиках и ниже всего — в полярных областях. Однако и здесь высота ее превышает 3500 м, о чем свидетельствуют условия на Антарктическом материке, в центре которого ежегодно выпадает до 50 м осадков. Мощность хионосферы в полярных областях не измеряется, как полагали ранее (Шумский, 1947), а достигает значительной величины. В то же время в тропическом поясу толщина ее ограничивается весьма высоким положением нижней границы, поднимающейся до 6000 м и более. Таким образом, мощность хионосферы, по-видимому, лежит в пределах 3—5 км и сравнительно мало различается на разных участках земной поверхности. Наибольшей толщиной она, по-видимому, достигает в экваториальном поясе и в низких широтах умеренного пояса.

Отличенность понятия хионосферы и огромная роль местных особенностей рельефа и климата в существовании ледников породили сомнения в целесообразности использования в гидрологии этого понятия (Бут, 1963; Шумский, 1963). Серьезные недостатки при определении хионосферы И.В. Бут находил в том, что это понятие исключает учет влияния подстилающей поверхности на атмосферные процессы, в частности, оно не учитывает влияния ветра, затрудняющего, по мнению Бута, снеготаяние на любой равной поверхности, расположенной в свободной атмосфере. Что касается второго замечания И.В. Бута, то, как отметил С.В. Каленник (1963), оно абсолютно неверно, так как при выпадении твердых осадков достаточной длительности или интенсивности снеготаяние будет происходить при любой скорости ветра.

Более серьезное замечание Бута, но против него также легко возразить, так как хионосфера выводится не из идеальных условий атмосферы, а из реально существующих условий, складывающихся под влиянием макрорельефа и общей циркуляции воздушных масс, в свою очередь, определяемой соотношением суши и моря, гор и равнин и пр. Поэтому; например, нижняя граница хионосферы понижается в направлении к осям фронтальных зон в атмосфере и повышается по мере удаления от областей развития атмосферных циклонов и источников влажности (Шумский, Кренке, 1965), а в связи с динамическим подъемом воздушных масс над паветренными скло-нами гор, вызывающим повышенное осадкообразование, нижний уровень хионосферы располагается здесь ниже, чём над равнинами или внутренними частями плоскогорий.

Физическая понятие хионосферы П.А. Шумский видит в том, что хионосфера не может иметь непрерывную нижнюю границу из-за вхождения в нее участков земной поверхности и опускания ее в полярной области Южного полушария до уровня моря. Однако хионосфера как теоретическая абстракция характеризует не только условия существования ледников в том или ином месте, но и условия возникновения и развития ледников при наличии других благоприятных возможностей. В этом смысле отходя от абстракции высказанная мною мысль о том, что в Антарктиде нижняя граница хионосферы «проходит ниже уровня моря». Эту мысль следует понимать так, что благоприятные условия для образования ледников в Антарктике существуют не только вплоть до современного уровня моря, но существовали и на более низких уровнях, если бы, скажем, произошло понижение поверхности Мирового океана.

Таким образом, на Земле, в термодинамических условиях своей поверхности, нет места, где понижение температуры не привело бы к конечному образованию ледников. При соприкосновении нижней границы хионосферы с земной поверхностью возникает длительный процесс их взаимодействия, в результате которого хионосфера все более снижается за барьером гор, и, в конечном счете, это приводит к распространению ледниковых покровов, по размерам сопоставимых с современными Гренландским и Антарктическим.

Понятие хионосферы имеет особо важное значение при разработке теории оледенения (Чижов, 1963), так как определяет климатические пределы возникновения ледников. Современное положение хионосферы, например, свидетельствует о том, что условия для жизни ледников в Южном полушарии более благоприятны, чем в Северном. Очевидно, подобные же различия в положении хионосферы в Северном и Южном полушариях были характерны для всего четвертичного периода и конца неогена (поскольку конфигурация суши и моря и характер общей циркуляции атмосферы за это время существенно не менялись), что невозможно отразилось на особенностях эволюции оледенения в этих полушариях.

В науке отсутствуют достоверные методы для вычисления высоты нижней границы хионосферы, в тех районах, где нет ледников. Здесь для вычисления этого уровня используются данные о снеговой линии в горах или ширине линии на ледниках, что можно представить лишь в первом приближении. Исследования на Полярном Урале показали (Троицкий, 1963), что высоту нижнего уровня хионосферы можно получать расчетным путем лишь при использовании надежных данных о снеготаянии в горах на разных высотных уровнях. Вследствие значительного перераспределения снега в пределах горной
Глава 3. Сезонный снежный покров в горах

Рис. 1.29. Снег и лед на земном шаре в феврале

Сезонный снежный покров
- устойчивый
- неустойчивый
- Ледниковые покровы с постоянным залеганием снего

Акватории, занятые морскими льдами, зимний максимум (снежные льды)
Акватории со льдами, в среднем за период наблюдений

Границы ледников
- Высота изобаты поверхности морского слоя атмосферы (км)

должны или плато данные об аккумуляции снега на этих участках надо пересчитывать на всю площадь долины вместе со склонами или на всю площадь плато, а полученную величину относить к средневзвешенной высоте рассматриваемого участка долины или плато. В результате сравнения величин для нескольких высотных уровней получаем вертикальный градиент снегонакопления, с помощью которого при сопоставлении с градиентом аблиации можно вычислить нижнюю границу хионосферы. Эта граница на Полярном Урале, вычисленная таким образом, оказалась равной примерно 2000 м, что почти на 1000 м выше залегания ледников.

Не только на Полярном Урале, но и в большинстве других районов ледники лежат ниже хионосферы, что создает впечатление отсутствия между ними причинной связи. В действительности такая связь существует (особенно в историческом аспекте), но в реальных условиях особенности мезорельефа, мезо- и микроклимата приводят к значительному изменению нижнего предела возможного существо-
Глава 3. Сезонный снежный покров в горах

Ледниковые щиты Гренландии и Антарктиды, многие ледниковые купола Арктики и Субантарктики, ледники плоских вершин в высокогорьях и ледниковые шапки на одиночных вулканических конусах, как правило, лежат в пределах хионосферы или очень близко к ее нижнему уровню, что ограничивает возможности существования покровных ледников по мере повышения хионосферы в направлении к экватору. По подсчетам Г.К. Тушинского (1963), в Северной Евразии существование ледников покровного типа при современных климатических условиях возможно лишь в тех районах, где нижняя граница хионосферы не поднимается выше 800 м.

Горные ледники по вселому на земном шаре опускаются ниже хионосферы, и сведения о их высотном положении, естественно, не могут дать характеристики хионосферы. Но для анализа современных условий существования ледников это не так уж и важно. Гораздо большее значение имеют данные о снеговой линии в горах, фирновой линии и границе питания на ледниках.

Рис. 1.30. Снег и лед на земном шаре в августе

Таким образом, хионосфера как «морозный» или «снежно-бйоточный» слой атмосферы реально существует. Представление о ее современном положении дают карты, характеризующие нивально-глыбовидные явления на земном шаре в феврале и августе, помещенные в Атласе снежно-льдовых ресурсов мира (рис. 1.29, 1.30).
Глава 3. Сезонный снежный покров в горах

является уровнем нулевого баланса вещества на ледниковой поверхности. Но в литературе пролет старинных удобных для пересечения горных ледников отношение, когда к ледниковым линиям и гораздо меньше — к границам питания. Фирновая линия, так же как и снеговая, в силу своей природы представляет собой интегральную характеристику климатических различий отдельных лет. Положение границы питания может испытывать гораздо больше колебаний.

Высотной границей снежников называется нижний предел их распространения. Он зависит от осадков и температуры воздуха. Небольшие осадки в горах способствуют росту снежников. Высотное положение границы снежников также зависит от осадков, т.е. от их количества в известных условиях рельефа горы. Граница снежников в горах может быть определена как высота, при которой осадки выпадают в виде снега в течение всего периода, в течение которого снег не сходит с поверхности горы. Граница снежников в горах может быть также определена как высота, при которой осадки выпадают в виде снега в течение всего периода, в течение которого снег не сходит с поверхности горы.
Глава 3. Сезонный снежный покров в горах

Рис. 1.31. Ледник в конце периода аблиции. Слева плановый, а справа перспективный снимки ледника МГУ на Полярном Урале. Хорошо видны две границы: граница питания ледника, отделяющая темный лед области аблиции от светлого накопленного льда, и фирновая линия, отделяющая наложенный лед от более светлого фирна.

Значительные отклонения наивысшего положения границы сезонного снежного покрова в отдельные годы приводят к некоторым изменениям в высотном положении фирновой линии. Тем не менее фирновая линия отличается большой стабильностью в плане и от года к году, что подчеркивают С.В. Калесник (1963), П.А. Шумский (1947), А.Н. Кренке (Руководство..., 1966). Причина заключается в более ровной поверхности ледника по сравнению с окружающими склонами, а также инерционном эффекте поверхности льда, сглаживающем условия обнаженной поверхности. Кроме того, большую роль играет инерционность процессов внутреннего массообмена; например, при деградации оледенения фирновая линия и граница питания повышаются гораздо медленнее, чем происходит утонение конца ледника.

М.В. Троно (1954, 1960) выделил в нижней части хионосфера два уровня: первый соответствует нулевому балансу твердых осадков на холодной ледниковой поверхности, а второй — на скользкой поверхности. Конечно, хионосфера (как сфера) не может иметь двух уровней, но два эти понятия надо разделять. Как справедливо показал С.В. Калесник (1963), уровни первого рода, по Тронову, — это фирновая линия, а уровни второго рода — это снеговая линия. Различать эти уровни особенно важно при рассмотрении зарождения и развития ледников, ибо ледник возникает тогда, когда земная поверхность в течение длительного времени оказывается недалеко от уровня снеговой линии. В дальнейшем же наступает период саморазвития ледника, продолжающийся до тех пор, пока в процессе разрастания и движения вниз ледник не оказывается значительно ниже уровня фирновой линии (верхнее, границы питания), ограничивающей его рост.

Поскольку непосредственных данных для определения снеговой линии весьма мало, М.В. Троно (1954) при вычислении своей высоты использовал так называемый климатический метод. Этот метод заключается в вычерчивании графика зависимости числа дней со сезонным покровом (полученного по данным горных метостаций) от абсолютной высоты и в экстраполяции этого графика до уровня, на котором снег может лежать в течение всего года (т.е. 365 дней). Применение этого метода на практике затруднительно вследствие
Часть 1. Сезонный снежный покров Земли

малого количества метеостанций в высокогорье и нерепрезентативности многих из них. Наименьшая ошибка в определении высоты снеговой линии таким методом может быть лишь в том случае, если снегомерные данные получены на участке, где снос снега или принос его иное незначительное, что на горных метеостанциях выдерживается далеко не всегда.

Вследствие малого количества точек на графике экспонициально обычно проводят линейно, тогда как в действительности с увеличением абсолютной высоты градиент роста числа дней со снежным покровом несколько возрастает. Это объясняется постепенным увеличением запаздывания дат схода снежного покрова с высотой, с чем подробно говорилось выше. Соответственно вертикальный градиент роста чисел дней со снежным покровом в более северных районах должен быть больше по сравнению с более южными (имеется в виду Северное полушарие); значение его в многослойных районах должно превышать соответствующие величины в малоснежных районах, и на склонах, обращенных к влагосборным воздушным массам, оно должно быть больше, чем на противоположных склонах.

Действительные различия не так велики, но все же существуют. Расчеты Г.К. Тушиниского (1963) и М.Я. Глебовой (1958) показали, что градиент увеличения числа дней с устойчивым снежным покровом на каждые 100 м в полярных районах России составляет 16-20 дней, а в горах южных границ бывшего СССР – 8-10 дней; соответственно в Альпах и в горах южной Германии он равен приблизительно 10 дням, в Карпатах – 8 дням, на Кавказе и в Средней Азии – 7-8 дням, а в горах Восточной Сибири – 5-6 дням (на западных склонах сибирских гор – до 9 дней).

Сравнение высот снеговой линии, вычисленных «климатологическим» методом, с высотами фирновой линии (или границы снега на ледниках) показывает, что последняя располагается приблизительно на 30% ниже к тому же снежная линия выше географической вершины.

На самом деле различия в высотном положении снеговой и фирновой линий возникают не только из-за концентрации осадков на ледниках, но и из-за охлаждающего влияния самой ледниковой поверхности, что весьма ярко показал М.В. Тронов (1954, 1960). Ледниковая поверхность воздействует на характер перемещения границы сезонного снежного покрова в теплый период. Как правило, в одном и то же время эта граница на внетелевидной поверхности всегда на несколько сотен метров выше, чем на поверхностях ледника. По данным М.В. Тронова (1963), в 1957-1960 гг. на разных абсолютных высотах в бассейне р. Акту (Алтай) наблюдалось следующее соотношение числа дней со снежным покровом за год на каменной и ледниковой поверхностях:

<table>
<thead>
<tr>
<th>Высота, м</th>
<th>на ледниках</th>
<th>вне ледников</th>
</tr>
</thead>
<tbody>
<tr>
<td>2300</td>
<td>280</td>
<td>240</td>
</tr>
<tr>
<td>2600</td>
<td>300</td>
<td>260</td>
</tr>
<tr>
<td>2900</td>
<td>315</td>
<td>285</td>
</tr>
<tr>
<td>3200</td>
<td>365</td>
<td>325</td>
</tr>
</tbody>
</table>

Этот цифры говорят о том, что разница высотного положения границы сезонного снежного покрова на ледниках и вне ледников равна приблизительно 400 м. В районе ледника Пастерезе в Альпах процесс образования ледниковой поверхности от зимних снегов по сравнению со склонами долины в 1935 г. отстал на 420 м (рис. 1.32). Этому соответствовало отставание во времени примерно на 20 дней; в одно и то же время степень обнаружения от снега поверхности льда и скал отличалась в среднем на 44%.

Рис. 1.32. Перемещение границы сезонного снежного покрова на склоновой (1) и ледниковой (2) поверхностях в районе ледника Пастерезе (Альпы) летом 1935 г.

Основное влияние ледниковой поверхности на более низкое положение фирновой линии по сравнению со снеговой проявляется через структуру теплового баланса в период таяния снежного покрова. Разница в высотном положении снежной и фирновой линий по этой причине в общем возрастает в направлении от полюсов к экватору и от морских районов к континентальным.

Роль другой причины понижения фирновой линии – перераспределение отложенного снега – увеличивается с ростом расчлененности рельефа. Наибольшей величине концентрации снега достигает в многослойных горах альпийского типа, значительно уменьшается
Часть 1. Сезонный снежный покров Земли

она на небольших ледниковых куполах и шипках и полностью утрачивает свое значение в районах, целиком покрытых льдом, т.е. в областях развития больших ледниковых покровов. Отсюда следует, что и в этом случае разница в высотном положении снежной и фирновой линий к географическим полосам уменьшается, но теперь она (в отличии от первой причины) снижается в более суших континентальных районах.

Совместное воздействие обеих указанных причин приводит к существенным и закономерным различиям в высотном положении снежной и фirmedной линий. Подчеркнём здесь разницу между ледниками на территории бывшего СССР с помощью климатического метода выполненных Г.К. Тушинским (1963), использовавшим для этой цели данные климатологических справочников, где приводятся сведения о продолжительности залегания устойчивого снежного покрова на метостационах, расположенных на разной абсолютной высоте. Нерепрезентативность многих горных метеостаций заставляет относиться к полученным цифрам весьма осторожно; некоторые из них могут быть ошибочными.

В целом, как это хорошо видно на примере некоторых ледниковых областей Северной Евразии (рис. 1.33), отклонение фirmedной линии от снежной возрастает по направлению к югу. На арктических покровных ледниках, где влажная солнечная радиация на таяние достигает низким влажностей и влияние переноса воды также сокращается до минимума (в критической критерии снежной линии), в пределах ледника, так как облачной поверхности почти нет), фirmedная линия почти совпадает с снежной. На большей части хорошо увлажненных гор Евразии разница между ними лежит в пределах 400-800 м, такая же величина характерна для Альп. В некоторых районах Сибири и Средней Азии разница между снежной и фirmedной линиями возрастает до 1000 м и более, но в больших указанных 400 м в малоснежных районах Памира и Центральной Азии.

Связь снежной линии с климатом и рельефом

Высота снежной линии определяется равенством величины отлагающихся твердых осадков и эквивалентного количества тепла, поступающего на поверхность и приводящего к таянию. Основные источники тепла – турбулентный перенос и солнечную радиацию – в конечном счете обычно выражаются через температуру воздуха. Особенно важны сумма положительных температур за период абляции и продолжительность теплого периода, причем не только потому, что тепло в это время расходуется на таяние снежного покрова, но и потому, что тем самым сокращается и период выпадения твердых осадков, и их годовая сумма.

Рис. 1.33 Различие в высотном положении фirmedной и снежной линий в ряде регионов Евразии в зависимости от широты (а) и степени континентальности климата (б)

Поскольку температура воздуха служит только одним из факторов, определяющих положение снежной линии, изохоны не могут совпадать с направлением изотерм. Предположение В. Паппиорта и некоторых других авторов о совпадении изохон возможно только недостаточным количеством имеющихся в их распределении данных. Вполне очевидно, что меньше полное сумма твердых осадков на уровне снежной линии соответствует более низкой температуре самого теплого месяца. Так, на многочисленных побережьях Аляски температура июля у снежной линии достигает +10 °C, в то время как на Килиманджаро в самый теплый месяц средняя температура меняет около −4 °C, а в Андах на 17° ю. ш. даже −7 °C (Hermes, 1964).

Из сказанного ясно, что снежная линия не может быть приравнена к средней летней или средней годовой нулевой изотерме. Она вообще не может быть определена только сведениями о температуре воздуха.

Несмотря на разное положение снежной линии в отдельных горных районах, в целом вполне определенно можно говорить о следующих закономерностях ее шириотного положения. Ниже всего снежная линия лежит в полосах областях. В направлении к экватору она сначала медленно, а затем (на широтах 50-35°) более крутая повышается; в областях морского климата умеренных и высоких широт это повышение происходит медленнее, чем в широтах низких широт. Максимально низко снежная линия поднимается в
Глава 3. Сезонный снежный покров в горах

масс; 3) ориентацию к странам света и 4) экспозицию по отношению к господствующим ветрам.

Чем крупнее горная страна, тем меньше влаги попадает в ее внутренние части и тем выше проходит здесь снеговая линия. Помимо увеличения сухости воздуха, к повышению снеговой линии внутри горной страны ведет возрастание в этом направлении средней температуры лета (имеется в виду те же абсолютные высоты) и солнечной радиации вследствие уменьшения облачности, на что обратил внимание еще И. Гегельчев (Jegerlehner, 1902). Повышение снеговой линии в глубь горной страны отмечено в Альпах, на Кавказе, Тибете, в Средиземном и Центральной Азии. Особенно резко воздействие этого фактора проявляется в морских областях. Так, на приморских хребтах Аляски снеговая линия опускается до 300–800 м, в то время как во внутренних хребтах она проходит на высоте 1800 м. В таких случаях горизонтальный градиент изменения высоты снеговой линии достигает очень больших значений: в горах Св. Илья он равен 13 м/км (Meier, Post, 1962). Последнее связано с тем, что к «эффекту массности гор» здесь присоединяется благоприятное положение прибрежных хребтов по отношению к воздушным массам, приносящим обильные осадки.

Меньшая высота снеговой линии на склоне хребта, обращенного в сторону основного потока влаги, по сравнению с противоположным склоном известна в любой горной стране, – разница может достигать нескольких сотен метров. Особенно велика разница в высоких горах; при этом влияние высоты хребтов в общем растет пропорционально количеству твердых осадков, выпадающих в данной области, что мы именуем возможность видеть на примере Альп.

Различие снеговой линии на двух склонах, расположенных противоположно относительно основных путей влажных воздушных масс, затушевывает общий взгляд на снеговую линию склона. На северном склоне Гималаев, куда поступает много влаги во время господства летнего муссона, снеговая линия проходит на уровне 4900 м, а на северном склоне, обращенном к сухим внутренним просторам Азии, – на уровне 5600 м. Действие фактора прямой солнечной радиации, если оно не искажается другими причинами, закономерно увеличивается по мере движения к экватору и в глубь континентов. Благодаря этому различие в высотном положении снеговой линии на северном и южном склонах наименьших значений достигает в полярных областях, а наибольших – в тропических; особенно велики они в сухих районах. Так, на Алтае снеговая линия на северных склонах лежит на 200–250 м ниже, чем на южных; в северных хребтах Тянь-Шаня эта разница достигает 300–400 м, а на Памире – 700–800 м.

Влияние ветрового переноса снега в горах на положение снеговой линии имеет локальное значение и всегда меньше трех указанных
Глава 3. Сезонный снежный покров в горах

Из приведенных цифр видно, что при средних метеорологических условиях границы сезонного снежного покрова в горах умеренного пояса весной перемещается вверх со скоростью 16—18 м/сут. Очевидно, в малоснежных районах скорость ее поднятия больше (на северных склонах Восточного Кавказа она достигает 21 м/сут и более). При перехоже к припеленевому поясу границы снежного покрова перемещается медленнее, достигая наименьшей скорости на поверхности ледников.

Часть 1. Сезонный снежный покров Земли

Вероятно факторов. Лишь в некоторых случаях и на сравнительно небольшом протяжении подветренного склона снеговая линия может опускаться под воздействием метельного переноса на несколько десятков метров. Наиболее существенную роль метельное перераспределение снега играет в полярных районах с сильными ветрами и малым количеством осадков. Постоянному снегу обязано аномально высокое положение снеговой линии в некоторых районах Гренландии, Канадского Арктического архипелага, Антарктики.

Говоря о снеговой линии, я подразумеваю среднее из наивысших положений границы сезонного снежного покрова вне ледников за известный промежуток времени. Сама граница сезонного снежного покрова в зависимости от конкретных условий данного года может находиться на разных уровнях. Неоднократным в разных годах бывает и взл и замерзания ее высоты в течение года. Она существенно зависит от снега в и прихода тепла в последующий период. Характер осадков границы сезонного снежного покрова значительно отличается от характера ее поднятия. Осенью при перемещении холодного атмосферного фронта в горах проходят сильные снегопады, и снежный покров одновременно появляется в большом диапазоне высот. В дальнейшем на более низких уровнях снег стаивает, но на более высоких он остается до следующего снегопада. Таким образом, граница сезонного снежного покрова осенью опускается склонахами, связанными со снегопадами, в промежутках между которыми она нередко поднимается вверх.

Подъем границы сезонного снежного покрова весной происходит более равномерно, нежели ее опускание осенью, хотя и нередко прерывается после снегопадов. Движение границы снежного покрова вверх, как правило, запаздывает до сравнительно с ходом нулевой изотермы, причем это запаздывание увеличивается с ростом абсолютной высоты. На Восточном Кавказе, например, на высотах 500—1000 м он равен 5—15 дням, а на высотах 1500—2500 м достигает 20—30 дней (Мусеибов, Киш, 1959).

Весеннелетнее поднятие границы сезонного снежного покрова бывает особенно медленным после многонежных зим, даже несмотря на благоприятные условия таяния в период абляции. Наоборот, после малоснежных зим горные склоны быстро очищаются от снега. Так, в бассейнах рек Ангра и Кызыл (Чаткальском хребте) скорость поднятия границы снежного покрова после малоснежной зимы 1956/57 г.
Глава 4
ГЛОБАЛЬНАЯ КЛИМАТИЧЕСКАЯ РОЛЬ СНЕЖНОГО ПОКРОВА И ЛЕДНИКОВ

Влияние снежного покрова на климат обусловлено главным образом его высоким альбедо, малой теплопроводностью, затратами тепла на его таяние и относительно слабой шероховатостью поверхности. Вместе с высокой излучательной способностью снега это приводит к низким температурам его поверхности и возникновению над ним температурных инверсий.

Климатообразующее влияние снежного покрова еще в XIX в. изучал А.И. Воейков (1889). Позже Г.Д. Рихтер (1948) пронанализировал влияние снежного покрова на географическую среду, показав его значение в эволюции ландшафта. Особое внимание роли снежного и ледяного покровов в формировании климата Земли через альбедо уделяли в работах М.И. Будько (1971) и Дж. Кукала (Kukla G., Kukla H., 1974). Снежный покров с учетом особенностей его альбедо и потерями тепла на таяние включены в глобальные модели климата (например, Chil, Battaharya, 1978; Manabe, Holloway, 1975).

Количественные оценки влияния снега и льда на климат

На поверхность Земли ежегодно выпадает около 25 тыс. км³ воды в виде снега. Около трети его медленно тает в море, а остальная часть образует снежный покров на суше, ледниках и морских льдах. И лишь в областях питания ледников, т.е. на площади около 15 млн км², этот покров сохраняется круглый год. Начиная с 1966 г. площадь снежного покрова подсчитывается по спутниковым данным. Согласно этим материалам, ежегодно около 100 млн км² поверхности Земли оказывается под снегом, в том числе 64 млн км² (25% площади полярной) в Северном и 36 млн км² (14% площади) в Южном полушарии (Kukla, Gavin, 1980). Ежедневно максимальная площадь оказывается под снегом в феврале (83 млн км² сплошного устойчивого снежного покрова и 96 млн км², включая пятнистый и неустойчивый покров), а минимальная — в августе (42 и 44 млн км² соответственно). К этому следует добавить, что в четвертичный период снежный покров занимал 35% площади Северного и 24% площади Южного полушарий (Lamb, 1964).

Над снегом сильно уменьшался или совсем отсутствует конвективный прогрев тропосферы из-за ограничения температуры поверхности до 0 °C; вследствие высокого альбедо примерно в три раза снижается поглощенная коротковолновая радиация. Если принять среднюю за год площадь снежного и ледяного покровов в обоих полушариях равной 62 млн км², а приходящую радиацию здесь на единицу площади равной половине от средней глобальной, то при измерении облачности и некоторых других геофизических параметрах оказывается, что приход солнечной радиации за счет снежного покрова снижается на 13-19 %, или более чем на 4% радиации, поглощаемой всей планетой — это способствует широтной дифференциации климатов. Детальные расчеты изменения радиации из-за снежного и ледяного покровов выполнены сравнительно недавно (Kukla, Robinson, 1980). Их учет поможет уточнить приведенные выше значения.

Исследования в СССР, выполненные еще в 50-х годах, показали влияние снежного покрова Евразии на формирование сибирского антициклона. Аналогичная роль снежного покрова Северной Америки в формировании канадского антициклона. Увеличение мощности и продолжительности зимне-весенних снежных покровов в Тибете приводит к понижению летних температур в тропосфере, запаздыванию и ослаблению летних муссонных (Tu Sheng Yeh et al., 1980). Уничтожение лесов ведет к обнажению снежной поверхности, росту альбедо и изменению климата (Burrough, 1978).

Расчет, учитывающий характерные значения облачности, ее отражательные и поглощающие свойства и характерные значения альбедо разных типов ледников, показал, что континентальные ледниковые покровы отражают в космос дополнительно 54% поступающей на вершину атмосферы радиации, а областей питания горных ледников — 33, небольшие же островные ледниковые покровы — только 16, а языки горных ледников — всего 5%. Эффект горных ледниковых языков мал из-за невысокого альбедо, а островных ледниковых покровов — из-за почти непрерывно окутывающих их облаков с альбедо, близким к ледниковому.

Ледники на суше дополнительно отражают в космическое пространство всего около 5·10^8 МДж солнечной теплоты, или около 5% из суммарного отражения Земли. За счет этого альбедо Земли растет на 0.2% за летнее полугодие и на 0.0% за год (от 0.29 до 0.30), что, согласно модели М.И. Будько (1969), приводит к охлаждению приземного слоя воздуха приблизительно на 1°.

Еще одним механизмом охлаждения атмосферы служит сток тепла из атмосферы в ледники на компенсацию отрицательного радиационного...
Часть 1. Сезонный снежный покров Земли

ного баланса их поверхности и затрат тепла на таяние льда. Эти потери происходят в виде турбулентного потока явного тепла или потока скрытого тепла за счет конденсации на поверхности ледников.

Согласно В.Г. Аверьянову (1979), радиационный баланс Антарктического ледникового покрова равен \(-4,2 \times 10^{19} \text{ МДж/год}\), а затраты тепла на испарение составляют \(0,8 \times 10^{13} \text{ МДж/год}\). По оценке А.Н. Кренке (1982), годовой радиационный баланс Гренландии равен \(-0,5 \times 10^{13} \text{ МДж/год}\). Остроногие и субарктические ледники покрыты облаками площадью около 300 тыс. \(\text{км}^2\) (на основе наблюдений на Земле Франца-Иосифа) имеют радиационный баланс \(-3 \times 10^{13} \text{ МДж/год}\), а горные ледники на общей площади около 200 тыс. \(\text{км}^2\) (наблюдения на леднике Федченко) имеют баланс, равный \(-1 \times 10^{13} \text{ МДж/год}\). Все вместе эти потери составляют 0,2% солнечного тепла, поглощаемого поверхностью планеты.

Судя по величине радиационного выхлопоживания и затрат тепла на таяние, сосотавленной с теплоемкостью, плотностью и скоростью обмена атмосферных масс, атмосфера над Гренландией за счет ледникового покрова в среднем за июнь, июль и август может охлаждаться на 5° в слое 300–500 м. Соответственно на 1° в среднем может охлаждаться слой в 150 м, что хорошо соответствует полям давления на высотных синоптических картах. Теплота приходит к Гренландскому ледниковому покрову в среднем за год равна 2-10^13 \text{ кДж/сут}, что соответствует с энергии колонии, пересекающих остров за половину или целые сутки. Таким образом, влияние Гренландского ледникового щита на барическое поле в Арктике может быть объяснено энергетически. Возрастание антикера Антарктического ледникового покрова еще существенное, а небольшие островные ледники малых покровы, согласно аналогичным расчетам, наоборот, пренебрежимо мало влияют на глобальный климат. Изменение температуры воздуха в приземном слое при пересечении границы сухой и ледниковой поверхности, судя по экспедиционным измерениям, обычно не превышает 1–2°C.

Отток турбулентного тепла из атмосферы в ледники достоин для охлаждения на 1° объема атмосферы в 5⋅10^{18} \text{м}^3 при давлении в 750 \text{гПа}, что примерно соответствует объему тропосферы Земли. Следовательно, современная тропосфера охлаждается охлаждением на 1° за счет повышенного альбедо ледников и еще на 1° за счет отдачи тепла в них турбулентным потоком. Суммарное охлаждение современным охлаждением равно, следовательно, 2°C (Кренке, 1987).

Затраты на таяние ледниковых покровов рассчитываются обычным по летним температурам воздуха, приведенным к высоте границы питания, и контролируются полевыми наблюдениями. Суммарные затраты тепла на таяние ледников равны примерно 25⋅10^{13} \text{ МДж/год}, или около 5% от стока турбулентного тепла в ледники. Затраты тепла на таяние снега составляют 6⋅10^{13} \text{ МДж/год}, или около 0,2% радиации, поглощаемой землей. Прямое охлаждающее воздействие снега на тропосферу составляет около 2,5° за счет его высокого альбедо.

Глава 4. Клimatическая роль снежного покрова и ледников в глобальных моделях климата

Дополнительное влияние на климат ледниковых покровов оказывает создаваемым ими рельефом. Крупную вертикальный профиль по их краям способствует усиление вертикальных составляющих скоростей ветра и интенсификации осадков, приводящих к тому, что Антарктида (как и) в основном своим краем. Здесь выпадает основная часть осадков, усиливающих движение льда и его расход на айсберги. Дальше северной ледникового щита сменяется положительная обратная связь между их питанием и ростом (разрастание щитов приводит к увеличению снежности, в свою очередь, способствующему их росту) на отрицательную: уменьшение снежности способствует отклонению путей циклонов за счет дальнейшего роста щита приводит к замедлению и прекращению этого роста.

Препятствия, создаваемые ледниковыми щитами, деформируют барические волны. Расчеты длины волновых теней при дифракции показывают, что эта деформация существует для препятствий размером, равным Гренландскому ледниковому покрову, но практически не заметна уже для препятствий размером с Новоземельский ледниковый покров (Кренке, 1987). Из сказанного следует, что в глобальных моделях климата учет влияния ледниковых щитов и снежных полей может быть справедливым. Таким образом, в глобальных моделях климата учтены влияние ледникового покрова и снежных полей диаметром более 500 км, так и возможность пренебрежения меньшими отдельными пятнами снега или льда.

Учет снежного покрова и ледников в глобальных моделях климата позволяет учить счет затрат на таяние снега. Суммарное охлаждение близко к 4°, а вместе со свободными от снега летом ледниками охлаждение планеты составляет около 5°, что сравнительно с глобальным охлаждением Земли в четвертичный период по сравнению с современным.

Учет снежного покрова и ледников в глобальных моделях климата

Дополнительное влияние на климат ледникового покрова оказывают создаваемым ими рельефом. Крупную вертикальный профиль по их краям способствует усиление вертикальных составляющих скорости ветра и интенсификации осадков, приводящих к тому, что Антарктида (как и) в основном своим краем. Здесь выпадает основная часть осадков, усиливающих движение льда и его расход на айсберги. Дальше северной ледникового щита сменяется положительная обратная связь между их питанием и ростом (разрастание щитов приводит к увеличению снежности, в свою очередь, способствующему их росту) на отрицательную: уменьшение снежности способствует отклонению путей циклонов за счет дальнейшего роста щита приводит к замедлению и прекращению этого роста.

Препятствия, создаваемые ледниковыми щитами, деформируют барические волны. Расчеты длины волновых теней при дифракции показывают, что эта деформация существует для препятствий размером, равным Гренландскому ледниковому покрову, но практически не заметна уже для препятствий размером с Новоземельский ледниковый покров (Кренке, 1987). Из сказанного следует, что в глобальных моделях климата учет влияния ледникового покрова и снежных полей диаметром более 500 км, так и возможность пренебрежения меньшими отдельными пятнами снега или льда.

Важнейшие характеристики снежности территории, подлежащие учету в моделях климата, таковы: 1) площадь распространения круглогодично сохраняющегося и сезонного снега; 2) альбедо снежного покрова, перекрываемого и не перекрываемого каменистые россыпи и растительность; 3) шероховатость открыто и находящейся в снеге поверхности; 4) продолжительность заглаживания снежного покрова и его установления и схода; 5) толщина и масса снегового покрова; 6) продолжительность и даты начала и конца снеготаяния.

При решении задач о короткоперiodических колебаниях климата площадь и форма ледников могут считаться постоянными – продолжительностью в десятилетия и даже, возможно, в столетия, но их колебания следует учитывать при оценках более длительных колеба-
Глава 4. Климатическая роль снежного покрова и ледников

Попытки определения толщины снега и снегозапасов прямо по космическим снимкам оказались успешными лишь для тонкого покрова (Thomas et al., 1978). Исследуются методы определения снегозапасов и толщины снежного покрова по пассивному или активному микроволновому излучению. Имеется корреляция диэлектрических свойств снежной толщи, определяющих её поглощающие и отражательные свойства, с её толщиной и влагозапасом. Однако эта корреляция нарушается вплоть до переменных значений дополнительных факторов - присутствием жидкей воды в снеге, его структурой, типом подстилающей поверхности, растительностью (Rango et al., 1979).

Большие перспективы имеет изложенный выше метод «теплового проявления». Вообще важнейшее данные, которые могут быть получены в ближайшие годы, связаны с возможностями использования спутниковой информации, особенно со спутниками с полярной орбитой. Это, во-первых, регулярные данные о положении границ сезона снегозапаса и фронта снеготаяния по видимым и ближним ИК-изображениям, что дает возможность применять в глобальном масштабе метод теплового проявления снегозапасов. Во-вторых, оперативное использование метода активной и пассивной радиолокации для оценки снегозапасов. В-третьих, завершение спутниковой съемки рельефа поверхности ледниковых покровов.

Далее необходима специальная продуманная в глобальном масштабе сеть наземных наблюдений за аккумуляцией, абляцией, облачностью, температурой воздуха, над ледниковыми штитами. Нужны эмпирические обобщения связи этих показателей с морфологией ледниковых покровов. Нужны также глубокие сведения о ледниковых штитах с отбором керна для реконструкции прошлых климатов. Наконец, следует разрабатывать измерения излучений в разных диапазонах волн с помощью ледников и спутников для определения температуры, альбедо, шероховатости поверхности ледников и снежного покрова. Организация подобных исследований могла бы стать частью международного проекта «Ледники - океан - атмосфера», посвященного важнейшей планетарной задаче: оценке взаимодействия оледенения с океаном и атмосферой в условиях меняющегося климата.

Часть 1. Сезонный снежный покров Земли

ный климата. В этом случае необходимы расчет или реконструкция изменений формы ледников, вызываемых изменениями климата. Эта проблема включает задачи механики и термодинамики ледников и решена до сих пор физическими методами лишь в очень грубых приближениях. Альтернатива — геологические методы с использованием эволюции формы ледниковых шхитов в прошлом для прогноза на будущее.

Исходные данные по снежному покрову получают наблюдениями на метеорологических станциях, наземными и дистанционными снегомерными съемками, фотографированием с самолета и из космоса, измерениями излучений на разных длинах волн.

На сети meteorологических станций измеряются время залегания, толщина снега и снегозапаса на площадках, образующих сеть, в которой одна точка приходится иногда на несколько тысяч квадратных километров. Преимущество наблюдений — их высокая частота: до двух раз в сутки, хотя плотность снега измеряется реже. Альбедо снега измеряют на крайне ограниченно числу станций. Температура поверхности измеряется, как правило, некорректно из радиационного тепла термометров, поэтому установка продолжительности

tания снега затруднительно.

Снегомерные съемки выполняются по маршрутам протяженностью в несколько километров или десятков километров. Маршруты приурочены, как правило, к репрезентативным, но проходимым ландшафтам, а в городах обычно к тарельчатым долинам. Измеряются толщина снега и снегозапасы равномерно по маршруту или в репрезентативных узлах — снегомерках. По крупным территориям маршруты распределяются неравномерно и не охватывают их сплошь. Такие снегомерные проводят примерно один раз в месяц или декаду.

Даже комбинация стандартных станционных и маршрутных наблюдений не приносит точных данных о площади снежного покрова и тем более о положении фронта и площади снеготаяния. Эти данные оказывается лицо приближенными. Дистанционные снегомерные съемки включают съемки с самолета или с земли на рейках, установленных в опасных зонах местах, а также оценку снегозапасов с самолета по поглощению снегом естественного излучения гамма лучей. Последний метод успешно применяется на равнинах (Дмитриев и др., 1970; Cartol, 1980), но наталкивается на навигационные трудности в городах.

По снимкам со спутников, а иногда и с самолетов дешифруют границы установления снега и снегоизоля疫情期间 снегом, площади одновременного снеготаяния (съемки в ближнем инфракрасном диапазоне). Разработаны методы автоматического картографирования границ снежного покрова. Метеосклет-ный обзор крупных территорий обеспечивает meteorологические спутники систем NOAA и «Метеор» (Деллер, 1980), но они обладают низкой разрешающей способностью — соответственно 3 и 1,5 км.
ЛИТЕРАТУРА

Литература

Вангенгейм Г.Я. Основы макроклиматического метода долгосрочных метеорологических прогнозов для Арктики // Тр. АН ИИ. Т. 34. 1952. 314 с.

Витвицкий Г.И. Климаты зарубежной Азии. М.: Географиз, 1960. 398 с.

Гаппишко В.Г. О распределении снегозапасов на основе повторных аэрографий // Географическое об. 1975. С. 168–175.

Гордон С.М., Востракова Н.В. Характер изменения сезонной снеговой линии в горах // Докл. АН ТаджССР. Т. 5. № 3. 1962. С. 30–32.

Дегтяр М.С. Космические методы изучения снежного покрова Земли. Л.: Гидрометеоиздат, 1980. 77 с.
Часть 1. Сезонный снежный покров Земли

Денисов Ю.М. Метод расчета распределения снега в горах по данным аэрофотосъемки и температуры воздуха // Изв. АН УзССР. Сер. технич. наук. 1963. № 6. С. 73-79.

Жуков Н.И. К вопросу о формировании запасов снега на южном и северном склонах Киргизского хребта // Изв. АН КиргССР. Сер. естеств. и технич. наук. Т. 4. № 1. 1962. С. 121-126.

Калесник С.В. Общая гляциология. Л.: Учпедгиз, 1939. 327 с.

Каулиадина М.С. К методике измерения снежного покрова // Тр. Главной геофиз. обсерватории. Вып. 96. 1959. С. 61-70.

Комаров З.А. Некоторые закономерности переноса и отложения снега в районах Западной Сибири и их использование в снегозадержании и снегогенезе // Тр. Транск.-энерг. ин-та Зап.-Сиб. филиал АН СССР. Вып. 4. Новосибирск, 1954. С. 89-97.

Литература

Копанеов И.Д. Изменчивость характеристик снежного покрова на равнинной территории СССР // Тр. Главной геофиз. обсерватории. Вып. 160. 1964а. С. 86-98.

Косарев М.В. Основные результаты изучения морфологии снеготоков в бассейне реки Кзылчай // Тр. Ташкентской геофиз. обсерватории. Вып. 15 (16). 1957. С. 3-43.

Котлаков В.М. Особенности аккумуляции снега на ледниках в нано- и снежные зимы (по исследованиям на Эльбрусе) // Тр. ЗакНГУ. Вып. 20. 1966. С. 57-64.

Котлаков В.М., Памял М.Я. Подсчет количества твердых осадков на горных ледниках и роль метеорологических и других факторов на их перераспределении (по исследованиям на Эльбрусе) // Тепловой и водный режимы Скан- и ледниковых толщ. М., 1965а. С. 87-117.

Котлаков В.М., Памял М.Я. Нормальная снеготока на уровнем поле Эльбруса // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 11. 1965б. С. 254-258.

Кренке А.Н. Массообмен в ледниковых системах территории СССР. Л.: Гидрометеоиздат, 1982. 288 с.

Кузьмин П.П. О методике исследования и расчета испарения с снегом на территории СССР // Тр. Гидрометеоиздат. Вып. 41 (95). 1953. С. 34-52.

Кузьмин П.П. Формирование снежного покрова и методы определения снегозапасов. Л.: Гидрометеоиздат, 1960. 171 с.
Часть 1. Сезонный снежный покров Земли

Курилова Ю.В. Исследования снежного покрова по спутниковым данным // Водные ресурсы. 1975. № 2. С. 50–60.

Мусицков М.А., Кисел И.М. К вопросу о положении снежной линии на Восточной Кавказе // Учен. зап. Азерб. ун-та. Геол.-геогр. сер. № 3. 1959. С. 75–81.

Пуханов В.Н. Формирование, распределение и изменчивость снежного покрова на Азиатской территории СССР // Метеорология и гидрология. 1964. № 8. С. 34–40.

Литература

Степанов В.М. О снежном покрове в Татарии // 150 лет meteorol. обсерватории Казанского ун-та. Казань, 1963. С. 136–144.

Хмалˀаба Г.Н. Особенности распределения снега и льда в снеге в горах Западной Сибири. Тр. ТГУ-НИИГ. Вып. 9. 1961. С. 64–78.

Ходаков В.Г. Снеговой покров и современное определение Полярного Урала // Исследование ледников и ледниковых районов. Вып. 2. М., 1962. С. 41–49.

Шумский П.А. Энергия определения и жизнь ледников. М.: Географгиз, 1947. 60 с.

Шумский П.А. К терминологии в теории гляциологической зоновости // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 7. 1963. С. 185–188.

ДИССЕРТАЦИЯ

Johnson B. Studier über vinterklimatet i södra och mellersta Sverige // Svenska kongsvårdföres tidskr. Vol. 54. № 4. 1956.

Часть вторая
СНЕЖНЫЙ ПОКРОВ
НА ЛЕДНИКАХ

Природа любит эхинацеиный потоком,
Ей ноти, две часы не суждены сроком.
Во всех ее делах крутит закон,
Велик без всякого пасынок он.

И.В. Гёте

Наука всегда не права – она не может решить ни одной проблемы, не поставив при этом десяток новых.

Бернард Шоу

Глава 1
СНЕГ НА ЛЕДНИКАХ
В ПЕРИОД АККУМУЛЯЦИИ

Период аккумуляции на леднике — это часть балансового года, в течение которой приход вещества на ледник в целом превышает его расход. С достаточной степенью точности можно считать, что в среднем для ледника период аккумуляции начинается с того момента, когда на уровне границы питания снежноледник начнет преобладать над таянием; период аккумуляции заканчивается тогда, когда на этом уровне начинается абляция. Для общей характеристики режима ледника важно знать средние многолетние даты начала и конца периода аккумуляции на леднике и продолжительность этого периода. В течение периода аккумуляции на леднике, особенно в его области абляции, возможно таяние (в зимнее время это оттепели разной интенсивности), однако оно не дает заметного стока и тем самым не затрагивает запасов влаги, аккумулированной в леднике.
Глава 1. Снег на ледниках в период аккумуляции

Случаях, когда горные хребты располагаются перпендикулярно к основному направлению движения воздушных масс, приносящих влагу.

Сильные восходящие токи воздуха приводят к формированию в районе вершин очагов повышенного осадконаложения. Образующихся здесь снежные осадки далеко разносятся ветром и служат причиной образования с подветренной стороны хребта вытянутого на несколько километров шлейфа повышенной снежности. На Полироном Урале такие шлейфы прослеживаются на 12—15 км в восточном направлении.

Особую роль в этом случае играют речные долины, направленные вдоль господствующих ветров. Поступающая в пределы горной страны воздушная масса ниже нижней части разбивается на ряд потоков, продолжающих двигаться по речным долинам. По мере поднятия и постепенного сужения долины концентрация влаги в воздушной массе и образовавшихся в ней снежинок возрастает. По мере перенаполнения через хребет снег из этого потока выпадает, что приводит к повышенному снегонакоплению на подветренном склоне вблизи гребня этого участка.

Перераспределение выпадающих осадков в поле криволинейных линий тока воздуха хорошо видно на рис. 2.1, составленным В.Г. Ходаковым по данным наблюдений на Полироном Урале. Поле траекторий снежинок значительно отличается от линий тока воздуха. Влияние этого фактора в чистом виде выяснить весьма трудно, так как снеготечение происходит при совместном воздействии ряда причин, в особенности метелевого переноса. Перераспределение снега, подобное к рассчитанному (x, y), на рис. 2.1; здесь x — количество осадков, выпадающих на горизонтальную поверхность перед хребтом, y — среднее количество осадков, выпадающих на любой участок профиля. В.Г. Ходаков получил при измерении водозапаса в слое снегонакопления слабой снежности из данных обширной области. Действительные величины снегогазов на разных участках профиля, измеренные в период максимального снегонакопления (q, a) часто отличаются от рассчитанных, что связано с перераспределением отложенного снега метелями и лавинами.

Некоторую роль в концентрации снега при его выпадении играют устойчивые вертикальные вихри, возникающие при прохождении воздушного потока над крутыми подветренными склонами. Снежник, попавшие в такие вихри, достигают земли быстрее и концентрируются на определенных участках склона.

Действие перечисленных выше факторов возрастает с увеличением крутизны склонов, что ведет к большей дифференциации осадков на крутях склонах и сопровождается склоновыми генерациями. Поэтому ледники начинают наливаться в местах повышенной концентрации осадков, часто отсутствующих на пологих участках, но приуровнены к более крутым, что с первого взгляда вызывает недоумение.
Глава 1. Снег на ледниках в период аккумуляции

отнести приморские районы, отличающиеся большой снежностью. Основная масса снега на ледниках Тихоокеанского побережья Северной Америки, о. Ян-Майен (Sheard, 1965), Камчатки отлагается зимой. В большинстве горных стран, лежащих в западной половине Евразии: Альпах, Кавказе и Средней Азии, Полярном Урале, большая часть осадков выпадает зимой и весной. Наконец, в горно-ледниковых районах Сибири, таких как Алтай (Троиц, 1949), Кодар (Преображенский, 1960), Сунтар-Хаа (Корейчук, 1963), резко преобладают осадки в теплый период: с мая по октябрь. До 60% годовой суммы осадков выпадает с мая по сентябрь и на ледниках внутренней Аляски (Carter, Atherton, 1961). На уровне ледников осадки в теплый период и особенно в переходные сезоны выпадают, как правило, в твердом виде, что способствует сохранению ледников и уменьшению их аблиций.

Таким образом, по направлению в глубь материка основное снегонашение на ледниках сдвигается с середины зимы на переходные периоды, а также на лето. Для оценки питания ледников атмосферными осадками важно знать, какая их часть выпадает в твердом виде, а какая в жидком, особенно учитывая летний максимум осадков в континентальных районах и возможность дождей в теплых приморских районах даже в зимнее время.

Интенсивность выпадения твердых осадков, так же как и жидких, может быть самой различной. Из-за несовершенства методов измерения твердых осадков достоверных данных об интенсивности их выпадения очень мало. В обычных условиях эта величина редко превышает 10 мм/сут. На Памире, например, интенсивность снегопадов обычно меньше 5 мм/сут, так, зимой 1957/58 г. больше 20 мм/сут выпадало на высоте 4000 м всего 8 раз, а на высоте 3000 м – 32 раза (Ледник Фенчик, т. 2, 1962).

Однако интенсивность снегопада в период его пика, очевидно, больше средней величины. Многолетние значения интенсивности кратковременных снегопадов, измеренные А.К. Дюниным (1963) в Новосибирске, колебались от 8 до 22 мм/сут. М.А. Великанов (1964) приводит величины прироста снежного покрова 25 см как минимально возможную за сутки. При средней плотности свежевыпавшего снега 0,1 г/см³ это соответствует 25 мм/сут (в водном эквиваленте). Результаты наших наблюдений на Эльбрусе позволяют утверждать, что верхние еще более интенсивные снегопады. Средняя их интенсивность за период аккумуляции 1961/62 г. была равна 12 мм/сут, а интенсивность за период аккумуляции 1962/63 г. она достигала 25 мм/сут. При этом в течение нескольких дней за сутки выпадало почти по 100 мм твердых осадков, а их сумма за январь 1963 г. превышала 700 мм.

В соответствии с характером атмосферной циркуляции и влагосодержанием воздушных масс интенсивность снегопадов в месяцах в месяца разнится. В районах морского климата много снега выпадает.
и в середине зимы, а в континентальных областях интенсивность снегопадов среди зимы резко падает (табл. 2.1). В районе Эльбруса, находящемся в условиях достаточно высокого увлажнения, интенсивность снегопадов в зимние месяцы обычно несколько ниже, чем весной и осенью, о чем можно судить по данным 1961/62 г. Это особенность можно объяснить следующим образом. Максимум циклической деятельности над Кавказом приходится на холодный период года, но влагосодержание атмосферных масс из-за низких температур зимой невелико. Поэтому наибольшее количество осадков смещается на весну и осень, хотя частота и продолжительность выпадения осадков могут быть максимальными зимой. Однако в экстремально снежные годы, каким был 1962/63 год, интенсивность снегопадов и зимой достигает очень больших значений.

Доля твердых осадков в годовой сумме зависит от интенсивности осадковыделения в атмосферных массах в холодное время года и от продолжительности холодного периода. Отсутствие конечных данных о твердых, жидких и смешанных осадках в горах заставляет искать косвенные пути для определения твердых осадков. С этой целью Р. Балысен (Balsein, 1957) подсчитал для некоторых районов Альп, Пиренеев и Центрального Французского массива сток за теплый период (с мая по октябрь). Полученный результат он уменился на величину, соответствующую стоку от жидких осадков, и таким образом определил процентное содержание твердых осадков в их годовой сумме, которое на высоте 3000 м в французской части Альп оказалось равным примерно 70%, а в Пиренеях — лишь примерно 50%.

В конечном счете, выпадение твердых осадков регулируется температурой воздуха, и поэтому расчеты можно основывать на данных о температуре. Ф. Лаушер (Lausch, 1954) на основе meteorологических наблюдений в Альпах, Южной Норвегии и в Арктике вывел эмпирическое линейное уравнение

$$X = 50 - 5t_{ср.мес.}$$

(3)

где X — твердые осадки (в процентах от общего количества), $t_{ср.мес.}$ — средняя месячная температура воздуха. При выводе этой зависимости автор исходит из того, что нормальные отклонения температуры от средней месячной лежат в пределах ±10 °C и при —10 °C осадки выпадают только в твердом виде, а при 10 °C — только в жидком. Результаты расчетов по формуле (3) хорошо согласуются с фактическими данными для области от 48 до 77° с.ш. По формуле Лаушера 75% осадков выпадает в твердом виде при температуре —5 °C.

П.А. Швер (1962) для определения периода с твердыми осадками принял критерием связь числа дней с температурой воздуха выше 0 °C со средней месячной температурой. За месяц с твердыми осадками был принят такой, когда наблюдалось не более пяти дней с температурой воздуха выше 0 °C. Средняя месячная температура в начале периода с твердыми осадками (осенью) изменяется от —6,0 °C на западе до 5,0 °C на востоке Евразии. При таких температурах в этих широтах выпадают 75% твердых осадков. В Японии средняя суточная температура начала периода с твердыми осадками достигает —7 °C. Средние месячные температуры конца периода с твердыми осадками (весной) с запада на восток нашей страны изменяются от —5,0 до —7,2 °C (Швер, 1963). Небольшое превышение этих температур над осевыми связано с охлаждающим влиянием снежного покрова.

Даже незначительное повышение средней годовой температуры в пределах одного района приводит к существенному уменьшению доли твердых осадков. Так, по данным П.А. Шумского (1947), в северной части Земли Франца-Иосифа годовая сумма осадков равна 190 мм, а в южной части — 225 мм, средняя годовая температура соответственно составляет —12,0 и —10,1 °C, а иокская равна 0,4 и 1,3 °C. В результате твердые осадки на севере арктических значений составляют 90% общей суммы осадков, на юге лишь 75%, а абсолютное их количество (примерно 170 мм) к югу почти не меняется.

В горах по мере увеличения абсолютной высоты средняя температура начинает периода с твердыми осадками постепенно принимает все более высокое значение (в Кавказе и в Альпах в предела до 1000-1500 м она равна —6,2 °C, а на высотах 1500—2000 м повышается до —4,8 °C), что аналогично росту этой температуры к северу на равнинных территориях и объясняется влиянием более суровых климатических условий.

На высоких уровнях в горах В течение большей части года подавляющее количество осадков выпадает в твердом виде. Так, на северном склоне Альп в долине Рейна на высоте 2500 м в среднем за год выпадает 72% снега, а в Швейцарских Альпах на высоте 3100 м снежные осадки составляют 92% их общей суммы. Даже в самый
Часть 2. Снежный покров на ледниках

teплый месяц (июль) на высоте 2500 м на снегопады приходится треть осадков, а на высоте 3100 м — две трети.

Доля твердых осадков закономерно растет с увеличением абсолютной высоты. Роль гор в формировании твердых осадков исключительно велика: горы резко интенсифицируют осадкообразование, при этом с уменьшением средней годовой температуры от 0 до -10 °C содержание твердых осадков (см. уравнение Лоншера) в среднем возрастает от 50 до 100%. В Альпах наблюдается равномерный рост доли твердых осадков на всех высотах.

Абсолютная высота, м
200 1000 1500 2000 2500 3000 3500
Доля твердых осадков, % 5 25 42 60 77 90 100

На Кавказе в связи с более южным его положением содержание твердых осадков на соответствующих высотных уровнях меньше, чем в Альпах. За неимением данных о доле твердых осадков приведены сведения (Цомая, 1958) о максимальных снегозапасах в процентах к годовой сумме осадков:

Абсолютная высота, м
200 1000 1700 2500 3000 3500 3900
Максимальные снегозапасы, % 5 10 22 48 70 93 100

Рост доли твердых осадков с высотой в ледниковых районах Сибири могут характеризовать данные хр. Сунтар-Хаята (Корейша, 1963):

Абсолютная высота, м
740 2050 3000
Доля твердых осадков, % 25 60 90

Особенности снеготаяния на ледниках

В Альпах и на Алтае на уровне широкой линии выделяется не более 10–15% жидких осадков. На увеличение доли твердых осадков определенное влияние оказывают сами ледники. М.В. Тронов (1960) оценивает увеличение доли снеговых осадков на леднике средних размеров в 10–15%. Несомненно, влияние ледников возрастает в тех случаях, когда основное выпадение осадков приурочено к теплому времени года, как это имеет место в континентальных областях, ибо именно летом наиболее велики различия температуры холодной поверхности ледника и прогретой поверхности скал. Еще больше роль ледниковой поверхности в увеличении выпадения твердых осадков на крупных полярных ледниках, особенно если они соседствуют с открытой поверхностью моря.

В ледниковых районах, расположенных сравнительно недалеко от источников влаги, некоторую роль в питании ледников играют нарастающие осадки, главным образом изморозь. В литературе можно найти упоминания о значительном, а в некоторых случаях подающим значении сублимационного льда в питании ледников. Ф. Лёве (Loewe, 1938) говорил о больших скоплениях изморози на ледниках Южной Патагонии и в прибрежных районах Аляски; у Р. Клебельсберга (Klebelsberg, 1948–1949) имеется указание на широкое распространение изморози в Альпах в пределах высот 2000–3000 м. Неоднократно отмечали изморозь на высотах около 6000 м на южных склонах восточных цепей Гималаев, в горах Скандинавии и прибрежных хребтах Кордильер Северной Америки. Все указанные выше районы относятся к областям морского климата, в которых поступает весьма влажный воздух. В исключительных условиях, создающихся на небольших, покрытых льдом островах, лежащих в открытом море, отложения изморози, видимому, могут достигать больших размеров (рис. 2.2). Подобные отложения, отмеченные и на некоторых островах Арктики и Субарктики, привели к мысли об очень большой доле нарастающих осадков в снежных отложениях некоторых полярных ледников и ледников, лежащих в приречно-морских цепях. Однако эти заключения были чисто умозрительными, так как количественных измерений нарастающих осадков совсем немного. Вместе с тем не следует забывать, что изморозь, образующаяся на поверхности снежного покрова, может иметь различное происхождение: она возникает и при сублимации льда из воздуха, и из иных слоев снежного покрова. В первом случае происходит общее увеличение массы снега, а во втором случае масса не меняется.
Глава 1. Снег на ледниках в период акумуляции

...щении их с высотой. Измерения в период МТГ на главном стволе ледника Вольф и наблюдения на трех метеорологических станциях, расположенных на высотах 2900, 4170 и 4900 м, показывают (Ледник Вольф, т. 2, 1962), что максимум твердых осадков в этом районе Намибии приходится приблизительно на высоту 4500 м, а выше снегообразование не происходит. Наблюдения на ледниках массы Руинзонор в Африке (Osmaston, 1961) не обнаруживают тенденции убывания твердых осадков, вплоть до высот 4900 м.

Общий характер изменения высоты фирволовой линии в различных климатах в целом подобен изменению уровней максимумов снегозапасов (понижение от экватора к полюсам и от континентальных районов к морским). Однако темп этого изменения неодинаков за время движения факторов, влияющих на высотное положение измеренных зон. Если высота максимума твердых осадков определяется зимними климатическими условиями, то высота фирволовой линии в значительной степени зависит от характера летних условий. Это приводит к различному соотношению рассматриваемых уровней на разных широтах, на что указывали В. Фишер и Р. Флинт (Pasching, 1923; Flint, 1957).

В низких и средних широтах фирволовая линия лежит выше уровня максимума твердых осадков. В областях морского климата (Альпы) разница между ними составляет 400–600 м, в областях континентального климата с холодной зимой и жарким летом (горы Центральной Азии) разница достигает 1000 м. Оба уровня значительно сближаются в экваториальном поясе, где сезонные колебания температуры очень малы. В полярных областях фирволовая линия проходит ниже уровня максимальных снегопадов.

Среди метеорологических факторов, определяющих положение фирволовой линии на леднике, основными служат средняя температура летнего периода и количество осадков, выпавших за период аккумуляции. Поскольку пространство раздела областей питания и расхода на леднике характеризуется равенством аккумуляции и абляции, а последние в значительной мере зависит от средней температуры воздуха в течение сезона аблации, можно считать, что аккумуляция у фирволовой линии косвенно связана со средней летней температурой: более высокой температуре на этом уровне соответствует и большее количество выпадающих осадков.

Подобно снежной линии, высота фирволовой линии (как и границы питания) в значительной степени зависит от ориентации склона, на котором лежит ледник, к влагоносным воздушным массам. Эта зависимость отражает воздействие различной величины твердых осадков: при проходе равных облаков, фирволовая линия ниже всего располагается на ледниках, обращенных к потоку влаги. Так, в бассейне ледника в Федченко самое низкое положение фирволовой линии занимает в центральной его части (около 4300 м против 4650 м в...
Часть 2. Снежный покров на ледниках

среднем по всему бассейну), что связано с благоприятными условиями переноса снега осадков, господствующими юго-западными ветрами через седловину Кашал-Акя. В хр. Сунтар-Хаята, куда основная влага приходит с запада, на ледниках северо-западной и западной эквипотенциал, граница питания проходит на высоте 2230–2250 м, а на ледниках восточной эквипотенциал — на высоте около 2400 м.

Ледники различных морфологических типов в разной степени благоприятны для снегонакопления на их поверхности. С этой точки зрения в группе горных ледников целесообразно выделить ледники, располагающиеся во впадинах рельефа, с одной стороны, и на горных вершинах или плитообразных возвышенностях — с другой.

В первой группе выделяются долинные, каровые и прислоновые ледники, а также их комбинации (например, карово-долинные). За исключением прислоновых и части каровых, лежащих в небольших углублениях склонов, другие ледники этой группы характеризуются хорошо выраженными областями акумуляции и абляции. Область питания, отличающаяся вогнутым поперечным профилем, более удобна для снегонакопления, чем область абляции с выпуклым профилем. Чем более вогнутый характер имеет область акумуляции ледника, тем ниже стремится расположиться фронтовая линия на этом леднике.

Во второй группе выделяются висячие ледники, лежащие на крутых склонах гор, ледники вулканических конусов и ледники плоских вершин. Последние, по существу, приближаются к покровному типу. Условия питания этой группы ледников менее благоприятны, чем предыдущей. Причина заключается в преобладании сноса с их поверхности метелями, в то время как на леднике первой группы некоторая часть снега добавляется под воздействием метелей и линии. В результате фронтовая линия на ледниках второй группы обычно располагается выше, чем на ледниках первой группы. На хр. Сунтар-Хаята граница питания на долинных и каровых ледниках лежит в среднем на высоте 2320–2345 м, а на висячих и карово-висячих — на высоте 2365–2415 м (Корейша, 1963). На Алтае фронтовая линия на каровых ледниках лежит на 150–200 м ниже, чем на висячих (Тронов, 1954).

Аккумуляция снега на ледниках, лежащих на плоских плато или одиночно расположенных вершинах, оказывается пониженной вследствие схода с них снега. Так, на ледниках плоских вершин Алтан снега накапливается вдвое меньше, чем выдается в этом районе (Ревякин, 1964), на плоскотравных ледниках Тань-Шань на уровне фронтовой линии акумуляция составляет всего 300 мм (Айзек, 1950), что более чем вдвое меньше выпадающего в этом районе осадков. В результате фронтовая линия на ледниках плоских вершин оказывается расположенной выше по сравнению с каровыми или долинными ледниками этого же района.

Глава 1. Снег на ледниках в период аккумуляции

Еще более ухудшаются условия питания ледников, лежащих на отдельных вершинах. Из-за схода снега ветрами и схода линии аккумуляция снега здесь оказывается по крайней мере вдвое меньше, чем на пологих склонах внутри горной страны, и фронтовая линия на отдельных вершинах горного хребта и на вулканических конусах занимает очень высокое положение. Так, на Срединном хребте Камчатки фронтовая линия находит на высоте 1000–1100 м, на вулкане Шивелуч она поднимается до 2200 м, а на Ключевской — до 2700 м (Иваньков, 1958). Часто так же и на склонах Эльбруса фронтовая линия лежит на несколько сотен метров выше, чем на ледниках центральной части Главного Кавказского хребта.

На основе изучения картографических материалов по Альпам, Норвегии и Исландии Г. Менли (Manley, 1955) установил, что наличие ледников на отдельных вершинах зависит от высоты вершины и высоты над снежной линией. В связи с этим он говорит о критической или предельной высоте, при которой возможно образование тонкого «вечного» снега на вершинах. Для условий умеренного пояса Менли приводит следующие величины ширины поверхности, способной удержать снег: ширины поверхности в зависимости от высоты над снежной линией:

<table>
<thead>
<tr>
<th>Ширина вершины, м</th>
<th>1000</th>
<th>300</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Превышение над снежной линией, м</td>
<td>200</td>
<td>400</td>
<td>600</td>
</tr>
</tbody>
</table>

Конечно, немалое значение при определении относительной ширины поверхности вершины имеет ее крутизна, а при определении абсолютной высоты таких вершин — положение снежной линии в районе. В Норвегии, например, минимальная высота вершины, несуших ледники, увеличивается от 1200 м на западном побережье до 2200 м в глубине страны (Ostrem, 1964). На таких вершинах, так же как и на склонах, обычно существуют малые ледники.

Малые ледники образуют особый класс ледниковых образований и отличаются от других ледников своими небольшими размерами, определяются некоторое своеобразие их развития. Малые ледники обладают большей степенью устойчивости по сравнению с ледниками долинными, плоскими вершинами и т.п. В период деградации последних малые ледники часто продолжают существовать и могут возникать вновь. Свидетельствующие об этом факты подмечены на Алтае, Полярном Урале, Новой Земле. При возникновении они в первую очередь образуются малые ледники, при их распаде они исчезают постепенно. Пример этого мы приводили ранее (Айзек, Котищев, 1964): у некоторых подкожовобразных ледников на западе СССР в настоящее время фронтовая область исчезла и сохранились лишь отдельные их части в карах второго порядка по периферии старого ширика.
Глава 1. Снег на ледниках в период аккумуляции

Рис. 2.3. Характер связи величин выпадающих осадков ΣX и суммы отрицательных средних месячных значений температуры воздуха $\Sigma t_{\text{н},X}$

Зимних температур следует ожидать роста количества твердых осадков и на этой основе строить корреляционные графики.

В общем виде зависимость величины выпадающих осадков (ΣX) от суммы отрицательных средних месячных значений температуры воздуха ($\Sigma t_{\text{н},X}$) криволинейна (рис. 2.3). По мере понижения зимних температур количество выпадающих осадков уменьшается и ведется (кривая вынуждает), при этом должен испытывать изменение и годовой ход выпадающих осадков. В холодные зимы в погашении ледников возрастает относительная роль осадков переходных сезонов (сентябрь, октябрь, май), что аналогично изменению годового хода осадков при увеличении континентальности климата, сопровождающемуся понижением средней зимней температуры и сдвигом максимума осадков на осень и весну.

Построив графики связи ΣX и $\Sigma t_{\text{н},X}$, для того или иного района, мы еще ничего не можем сказать о годовой аккумуляции на конкретном леднике, если не изучен вклад метелевого и лавинного составляющих в погашении этого ледника и не проанализировано значение жидких осадков в его распределении. Полученные значения ΣX влияют в общем и целом для большинства ледниковых снегопадов и больших долинных ледников и могут значительно уменьшить количество аккумуляции снега в отдельных районах. С Московской и других ледниковых морфологии и сопровождаемых, как правило, повышением температуры. Поэтому с возрастием средних
Глава 1. Снег на ледниках в период аккумуляции

Достаточно объективным критерием при анализе деформируемой поверхности снега является ее твердость, определяемая временем сопротивлением вдавливанию конуса. Поэтому все наши измерения интенсивности низких метелей в районе Мирного (Антарктида) были разделены на три группы: а) при рыхлом снеге (твердость не больше 0,8—1,2 кг/см²); б) при средней твердости поверхности (до 4—5 кг/см²) и в) при очень твердом снеге (больше 5 кг/см²). Для каждой из этих групп отдельно вычислена зависимость полного расхода метели Q от скорости ветра U. Оказалось, что в первом случае значение критической скорости ветра Uₜₕ, при которой начинается метель, равно 5 м/с, а во втором и третьем случаях — соответственно 7 и 10 м/с. При полученные кривые проходят через теоретическую кривую, соответствующей максимальной насыщенности снеговетрового потока (рис. 2.4). При этом они располагаются тем дальше от этой последней, чем тверже поверхность, на которой происходит перенос. Это вполне естественно, если учесть, что с уменьшением количества льдоносного снега на поверхности возрастает сила, необходимая для разрушения поверхностного слоя снега и вовлечения его в снеговетровой поток, а следовательно, увеличивается длина участка, на котором происходит насыщение потока.

В природных условиях, как правило, снеговетровой поток бывает ненасыщенным. При этом практически могут наблюдаться любые величины расходов, соответствующие данной скорости ветра и иногда даже превышающие теоретические значения, достигаемые при полном насыщении потока снегом. Последнее возможно при малых скоростях ветра, что объясняется, по мнению А.К. Дюнина (1963), влиянием скольжения, на которое энергия затрачивается меньше, чем на подъем зерен и их сальтирование.

Поскольку ветер обладает большой порывистостью и турбулентностью, а поток движется над неровной поверхностью, скорость ветра непрерывно изменяется. Но количество выпадающего из снеговетрового потока снега пропорционально разности кубов начальной и конечной скоростей ветра, т.e. сравнительно небольшое снижение скорости ветра способствует выпадению большого количества снега. Насыщение потока происходит значительно медленнее. Поэтому-то снеговетровой поток при низкой метели и не бывает насыщены до предела, и при одном и тех же скоростях ветра переносится резкое количество снега.

Особенно характерно это для ледниковых районов. В горах из-за сильной растекаемости рельефа отсутствуют достаточно ровные пространства, на протяжении которых поток мог бы длительное время настилаться снегом, а любые неровности ведут к выпадению снега из потока. На ледниковых куполах и покровах препятствием к насыщению потока снегом служит твердая подстилающая поверхность, откладывается же снег у малейших препятствий, какими являются
формы снежного микрорельефа. Лишь при наличии на поверхности ледника достаточного количества рыхлого снега снежеветровая поток приближается к состоянию насыщения, о чем свидетельствует кривая на рис. 2.4.

Можно полагать, что в конкретных условиях как скорость ветра при метелях, так и расход снежеветрового потока ограничены определенными пределами, различными для разных районов. Задача полевых исследований – определить эти пределы и вычислить возможные величины общего расхода снега в местах детальных снегомерных наблюдений и в целом на леднике. Очевидно, эти величины будут изменяться в зависимости от того, в какой части снегоборного бассейна поставлены наблюдения. Подобные исследования мы провели на нижнем фильтровом поле Эльбураса, в результате чего удалось получить кривую средних из возможных величин общего расхода снега при наблюдаемых здесь скоростях ветра (кривая 6 на рис. 2.4).

Недостаток многих наблюдений заключается в не вполне уверенном разделении метелей на общие и низовые, тогда как механизм и интенсивность переноса, а также воздействие на поверхность снега при этом совершенно различны. Такое разделение обычно затрудняется тем, что при сильных метелях трудно вычислить, выпадает ли в это время снег. Однако весьма простой анализ метеорологических и снегомерных данных позволяет безошибочно определить, относится ли метель к общей или низовой.

При определении снегопада или метели я придерживался терминологии А.К. Дюнина (1963). Снегопад – это выпадение твердых осадков при скорости ветра \(U_{1,2} \), не более 5 м/с (у А.К. Дюнина – 3 м/с на высоте 1 м от поверхности). Низовая метель – это поверхностная, или дефляционная метель без выпадения снега; общая метель – метель с выпадением снега. В понятие «низовая метель» я также включаю поземки, аналогичные ей по генезису. В зависимости от интенсивности снегопада, характера снежной поверхности и ряда других условий можно различать две основные разновидности общей метели: сопровождающуюся дефляцией снежной поверхности и не сопровождающуюся такой дефляцией.
Глава 1. Снег на ледниках в период аккумуляции

<table>
<thead>
<tr>
<th>Таблица 2.2</th>
<th>Средняя за период аккумуляции характеристика метелевых явлений и снегопадов в Антарктиде и на Кавказе*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Станция, год</td>
<td>Поземки</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Пионерская, 1957</td>
<td>-41,0</td>
</tr>
<tr>
<td>Мирный, 1957</td>
<td>-13,2</td>
</tr>
<tr>
<td>Ледовая База, 1961/62</td>
<td>-6,9</td>
</tr>
</tbody>
</table>

*1 – температура воздуха, °C; 2 – скорость ветра, м/с.
** По Ледовой Базе в этой колонке приводятся данные о снегопадах (случай поземок объединены с низовыми метелями).

Поземки и низовые метели подчеркивает, что поземки и низовые метели есть звенья одного и того же процесса. В то же время различия температур при низовых и общих метелях в целом за период аккумуляции составляют на Пионерской примерно 6°, а на Ледовой Базе 4°.

Такая разница температур при метелях разного вида иногда служит причиной неодинакового температурного режима различных ледников в одном и том же районе. Так, на Полярном Урале присклоновые ледники содержат больший запас тепла, чем карово-долинные ледники, что объясняется большей долей холодного метелевого снега в питании присклоновых ледников по сравнению с каровыми, где велика роль снегопадов.

Основная масса общей метели составляет выпадающий снег, значительная часть которого еще не касалась поверхности. При общей метели частицы снега, поднятые с поверхности, не поднимаются выше 1 м, а при более слабых ветрах все они находятся в пределах нижних 50 см, как это было в опыте А.К. Дюнина (1963). Правда, над горными склонами или вблизи них иногда возникают вихри с вертикальной осью, в которых снег поднимается на высоту нескольких десятков метров. Выше 1 м (при отсутствии вертикальных вихрей) интенсивность переноса снега при общих метелях \(i_{ob} \) выражается следующей формулой:

\[
i_{ob} = \frac{X_0}{\tau} \frac{U_x}{\omega_0}.
\]

где \(X_0 / \tau \) – интенсивность выпадения осадков, \(U_x \) – скорость ветра и \(\omega_0 \) – гидравлическая скорость снежинок. Анализ В.Г. Ходакова (Определение Урала, 1966) показал, что последнюю величину можно считать близкой к 1 м/с. Следовательно, перенос снега при общей
метели, если исключить дефляционную составляющую, пропорциональную интенсивности снегопада и скорости ветра.

Поступление больших масс снега сверху, а не снизу ведет к меньшей зависимости (чем при низовых метелях) интенсивности снегообразования от состояния подстилающей поверхности. При уменьшении интенсивности снегопада в снеговетровом потоке возрастает доля снега, поднятого с поверхности. Практически основное перемещение снега при общей метели происходит в нижнем 2-метровом слое.

При слабых низовых метелях (посему) снег поднимается лишь на 10-20 см, при метелях средней интенсивности - не выше 1 м и при сильных низовых метелях - до 2-3 м. Наши наблюдения показывают, что лишь при высоте 15-20 см происходит значимое количество снега. На высоте 11,5 см интенсивность снега в 10 раз меньше, чем у поверхности. Однако, как показывают опыты А.К. Дюнина (1963), с увеличением скорости ветра уровень максимальной концентрации метели несколько смещается вверх, что связано также и с изменением параметров шероховатости (Оленединение Урала, 1966).

Различие в вертикальном распределении переносимого снега при низовой и общей метелих скажется и на характере отложения снега. При низовой метели, когда основная масса снега переносится у поверхности, последовательность отложения зерен зависит от форм и размеров снежной структуры. Если снежный покров слоеный, то при слабых низовых метелях снег может быть относительно равномерно распределен, в то время как при сильных низовых метелях снег проникает в более глубокие слои, что приводит к увеличению интенсивности снегообразования в нижних слоях. В результате, снег, выпадающий в низовой метели, может быть более равномерным, чем при низовой метели.

На основании наблюдений можно предположить, что в определенный момент увеличение скорости ветра приводит к резкому повышению интенсивности метели. Низовая метель более интенсивна, чем сильная метель, так как при скоростях ветра менее 10 м/с морозы и снежные массы могут быть относительно равномерно распределены. Однако при высоких скоростях ветра снег может быть более равномерно распределен, что приводит к увеличению интенсивности снегообразования в нижних слоях. В результате, снег, выпадающий в низовой метели, может быть более равномерным, чем при низовой метели.

Рис. 2.6. Диаграммы гранулеметрического состава снега
По А.К. Дюнина (1963)
1 - только что выпавший снежный снег, 2 - пластинчатый снег, 3 - снежный снег в начальной зоне разложения метели, 4 - стопорчатый металлический снег из снега

Причиной этого является то, что в промежутках между плотными ветрами, снег может быть относительно равномерно распределен, что приводит к увеличению интенсивности снегообразования в нижних слоях. В результате, снег, выпадающий в низовой метели, может быть более равномерным, чем при низовой метели.

В процессе переноса снега, образовавшийся в результате метели, снег может быть относительно равномерно распределен. Однако при высоких скоростях ветра снег может быть более равномерно распределен, что приводит к увеличению интенсивности снегообразования в нижних слоях. В результате, снег, выпадающий в низовой метели, может быть более равномерным, чем при низовой метели.

Для полного насыщения ветрового потока снега требуется некоторое расстояние, известное как нулевой диаметр. Поскольку на дне ледников снеговетровой поток может быть ненасыщенным, будем употреблять этот термин в применении к любому участку поверхности, на котором происходит увеличение расхода снега, сопровождаемое дефицией.

Основным фактором, влияющим на быстроту насыщения снеговетрового потока и, следовательно, на длину его метели, служит состояние поверхности снега, в свою очередь, определяемое многими причинами. Среди них следует отметить температуру воздуха и верхнего слоя снежного покрова, а также интенсивность солнечной радиации, значительный рост которой приводит к снегозападению и снегозападению отдельных снежных зерен, что, в конечном счете,
Глава 1. Снег на ледниках в период аккумуляции

При продолжительных сильных ветрах и малых запасах рыхлого снега может сложиться, что в некоторой части района метели будет снег с высоты снежной. Образуется снег с высоты снежной, как его называет П.П. Кузьмин (1960), что представляет собой подветренную границу участков, на которых весь снег снегом. С продолжением метели при снеге, а вместе с ним и зона разнообразие метели перемещается в направлении ветра, захватывая все новые участки, на которых ранее снега не происходило. Для ровной местности без препятствий скорость перемещения фронта снега можно вычислить по формуле (Кузьмин, 1960):

\[V_{\text{сл}} = \frac{q}{(h - h_1)\gamma} \]

где \(q \) — общий расход снега, \(h \) — толщина рыхлого снега, \(h_1 \) — толщина снежного слоя, \(\gamma \) — плотность снежного слоя, \(\beta \) — коэффициент снегопереработки, при полном снеге равный единице.

Проведем расчет скорости перемещения фронта снега для характерных условий фирнового поля на Эльбрусе и прибрежных участков Антарктиды, для которых мы имеем следующие исходные данные:

<table>
<thead>
<tr>
<th>Участок</th>
<th>Эльбрус</th>
<th>Антарктида</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_{\text{м}}), м/с</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>(q_0, \delta,(\text{см min}^{-1}))</td>
<td>9</td>
<td>120</td>
</tr>
<tr>
<td>(h_1, \text{см})</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>(h_1, \text{см})</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>(\gamma, \text{лет})</td>
<td>0,2</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Вычисленная по приведенной выше формуле скорость перемещения фронта снега на Эльбрусе равна 3,7 см/мин, а на побережье Антарктиды — 27,5 см/мин. За сутки такой метели фронт снега на Эльбрусе может переместиться почти на 55 м, а в Антарктиде — на 400 м. Учитывая среднюю продолжительность метели такой интенсивности, можно заключить, что максимально фронт снега на Эльбрусе продвигается приближительно на 150 м, а в прибрежной Антарктиде — почти на 1 км.

Таковы пределы перемещения участков разнообразия метели на горных ледниках и пьезарных ледниковых куполах. Обычно фронт снега перемещается меньше. Приведенные цифры говорят о том, что условия метелевого переноса на горных ледниках более изменчивы, чем на покровных.

Частицы снега не могут переноситься метелью без конечных размеров. Рано или поздно каждая из переносимых частиц либо испаряется, либо упала на поверхность и закрепляется в снежном покрове. Следовательно, существует некоторая дальность переноса.
 Часть 2. Снежный покров на ледниках

при метели. А.К. Дюния (1961) говорит о предельной дальности переноса снега, понимая под этой величиной расстояние, которое могут преодолеть метельные частицы до тех пор, пока они совсем не испарятся. Но испаряется во время метели далеко не весь переносимый снег. Большая его часть вновь попадает в снежный покров, отложившись на серповидных поверхностях. Поэтому под дальночность переноса целесообразно понимать среднее расстояние, на которое перемещается отдельная частица снега в тех или иных природных условиях.

Дальность переноса — это расстояние, на котором снеговетровой поток полностью обнаруживает поступающий (сверху и снизу) снегом. Она представляет собой среднюю величину, характерную для условий данного места. Дальность переноса какой-либо конкретной снежинки может быть самой различной: от нескольких метров в случае скопления до десятков километров, когда она оказывается взвешенной. Но для балансовых расчетов наиболее важно именно среднее расстояние, на которое метель перемещает снежные частицы.

Дальность переноса прямо пропорциональна скорости ветра и обратно пропорциональна температуре воздуха, дефициту влажности воздуха и размерам переносимых частиц снега. Большое воздействие на нее оказывают колебания скорости ветра, в значительной степени связанные с пересечением рельефа. Из приведенного перечня факторов, определяющих дальность переноса, легко видеть, что наибольш ее величины она должна достигать на выровненных пространствах суровых полярных районов, достаточно большой она может быть на равнинных территориях умеренного пояса и гораздо меньше в горах.

К сожалению, измерить дальность переноса \(L \) весьма трудно. Обычно для ее определения применяют расчетные способы. О.П. Чижов (Чижов, Энгельгардт, 1965) использовал для этих целей измерения полного расхода метели за определенный промежуток времени \(\Sigma Q \tau \), количество выпавших за это время твердых осадков \(X \), и приращение снегозапаса \(\Delta H \) за то же время. Приращение снегозапаса равно \(\Delta H = X_{\text{сн}} - X_{\text{сн}} \), где \(X_{\text{сн}} \), — сно с единицы поверхности, который можно выразить следующим образом:

\[
X_{\text{сн}} = \frac{\Sigma Q \tau}{L},
\]

откуда

\[
L = \frac{\Sigma Q \tau}{X_{\text{сн}} - \Delta H}. \tag{4}
\]

А.А. Комаров (1959) рассчитывал дальность переноса снега по формуле

Роль метелей в жизни горного осадения

Существуют мнения об огромной роли метелевого переноса в жизни горного осадения. Он переносит снег через горные хребты и возникновение ледников на подветренных склонах крупных хребтов за счет спуска его с наветренных склонов. Г.К. Тушиный (1949) считает, что обширное оседание на северном склоне Кавказского хребта и малое развитие ледников на южном склоне обязано постоянному переносу снега во время метелей через водораздел с южного склона на северный. Он же утверждает (Тушиный, 1963),
Глава 1. Снег на ледниках в период аккумуляции

к концентрации снега в определенных местах за счет сноса его с дронетемных, лежащих в пределах нескольких сотен метров. Возведение метелевого переноса приводит к тому, что более близайшими дящими для развития аккумуляции оказываются не ровные пологие склоны, а грубо расчлененные, дающие большую возможность для метелевого и лавинного концентрации снега.

По интенсивности развития метелевой деятельности горные ледники делятся на две разновидности группы. К первой относятся многолетние и неровные ледники, окруженные высокими горными склонами. В областях питания таких ледников ветра не бывают сильными; так, на Центральном Тейк-Холмском леднике в Заилийском Алатау или на леднике Карабатка в Терской Алатау средние годовые скорости ветра не превышают 3 м/с и часто, даже в зимнее время, повторяются ветры. Во второй группе относятся ледники, лежащие на открытых ветренных местах: ледники уваланных склонов, высоко расположенные области питания, и изыски некоторых крупных долинных ледников (на последних развиваются ледниковые ветры). Например, в областях питания ледника Федченко и Альбуссейских ледников средние годовые скорости ветра приближаются к 6 м/с, а в средней части ледника Федченко (4170 м) средняя годовая скорость ветра составляет примерно 8 м/с.

На таких ледниках метеоры очень часты. За период аккумуляции (с сентября по май) на ледник Федченко бывает 120 дней с метелями на высоте 4900 м и 190 дней на высоте 4170 м, на южном склоне Эльбруса (3750 м) – 150 дней, на Полярном Урале (755 м) – 145 дней (Котяк, Шиам, 1965; Ледник Федченко, т. 2, 1962; Определение Урала, 1966). Абстракции за метелевыми явлениями различных типов, проведенные на Эльбрусе (табл. 2.3), показывают, что вклад их в перенос снега более же менее одинаков. Общая же продолжительность снегопадов и метелей составляет 40–50% всего времени, что дает основание говорить о большой перераспределении снега на леднике и значительной изменчивости зимой снежного покрова.

За период аккумуляции, обычно по условиям погоды, через 1–2 погодные метели на уровне границы питания на Эльбрусе переносится около 75 тыс. м снега, а в зимнее повышенной снежности (1962/63 г.) – 114 тыс. м. Еще большее количество снега переносится метелями на ледниках Полярного Урала. На ледниках плоских вершин Алтая и Тянь-Шаня ветры сносят до половины выпадающего здесь снега. Такая картина характерна и для некоторых плоских ледников, примером чего может служить ледник Ашутор на хр. Терской Алатау, с которого сноится до 50% снега (Диких, 1964). На ледниках Эльбруса ветра перемещают некоторое количество снега из верхней части области питания на более низкий уровень.

На больших долинных ледниках характерно перемещение снега ледниками с верхней вниз, иногда нарушаемое влиянием
Часть 2. Снежный покров на ледниках

Таблица 2.3

Повторяемость и продолжительность снегопадов и метелей по данным метеорологической станции Ледовая База*

<table>
<thead>
<tr>
<th>Месяц</th>
<th>Снегопады</th>
<th>Общие метели</th>
<th>Низовые метели</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1961/62 г.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сентябрь</td>
<td>19</td>
<td>135</td>
<td>7</td>
</tr>
<tr>
<td>Октябрь</td>
<td>10</td>
<td>108</td>
<td>9</td>
</tr>
<tr>
<td>Ноябрь</td>
<td>12</td>
<td>130</td>
<td>16</td>
</tr>
<tr>
<td>Декабрь</td>
<td>11</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>Январь</td>
<td>3</td>
<td>90</td>
<td>12</td>
</tr>
<tr>
<td>Февраль</td>
<td>9</td>
<td>56</td>
<td>14</td>
</tr>
<tr>
<td>Март</td>
<td>2</td>
<td>104</td>
<td>13</td>
</tr>
<tr>
<td>Апрель</td>
<td>20</td>
<td>183</td>
<td>2</td>
</tr>
<tr>
<td>Май</td>
<td>13</td>
<td>105</td>
<td>11</td>
</tr>
<tr>
<td>Всего период</td>
<td>114</td>
<td>989</td>
<td>106</td>
</tr>
<tr>
<td>1962/63 г.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Октябрь</td>
<td>11</td>
<td>71</td>
<td>7</td>
</tr>
<tr>
<td>Ноябрь</td>
<td>10</td>
<td>91</td>
<td>1</td>
</tr>
<tr>
<td>Декабрь</td>
<td>16</td>
<td>122</td>
<td>15</td>
</tr>
<tr>
<td>Январь</td>
<td>15</td>
<td>151</td>
<td>17</td>
</tr>
<tr>
<td>Февраль</td>
<td>11</td>
<td>171</td>
<td>9</td>
</tr>
<tr>
<td>Март</td>
<td>12</td>
<td>116</td>
<td>11</td>
</tr>
<tr>
<td>Апрель</td>
<td>16</td>
<td>150</td>
<td>3</td>
</tr>
<tr>
<td>Май</td>
<td>25</td>
<td>288</td>
<td>2</td>
</tr>
<tr>
<td>Всего период</td>
<td>116</td>
<td>1160</td>
<td>65</td>
</tr>
</tbody>
</table>

* 1 — число дней; 2 — продолжительность, часы.

общераспространенных ветров. На небольших долинных ледниках, где ясно выражены горно-долинные ветры нет, перенос снега больше будет связан с снегом, который наблюдается в некоторых случаях. За счет этого процесса снегонакопления на языке ледника Каратак выделяется приближительно на 30% против выпадающих здесь осадков (Диких, 1964).

Глава 1. Снег на ледниках в период аккумуляции

В то же время области аккумуляции большинства каровых и долинных ледников получают дополнительное питание за счет снега с окружающих склонов (в том числе лавинами) и перевозок с северных вершин или платообразных возвышенностей. На Центральном Тюксуском леднике доля метелевого снега составляет 12—15% от объема выпадающего осадка (Макаревич, Виссев, 1961). Можно полагать, что величина 15% достаточно характерна для долинных ледников.

Доля метелевого снега в питании каровых и присковых ледников гораздо больше. В некоторых случаях объемы приносимого метелевого снега в несколько раз больше всех выпавших на ледник осадков. Так, при «фоновой» величине осадков в области современного оползения Полярного Урала (1000—800 мм) на каровых ледниках при среднем образце вследствие метелей накапливается масса снега до 2000—4000 мм.

Величина аккумуляции на большинстве ледников изменяется от года к году пропорционально изменению суммы выпадающих твердых осадков. На каровых ледниках, в питании которых подавляющее значение имеет метелевая концентрация снега, ежегодные колебания аккумуляции связаны прежде всего с повторяемостью и интенсивностью метелевого переноса. Так, на некоторых ледниках Полярного Урала (Описание Урала, 1966) аккумуляция (в ц/м²) составляла:

1957/58 г.	1958/59 г.
Ледник ИГАН | 105 | 265
Ледник Обручева | 170 | 250
Ледник Аксоха | 135 | 200

Увеличение аккумуляции снега в 1957/58 г. по сравнению с 1958/59 г. объясняется усилением метелевого переноса зимой 1958/59 г. При этом различия метелевого питания от года к году могут быть очень велики: на леднике Обручева приход метелевого снега в 1957/58 г. был равен 50 ц/м², а в 1959/60 г. — 170 ц/м².

Метелевое перераспределение снега на ледниковых куполах зависит от форм купола и плана и ориентирования его долинной оси относительно господствующих ветров. Как правило, ветры, дующие поперек простирающихся купола, принесут некоторое количество снега на его верхние участки, в то время как перпендикулярные ветры снегом не снабжают. Это связано с более высоким значением скорости ветра, дующего вдоль долинной оси купола, в плане подъема к его вершине. В связи с этим снегоп-
ветровой поток сохраняет свою транспортную способность и даже увеличивает ее при подходе к вершине, благодаря чему часть снега оттуда сносится.

Последний процесс преобладает на большинстве арктических куполов: из-за сносов аккумуляция в привершинной части куполов на 20–25% меньше, чем сумма выпадающих здесь осадков. На Земле Франца-Иосифа с куполов Чурляйнка и Джексона (о. Гувер) сносится до 150 мм осадков (при их годовой сумме около 500 мм) (Определение Земли..., 1973). Соотношение величин снегонакопления на вершинах и у подножья куполов зависит также от их абсолютной высоты. На небольших ледниковых куполях происходит лишь метелевое перераспределение снега, в то время как аккумуляция снега в верхних частях высоких куполов возрастает из-за увеличения с высотой количества выпадающих осадков.

Роль метелевого переноса в режиме покровного оледенения подробно рассмотрена в первой книге этого шеститомника. Добавим здесь, что широкое развитие метелей в Антарктиде и Гренландии дало повод к возникновению нескольких гипотез, преувеличивающих роль метелей в питании крупных ледников куполов. В противоположность В. Аббуссу с его неверной идеей выноса большого количества снега из внутренних районов Антарктиды в краевые участки (см. в 1-й части первой книги), Т. Бергерон (Bergeron, 1965) выступил с гипотезой об огромном переносе снега внутрь материковых ледниковых куполов. На основании наблюдений в Гренландии он считает, что при сильных циклонических ветрах (до 20 м/с), дующих вверх по склону ледникового щита, большое количество снега переносится в его центральную часть из прибрежных районов, где выпадает до 1500 мм осадков в год. Перенос же снега стоковыми ветрами вниз по склону вследствие их малых скоростей и сильного радиационного и ветрового уплотнения снега, по его мнению, незначителен.

На составленном Т. Бергероном рисунке изображены три характерные синоптические ситуации над Гренландией (рис. 2.7). В первых двух ситуациях Бергерон предполагает перемещение снега вверх по леднику с отложением его в наиболее высокой расположенной части. Зависимость дефицита подножья и ослабления снега от интенсивности снегопереноса на рисунке Бергерона качественно выражена верно, однако так и не уточняется массы снега вверх по склону ледника, составляющего в центральных районах до 2/3 годовой аккумуляции, вызывает большие сомнения.

Метеорологические наблюдения в Гренландии и Антарктиде показывают абсолютное господство на склоне ледниковых покровов сильных стоковых ветров. Эти ветры вызываются значительным вынужденным движением воздуха внутри материка и движением его под действием силы тяжести вниз по склону ледникового покрова. Их сила зависит, следовательно, от степени радиационного вынуждающего...

Рис. 2.7. Качественные схемы переноса снега ветром на Гренландском ледниковых покровов при перевязывании циклоническими ветрами ледникового щита (а), ветром в устье ледника в районе Антарктиды (б) и ветром в устье ледникового щита (в). По Т. Бергерону

X_c - твердые осадки, Q - расход метели, S_x - снос или отложение снега, U - скорость ветра

ния, протяженности и угла наклона склона. Поскольку абсолютная степень снеговой поверхности в Антарктиде и Гренландии встречается редко, стоковые ветры возникают и в более внутренних районах. Об этом свидетельствуют срочные месячные скорости ветра на станциях Восток и Советская в Антарктиде, составляющие 4–5 м/с, и такие же скорости на станциях Айсфит и Стасьон-Сентраль в Гренландии. Однако эти ветры слишком слабы, чтобы существенно влиять на природные процессы.

Стоковые ветры переносят громадное количество снега, что в свою очередь может оказывать влияние на характер самого ветра. Метелевый перенос на обширном пространстве даже при небольших уклонов поверхностей способствует усилению ветра. Как показывает расчет С.М. Козака (1963), при благоприятных условиях рельефа и большом количестве рыхлого снега на поверхности благодаря...
Глава 1. Снег на ледниках в период аккумуляции

Рис. 2.8. Характер отложения снежников в зонах затишь около препятствий при разном наклоне поверхности по отношению к ветру.

Влияние препятствий на снеготложение во время метелей зависит также от уклона поверхности ледника по отношению к направлению ветра. Как показал А.К. Дюнин (1963), при метелях с обеих сторон препятствия возникают зоны затишь, в которых снегом покрыты лишь уклон или 30° отклонение осадков, а за зимой 1958/59 г. отклонялось снегом 70% осадков, а за зимой 1958/59 г. - 30% осадков. Однако если перепад между объемом снега и его промежуточным слоем на всю сумму выпадающих над ледниковым покровом осадков, то окажется, что с Новой Земли ветер сносит лишь 4% выпадающего снега.

Рассмотрим теперь роль метелевого переноса в зимнем режиме ледников. Закономерности снеготложения у препятствий по мере увеличения последних (от зоны снегового микрорельефа до бугров и холмов на ледниковой поверхности) все более приближаются к закономерностям, отмечаемым для небольших ледников, к которым меньше всего снега откладывается на вершинах бугров и крутых наклонов снега, а больше всего — на подветренных склонах и на поверхности рельефа. Чем ровнее поверхность, тем более равномерно происходит снеготложение.

Любые резкие впадины в рельефе, особенно открытые трещины, служат причиной повышенного накопления на этих участках. В связи с движением льда, а также с поступлением пронизывающих трещин снежных мостов величина трещинной аккумуляции в течение зимы изменяется. Общая закономерность метелевого переноса снега на леднике заключается в выравнивании поверхности. Не случайно все ледники и углубления на шельфовых льдах бывают в общем виде в их тыловых частях (Кручинин, 1965), а морские участки вследствие длительного и равномерного снеготложения всегда имеют ровную поверхность.
Глава 1. Снег на ледниках в период аккумуляции

Рис. 29. Распределение снега на южном склоне Эльбруса за время метелей 20-29 декабря 1961 г. (а) и 28 марта – 3 апреля 1962 г. (б) Кружками обозначены снегомерные вехи. Шкала показывает толщину снега на участке скопления снега и отложения снега за каждую метель

ледяной холм и т.п.), зависит от дальности переноса снега и количества снега, слушаемого метелами с этого участка. Если X — количество твердых осадков в данном районе, A — средняя величина снегопада на участке снега, L — дальность переноса снега, D — длина образующегося ветровой тени сугроба, а H — количество отлагающегося в нем снега, то, исходя из баланса метелевого переноса, можно записать:

$$(X - A)L = (H - X)D,$$

откуда

$$H = \frac{L}{D}(X - A) + X.$$ (5)

В этой формуле отношение L/D характеризует степень концентрации снега в ветровой тени. Проведя расчет по формуле (5), мы пренебрежем испарением снега во время переноса. Основным для этого служит малая дальность переноса снега в горах и соответственно малый поперечник снегостопорного бассейна, то есть в (Дюнин, 1961), что безвозвратные потери снега на испарение во время метелей резко уменьшаются с сокращением снегостопорной площади.

Исходя из данных наблюдений на Эльбрусе зимой 1961/62 г., мы рассчитали по формуле (5) высоту сугроба, ежегодно образующегося на правом склоне ледника Березовый в конце периода аккумуляции. При $X = 1000 \text{ см}^2$, $A = 70 \text{ см}^2$, $L = 100 \text{ м}$, $D = 10 \text{ м}$ аккумуляция снега в сугробе может достигать 400 см^2, что при средней плотности снега в нем 0,4 см^2 соответствует действительной высоте сугроба 10 м. Образование таких больших сугробов на леднике в течение зимы приводит к изменению мезорельефа поверхности ледника, что в свою очередь отражается на снегостоплении во время последующих метелей. В связи с постепенным выпадением поверхности на протяжении зимы снегостопление во вторую половину периода аккумуляции происходит более равномерно, чем в первую.

Часть 2. Снежный покров на ледниках

В конце декабря за 9 дней общей метели, перемежающейся сильным поземом и низовой метелью, при ветрах западных румбов со скоростями 8–16 м/с снег отложился неравномерно, причем основная аккумуляция наблюдалась у подножья пологовзвешенных склонов вала (рис. 2.9, а). Более равномерным было снеготложение в конце марта — начале апреля, когда в течение 5 дней шел сильный снегопад, неоднородно прерывавшийся поземком и низовой метелью при западном ветре до 8 м/с (рис. 2.9, б).

Воздействие метелевого переноса приводит к возникновению на ледниках участков (или областей) преимущественного снега или надувания снега. Можно различать пять основных участков (областей): незначительного снега, большого снега, незначительного надувания, большого надувания, а также изредка встречающиеся в горах участки, на которых снегонакопление соответствует количеству выпадающих осадков. Примером таких нейтральных участков может служить ниже Фирновое поле на южном склоне Эльбруса, где были поставлены наши методические работы, или плато ИГАН на Поляр-
Часть 2. Снежные покровы на ледниках

Таблица 2.4

Особенности отложения снега на южном склоне Эльбруса

<table>
<thead>
<tr>
<th>Области снегонакопления и высотные пояса</th>
<th>Количество рек</th>
<th>Среднее снегонакопление, см/год</th>
<th>Коэффициент концентрации</th>
<th>Коэффициент вариации</th>
</tr>
</thead>
<tbody>
<tr>
<td>Большого сноса</td>
<td>10</td>
<td>52</td>
<td>0,50</td>
<td>0,22</td>
</tr>
<tr>
<td>Незначительного сноса</td>
<td>13</td>
<td>105</td>
<td>1,02</td>
<td>0,13</td>
</tr>
<tr>
<td>Незначительного наледования</td>
<td>16</td>
<td>150</td>
<td>1,45</td>
<td>0,09</td>
</tr>
<tr>
<td>Большого наледования</td>
<td>6</td>
<td>210</td>
<td>2,04</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Высотные пояса

3750—3800 м	10	99	0,96	0,59
3800—3850 м	8	152	1,48	0,20
3850—3900 м	8	128	1,24	0,44
3900—3950 м	7	153	1,48	0,29
3950—4000 м	7	109	1,06	0,36
4000—4050 м	3	48	0,46	0,16

участкам преимущественного наледования (табл. 2.4). Характерно, что коэффициент вариации распределения снегопоглощений на всей площади однотипных участков совстречается 0,09—0,22, что свидетельствует об аналогичном характере снегонакопления на любых из участков данного типа.

Контуры областей снегонакопления связаны в первую очередь с конфигурацией микрорельефа поверхности ледника и не зависят от абсолютной высоты. Из-за метелевого перераспределения снега не отмечено закономерности роста аккумуляции с высотой, что логично было бы ожидать на этих высотах (см. табл. 2.4). Значения коэффициентов вариации почти во всех высотных поясах весьма велики, что свидетельствует о неравномерном заглаживании снега на поверхности ледника. В целом для всего южного склона Эльбруса значение С, равно 0,36. Однако после общей метели оно составляет всего 0,10—0,15, что еще раз подчеркивает весьма неравномерное снегонакопление на всей площади ледника в результате такой метели.

Наконец, данные табл. 2.4 свидетельствуют о том, что основное снегонакопление на Эльбрусе, оценение которого относится к типу снегонакопления вулканического конуса (рис. 2.12), приурочено к высотному поясу 3800—4000 м, где вследствие метелевого переноса коэффициент концентрации превышает единицу.

Глава 1. Снег на ледниках в период аккумуляции

Рис. 2.12. Вид Эльбруса с запада

В заключение покажем изменение роли метелевого переноса в зимнем режиме ледников в периоды аккумуляции, отличающиеся различной снежностью. Из двух основных факторов, определяющих метелевый перенос, — количества выпадающих осадков и скорости ветра — первая величина гораздо изменчивее второй. Поэтому колебания продолжительности и интенсивности метелей год от года зависят главным образом от изменчивости выпадающих осадков. Как правило, с ростом твердых осадков увеличивается продолжительность метелевого переноса даже при неизменной средней зимней скорости ветра. Последнее объясняется тем, что с увеличением скорости ветра возрастает расход метели, но преимущественно тем, что с ростом скорости ветра увеличивается обычно более устойчивые к снегопады снегопады. Однако зависимость объемов метелевого переноса от количества выпадающих ветровых осадков весьма далека от прямой пропорциональности, вследствие чего изменения этих двух величин никогда не происходит параллельно. Последнее служит причиной того, что изменение зимнего режима ледников, в аккумуляции которых главную роль играют метели, не бывают синхронными изменениями ледников, аккумуляция на которых зависит лишь от общего количества выпадающих осадков. Эти различия бывают столь велики, что приводят к неоднократному ходу во времени баланса массы подледных ледников.
Часть 2. Снежный покров на ледниках

<table>
<thead>
<tr>
<th>Таблица 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Основные характеристики периода аккумуляции на ледниках Эльбруса за четыре года</td>
</tr>
<tr>
<td>Средняя температура за весь период, °C</td>
</tr>
<tr>
<td>Средняя скорость ветра, м/с</td>
</tr>
<tr>
<td>Количество выпавших осадков, мм</td>
</tr>
<tr>
<td>Отношение количества снега к выпавшему, %</td>
</tr>
<tr>
<td>Продолжительность снегопадов и метелей, часы</td>
</tr>
<tr>
<td>То же, % ко всему времени</td>
</tr>
<tr>
<td>Количество снега, перенесенного через 1 км, тыс. м</td>
</tr>
</tbody>
</table>

В результате четырехлетних наблюдений в области аккумуляции ледников Эльбруса удалось сравнить особенности метелевого переноса в обычные по метеорологическим условиям годы с одним резко аномальным. Как показывают данные табл. 2.5, зимой 1962/63 г. количество выпавших осадков вдвоем превысило их среднюю величину, тогда как температура воздуха и скорость ветра сильно отличались от средних незначительно (на 1 °C и 0,7 м/с). Тем не менее изменения режима аккумуляции на леднике были очень велики.

Исследованиями на Эльбрусе удалось выяснить, что основным фактором, определяющим величину аккумуляции на открытом горном леднике, служит продолжительность и интенсивность обледенелых метелей, в то время как низовые метели играют значительно меньшую роль. В многоветренные зимы развитие усиливается еще более обледенелых метелей, что приводит к увеличению количества перенесенного снега (114 тыс. м против 70-75 тыс. м в обычные годы). В то же время дефляция снега в многоветренные зимы резко сокращается (-8% против 20-30% в обычные годы), что объясняется уменьшением повторяемости и силы низовых метелей и способствует сохранению выпавшего снега на леднике.

В аномально снежные зимы низовые метели на леднике значительно меньше (400 часов против 600-800 часов в обычные годы), поэтому постоянные и сильные обледенелые метели приводят к значительной уплотненности количества (плотность поверхностного слоя снега 0,30 г/см³ вместо обычной 0,23 г/см³), с трудом поддающегося дефляции. В многоветренные зимы накопление снега на леднике происходит

Глава 1. Снег на ледниках в период до начала}

Снег на ледниках в период до начала стационарных условий

gораздо равномернее, чем обычно, так как при господствующих в такие годы обледенелых метелях снежоветраевой поток насыщается в основном за счет выпадающего, а не отложенного снега.

Роль многоснежных зим в режиме больших и малых горных ледников различна. Она особенно велика на крупных ледниках, где аккумуляция значительного объема осадков, выпадающих в окружающем районе, и значительно уменьшается на небольших ледниках, существующих за счет концентрации твердых осадков, которая растет не пропорционально увеличению их количества. Накопление снега в многоснежные зимы не отражается на режиме небольших ледников, лежащих в небольших углублениях горных склонов, так как для заполнения этих углублений достаточно снега, выпадающего и переносимого в среднем на 10 лет.

Очевидно, влияние многоснежных зим на режим ледников возрастает пропорционально их размерам.

Роль лавин в питании ледников

Участие лавин существенно в питании горных ледников, окруженных высокими и достаточно крутыми склонами. Оно особенно характерно для двух типов ледников: долинных и каровых. В областях аккумуляции больших долинных ледников облицованные отлед склоны занимают сравнительно малые площади, в связи с чем сход лавин непосредственно в область питания этих ледников случаются довольно редко. Однако в некоторых районах, особенно в Средней и Центральной Азии, множество лавин сходит с крутых склонов долин на поверхность языков ледников. В Каракоруме, Куэльдуне и Памире издавна были описаны древовидные ледники, получившие название ледников туркестанского типа (рис. 2.13). Иногда они лежат в наиболее крупных бассейнах, но основные массы снега получают от лавин.

Доля лавинного питания долинных ледников значительна еще с более высокой, вплоть до крупных бассейнов. При депрессии такого ледника поток воды достигается уже и иногда отбивается от крупного склона, что усиливает разрушение и ведет к более быстрому отмиранию ледника. В период разрастания, наоборот, действует механизм положительной обратной связи: с увеличением площади языка лавина появляется дополнительное питание в виде лавин, ведущее к ускорению наступающего ледника. Возможно даже, что в периоды повышенной снежности, отличившиеся усиленным ходом лавин, древовидные ледники возникают в средних частях долин и за вступление дальнейшего развития соединяются с карово-долинными ледниками, существовавшими в верховьях, превращаясь в настоящий большой ледник туркестанского типа.
Глава 1. Снег на ледниках в период аккумуляции

Во многих горных странах существуют так называемые лестницы каров, т.е. трещины каров, расположенные на склонах ступенями. На Кавказе известны кары четырех ярусов; для верхних трех ярусов характерны лавины (Тушинский, 1949). Из разрушенных эрозий каров второго (2300 м) и третьего (2600—2700 м) ярусов лавины, как правило, соскальзывают вниз, в долины, где образуют конусы снега, стаивающие в течение лета. В верхних же, действующих карах, где сохранилось плоское дно, падающие лавины на нем останавливаются, не проходя дальше вниз, что в благоприятных условиях приводит к возникновению и сохранению здесь ледников. Крышки каровых ярусов лежат на Кавказе на высоте 2900—3000 м, на уровне снеговой линии. Поэтому каровые ледники с большой долей лавинного питания абсолютно преобладают на этом уровне, что имеет существенное палеогеографическое значение.

О доле лавинного снега можно судить по размерам лавинных снежников. По наблюдениям многих авторов (см. Лосев, 1966; Тушинский, 1949), обычна мощность лавинных снежников на Кавказе и Тянь-Шане составляет 15—25 м, но некоторые конусы снега лавин достигают толщины 40 и даже 50 м. Известны случаи, когда лавинные снежники толщиной до 100 м ставили в долинах рек в течение нескольких лет. Учитывая, что площадь лавинных снежников обычно колеблется от 10 до 50 тыс. м², следует заключить, что объем их (при средней толщине 20 м) составляет 0,2—1 млн м³, а масса равна 0,1—0,5 млн т. В расчете на каровый ледник площадью 1 км² это даёт прирост снегозапасов 1—5 г/см², что следует признать значительным.

Расчеты К.С. Лосева (1966), а также мои оценки показывают, что лавинный снег на склонах составляет в среднем около 10% от максимальных снегозапасов (с колебаниями в основном от 1 до 30%). Из табл. 2.6 видно, что вклад лавинного питания в аккумуляцию долинных ледников, как правило, не превышает 10% и редко достигает 20% суммы выпадающих осадков, в то время как на малых ледниках лавины дополнительно приносят до 40% общего объема отлагаемых на них твердых осадков, а в особо благоприятных условиях эта цифра может превысить 100%. В среднем можно принять, что вклад лавин в аккумуляцию больших долинных ледников составляет около 5%, а малых ледников – около 20%; это по крайней мере втрое меньше доли метелей.

Количественно степень метелевой и лавинной концентрации снега на ледниках можно выразить через уже упоминавшийся коэффициент концентрации k:
Таблица 2.6

<table>
<thead>
<tr>
<th>Снос снега лавинами со склонов, % от максимальных негативных запасов</th>
<th>Большие долинные ледники</th>
<th>Малые карово-долнинные и каровые ледники</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,04—0,8</td>
<td>0,4—4,5</td>
</tr>
<tr>
<td>10</td>
<td>0,4—8</td>
<td>4—45</td>
</tr>
<tr>
<td>20</td>
<td>0,8—16</td>
<td>8,6—90</td>
</tr>
<tr>
<td>30</td>
<td>1,2—24</td>
<td>13—135</td>
</tr>
</tbody>
</table>

где X — «фоновая» величина твердых осадков; C — годовая аккумуляция на леднике; F_1 и F_2 — площади в бассейне ледника со снегом и без снега. На типичных каровых ледниках Полярного Урала величина F_1 несколько превышает площадь ледника к концу периода аблиции (Определение Урала, 1966). Из формул (6) ясно, что чем больше бесснежных площадей вокруг ледника, тем выше степень концентрации снега на нем. Для определенного ледника коэффициент концентрации — величина весьма устойчивая.

Среди факторов, способствующих возникновению лавин, можно назвать интенсивность и продолжительность снегопадов, метельный перенося снега, адвективные и радиационные оттепели, резкие изменения температуры воздуха и весеннее потепление. Действие большинства из этих факторов проявляется к весне, когда снежная толща на склонах достигает большой мощности, полностью оформливаются горизонты разъёма, появляется «смазка» в виде жидкой воды в толще снега и т.п. Следовательно, лавинное питание ледников, в отличие от питания метельным снегом и выпадающими твердыми осадками, имеет сезонный характер, приурочиваясь большей частью к концу периода аккумуляции.

Лавинное питание имеет характерные особенности в областях морского и континентального климата, а также на разных широтах. Поскольку возникновением лавин способствует переменчивая погода, большая лавинная деятельность свойственна горам, лежащим в умеренно континентальных и морских областях, нежели в глибине континента. Из-за некоторого уменьшения снегозапасов в горах и более редкого прохождения циклонов, несущих переменную погоду, нижняя граница лавиноопасной зоны пышет в Северной Европе с запада на восток вплоть до 110° в.д., где уже начинает чувствовать влияние восточной окраины континента. В гоах Кавказа и Средней
Глава 2
СНЕГ НА ЛЕДНИКАХ
В ПЕРИОД АБЛАЦИИ

Период аблиции на леднике — это часть балансового года, в течение которой расход вещества с ледника, обусловленный таянием и испарением снега и льда на поверхности, превышает его приход. В среднем для ледника период аблиции начинается приблизительно с того момента, когда на уровне границы питания впервые отмечается убыль снега, а заканчивается тогда, когда на этом уровне снегопадение начинает превосходить таяние. Период аблиции может прерываться на несколько дней вследствие обильных снегопадов, захватывающих всю поверхность ледника или большую ее часть.

Метеорологические условия, определяющие таяние

Тепловой баланс таящего снега

Таяние снега, лежащего на поверхности ледников, обусловливается тепловой энергией. Расчет и анализ отдельных составляющих теплового баланса позволяет исследовать ход снеготаяния, изучить степень влияния и вклад в таяние радиационного и адvectionного факторов. Основные источники тепла — это радиационный баланс \(R \), турбулентный теплообмен \(P \) и влагообмен \(LE \) между подстилающей поверхностью и нижними слоями воздуха (где \(L \) — скрытая теплота парообразования, \(E \) — скорость испарения-конденсации). Если величину \(E \) принять как знак плюс для случаев испарения и со знаком минус для случаев конденсации, а величину \(P \) со знаком плюс при отсутствии температуры в атмосфере при со знаком минус при направленности потока тепла от атмосферы к подстилающей поверхности, то уравнение теплового баланса верхнего (деятельного) слоя снежного покрова можно записать так:

\[
N = R \pm P \pm LE \pm B_1 \pm B_2
\]

Здесь \(N \) — тепло, затрачиваемое на таяние, а под деятельным слоем понимается слой, в котором полностью поглощается поступающая на поверхность снега суммарная солнечная радиация. Составляющая \(B \), означает тепло, затрачиваемое на нагревание деятельного слоя (со знаком плюс) при повышении его температуры или на охлаждение (со знаком минус) при понижении температуры толщи снега; составляющая \(B \) означает теплообмен деятельного слоя с нижележащими горизонтами (с плюсом при оттока тепла вниз и с минусом при поступлении тепла в верхний слой из нижележащей толщины). Величина \(B \) включает тепло и тепловое воздействие выпадающих жидких осадков на таяние.

Тепловое воздействие жидких осадков на снеготаяние (в тепловом выражении) не превышает 1\% общей суммы приходящего тепла. Гораздо большее значение имеют затраты тепла на прогревание нижележащих слоев фирна и льда, происходящие даже при установившихся нулевых температурах в самых верхних горизонтах снега. В этом случае тепло внутри толщи переходит с толщей водами, которые затем частично замерзают. Жидкая вода просачивается в фирну на глубину до 10–15 м, что приводит к прогреванию всей этой толщи.

По вычислениям А.Н. Кренкеля (1961), расход тепла на прогревание ледников наступает примерно четверть часть всех затрат на таяние. Очевидно, затраты тепла на прогревание фирна и льда увеличиваются на более холодных ледниках, равно как и после более холодных зим. Значит, температурный режим зимы отражается на аблиции последующего лета: чем холоднее была зима, тем, при прочих равных условиях, менее интенсивной будет аблиция.

Детальные исследования теплового баланса ледниковой поверхности были начаты в 40-х и 50-х годах текущего столетия и до МГТ проводились в Альпах, на Тын-Шане, в Караоруме; в нашей стране подобные исследования впервые были выполнены в 1932 г. П.П. Кузьминым (1948) на леднике Имат в бассейне р. Зееван. Начиная с периода МГТ такие наблюдения стали продолжительными и нередко охватывали весь период аблиции. Они проводились на многих ледниках Арктики, Кавказа, Тын-Шаня, Сибири, Азии, Альпах, гор западной Европы, в Гренландии и Антарктиде. Широкий анализ радиационного и теплового баланса таяния ледников выполнен М.К. Гавриловой (1964 г.).

Основной источник тепла, идущего на таяние большинства ледников, — луцищая энергия. Максимальная интенсивность прямой солнечной радиации на горизонтальную поверхность на ледниках Кавказа и Средней Азии (34–36° с.ш., 3000–5000 м) в зависимости от абсолютной высоты равна 1.55–1.75 ккал/(см²мин), в Восточной Сибири (60–65° с.ш., 2000–2500 м) – 1.5 и в Арктике (75–80° с.ш., 300–800 м)
Часть 2. Снежный покров на ледниках

1. 1,45 кал/(см²·мин). Однако на многих горных ледниках суммы прямой радиации в ясные дни ослабляются на 10–20% из-за закрытости горизонта.

Фактически приходящие к поверхности ледника суммы прямой солнечной радиации S' зависят также от облачности. Над высоко расположенным ледником низкой широты Северного полушария облачность летом составляет в среднем 3–6 баллов, тогда как в умеренных и арктических широтах облачность равна 7–9 баллам. В результате на ледниках низких широт в период сноя падает в среднем 200–300 кал/см² в сутки тепла прямой солнечной радиации, в умеренных широтах – около 150, а в арктических – только 100 кал/см² в сутки.

Приход тепла за счет рассеянной радиации D в ледниковых районах оказывается повышенным по сравнению с неледниками из-за монотонного отхождения излучения между нижним основанием ледников и ледником. В целом за период таяния приход рассеянной радиации на ледниках Кавказа и Средней Азии равен приблизительно 300 кал/см² в сутки, на ледниках Сибири – 200–250 и в Арктике – примерно 250 кал/см² в сутки. Доля рассеянной радиации в общей сумме приходящей радиации возрастает в более высоких широтах: в малооблачных умеренных районах она составляет 50%, в умеренных широтах – 60% и в арктических – 70%. Соответственно суммарная коротковолновая радиация $(S' + D)$ за июль-август составляет за сутки на ледниках Средней Азии и Кавказа 500–700 кал/см², на ледниках умеренных широт – 300–500 и на арктических ледниках – 300–400 кал/см².

Действительные суточные суммы поглощенной радиацией вследствие высокого альбедо ледниковой поверхности на Кавказе и в Средней Азии равны 250–400 кал/см², в Сибири – 200 и в Арктике – 130–150 кал/см². Потери тепла на эффективное излучение $E_{ч}$ в связи с низкой температурой поверхности ледника сравнительно невелики: 100–120 кал/см² в умеренных районах и 60–80 кал/см² в полярных районах и на больших высотах. На ледниках Арктики и умеренных широт в дни с низкой облачностью противоизлучение атмосферы может стать более существенным излучением ледника.

В целом радиационный баланс R летом на ледниках положителен; в формируемых областях из-за большого потока тепла отражением его величина в 1,5–2 раза меньше, чем на окружающих скальных поверхностях. Суточные суммы радиационного баланса в низких широтах составляют 300–400 кал/см², в умеренных широтах – до 200 и в арктических – 50–100. Резко уменьшается величина радиационного баланса в подъемах в горах на Кавказе и в Средней Азии она равна 300 кал/см² на высотах 3000–3500 м и менее 50 кал/см² на высоте 5000 м (рис. 2.14). Основные закономерности изменения составляющих радиационного баланса с высотой хорошо видны на примере Эльбруса в табл. 2.7, подготовленной по данным А.П. Волошиной (1966).

Суточные суммы тепла составляющих радиационного баланса снежной поверхности на южном склоне Эльбруса, кал/см²

<table>
<thead>
<tr>
<th>Место наблюдений</th>
<th>Абс. высота, м</th>
<th>$+S'$</th>
<th>$+D$</th>
<th>$E_{ч}$</th>
<th>$-T$</th>
<th>$E_{ср}$</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Седловина Эльбруса</td>
<td>5300</td>
<td>634</td>
<td>79</td>
<td>330</td>
<td>505</td>
<td>535</td>
<td>3</td>
</tr>
<tr>
<td>Ледовая База</td>
<td>3700</td>
<td>736</td>
<td>75</td>
<td>430</td>
<td>452</td>
<td>604</td>
<td>185</td>
</tr>
<tr>
<td>Ледник Гарабашев</td>
<td>3400</td>
<td>702</td>
<td>65</td>
<td>521</td>
<td>328</td>
<td>615</td>
<td>345</td>
</tr>
</tbody>
</table>

Часть 2. Снежный покров на ледниках

Приложите абляция к конденсации со стороны испарения, при этом
в сутки выделяется в среднем около 15 ккал/см² тепла. Величина LE
привлекает к нулю или становится отрицательной (что
соответствует процессу испарения) лишь в полярных районах (выше
70° ю.ш. и 60° с.ш.) и на значительных высотах (свыше 4000–4500 м).

Общие суммы тепла N, затрачиваемого на таяние, изменяются по
широте и абсолютной высоте. В южных районах Северного полушария
суммарные ресурсы в среднем 500 ккал/см² на высоте 3000 м и всего
50 ккал/см² на высоте 5000 м, в умеренных широтах они колеблются около
200 ккал/см², а в арктических районах — около 100 ккал/см² (см. рис.
2.14).

Антарктический и Гренландский ледяные покровы во внутренних
районах из-за длинноволнового излучения почти постоянно теряют
больше энергии, чем получают благодаря солнечной радиации.
Этот потери покрываются главным образом поступлением в Антарктиду
и Гренландию более теплого воздуха и последующего переноса
тепла воздухом в область теплого продолжения слоев к более холодной
снежной поверхности, а также выделением тепла при конденсации
влаги на поверхности. Особенно большое значение имеет турбулентный
теплообмен при инверсии вследствие больших скоростей ветра.
На побережье Антарктиды и на склонах Гренландского ледяного
покрова величина турбулентного обмена в несколько раз превышает
годовую радиационный баланс, что свидетельствует о большой затрате
тепла на испарение и таяние.

Результаты измерения составляющих теплового баланса поверхностей
ледников (в основном в областях акумуляции) приведены в табл.
2.8. Эти данные показывают, что на подавляющем большинстве
ледников основным источником тепла, идущего на снеготаяние,
служит лучистая энергия. В зависимости от условий погоды и времени
года она составляет 60–80% приходной части теплового баланса.
Доля радиационной составляющей еще больше возрастает с высотой,
как это показано на примере исследований в Альпах (Hoinkes, 1955),
Каракоруме (Unterrichter, 1957), Кавказе (Волошин, 1966) и в других местах.
Принципиальной роли служит большая прозрачность атмосферы в
горах, но главной причиной этого является более низкая температура воздуха.

Таблица 2.8

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Район озеленения</th>
<th>Ледник</th>
<th>Абс. высота, м</th>
<th>Составляющие теплового баланса</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>1</td>
<td>О. Южная Георгия</td>
<td>Ходж</td>
<td>450</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Башкирия Земля</td>
<td>Пенин</td>
<td>2050</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>Новая Земля</td>
<td>Шокалевского</td>
<td>300</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Поллярный Урал</td>
<td>МГУ</td>
<td>800</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Швеция</td>
<td>Корша</td>
<td>1000</td>
<td>61</td>
</tr>
<tr>
<td>6</td>
<td>Гренландия</td>
<td>Британия</td>
<td>69</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Запад США</td>
<td>Голубой</td>
<td>2000</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>Запад Канады</td>
<td>Салмон</td>
<td>1700</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>Альпийская</td>
<td>Гульна</td>
<td>1465</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>Альпы</td>
<td>Хорнкес</td>
<td>2260</td>
<td>58</td>
</tr>
<tr>
<td>11</td>
<td>Альпы</td>
<td>Герн-Фернер</td>
<td>2970</td>
<td>81</td>
</tr>
<tr>
<td>12</td>
<td>Капказ</td>
<td>Эльбрус</td>
<td>3700</td>
<td>72</td>
</tr>
<tr>
<td>13</td>
<td>Памир</td>
<td>Федченко</td>
<td>4900</td>
<td>52</td>
</tr>
<tr>
<td>14</td>
<td>Памир</td>
<td>Федченко</td>
<td>4170</td>
<td>49</td>
</tr>
<tr>
<td>15</td>
<td>Адыгейский</td>
<td>Дугат</td>
<td>4200</td>
<td>87</td>
</tr>
<tr>
<td>16</td>
<td>Джунгарский Урал</td>
<td>Дашкин р. Баскан</td>
<td>57–74</td>
<td>23–37</td>
</tr>
<tr>
<td>17</td>
<td>Хр. Сунтар-Хаита</td>
<td>№ 31</td>
<td>2070</td>
<td>75–80</td>
</tr>
<tr>
<td>18</td>
<td>Каракорум</td>
<td>Дженомолов</td>
<td>4000</td>
<td>89</td>
</tr>
<tr>
<td>19</td>
<td>Каракорум</td>
<td>Дженомолов</td>
<td>4300</td>
<td>95</td>
</tr>
</tbody>
</table>

*Тыре в таблице означает, что в целом за период абляции испарение преобладает над конденсацией.
Источники данных указаны на следующей странице.
В ледниковых районах, находящихся недалеко от основных источников влаги, немалую роль в тепловом балансе снеготаяния играет тепло конденсации. В районах Субантарктики и Баффиновой Земли, где летом частицы тумана, тепло конденсации может достигать трети всей суммы поступающего тепла (см. табл. 2.8). В других районах морского климата вклад этой составляющей равен 10-15% всей суммы.

В целом доля основных составляющих приходной части теплового баланса распределяется следующим образом (в %):

<table>
<thead>
<tr>
<th>Ледники низких и умеренных широт</th>
<th>Северное полушарие</th>
<th>Ледники северной Арктики и Субантарктики</th>
</tr>
</thead>
</table>

Приведенные соотношения между отдельными составляющими теплового баланса не остаются постоянными в течение всего периода аблиции. Как правило, роль радиационной составляющей в начале лета больше, чем во второй ее половине, в связи с постепенным прогреванием воздуха (уменьшение же альбов поверхности снега и льда в течение лета компенсируется некоторым снижением суммарной радиации).

На леднике Корш Таун в Швеции (Wallén, 1948) структура теплового баланса (в процентах) весной и к концу лета изменялась следующим образом:

<table>
<thead>
<tr>
<th>Весна</th>
<th>Конт лета</th>
</tr>
</thead>
<tbody>
<tr>
<td>Р = 70, P = 25, LE = 5</td>
<td>Р = 35, P = 45, LE = 20</td>
</tr>
</tbody>
</table>

При периодических колебаниях климата изменчивость турбулентной составляющей теплового баланса гораздо больше изменчивости радиационной составляющей. Это значит, что интенсивности снеготаяния на ледниках в районах морского климата, лежащих на сравнительно небольших высотах, меняется в больших пределах, чем в внутривнутриконтинентальных районах, где ледники лежат высоко в горах. Следовательно, это обстоятельство служит еще одной причиной меньшей изменчивости баланса массы и более медленных колебаний ледников в континентальных районах земного шара по сравнению с морскими.

Величина таяния существенно зависит от типа погоды, связанного в свою очередь с циркуляцией атмосферы. Поскольку характер теплообмена ледников и атмосферы существенно различается в районах с преобладанием радиационной или турбулентной составляющих,
Глава 2. Счет на ледниках в период аблиции

Таблица 2.11

<table>
<thead>
<tr>
<th>Число дней в периоде</th>
<th>А+К₁</th>
<th>К₂</th>
<th>Ф</th>
<th>П</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>56</td>
<td>77</td>
<td>60</td>
<td>97</td>
</tr>
<tr>
<td>3–5</td>
<td>30</td>
<td>21</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Больше 5</td>
<td>14</td>
<td>2</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

Отклонения от этих величин. Так, в наиболее благоприятное для таяния лето 1962 г., помимо увеличения общей повторяемости типов погоды A и K₁, периоды с господством этих типов были особенно длительны (содержание устойчивой погоды в течение 5 дней и более летом 1962 г. составляло около 30% их общей длительности при средней величине за остальные годы наблюдений 9%). Последнее имеет особенно важное значение в увеличении интенсивности таяния, так как при длительной солнечной погоде без осадков альбедо поверхности снега быстро уменьшается, что способствует дальнейшему усилению таяния снега.

Количество радиационного тепла, поступающего к поверхности ледника, зависит от типа погоды (рис. 2.15). Но при одном и том же типе погоды и одинаковых высотах солнца радиационный баланс за день может различаться в 3–4 раза. Это связано с тем, что количество радиационного тепла, идущего на таяние, зависит от степени заграж-
часть 2. Снежный покров на ледниках

нения ледника, продолжительности периода без осадков, запыленности и увлажненности нижнего слоя тропосферы и много другого.

Влияние устойчивой солнечной погоды на таяние в первую и во вторую половину лета также различается. Эффективность такого таяния в начале периода меньше, когда снег еще не фризинизирован и мало загрязнен, значительно меньше. Так, в 1963 г. после обильных снегопадов в течение мая и первой половины июня снег не было, а приток суммарной радиации в условиях малооблаженности ясной погоды и максимальных высот солнца достигал 900 ккал/см² в сутки. Но альбедо чистого мелкозернистого слабо увлажненного негора в середине дня уменьшалось всего до 65%, так что радиационный баланс за день не превышал 180--200 ккал/см².

Были сделаны приближенные расчеты месячных величин радиационного баланса (в ккал/см²) за те месяцы, когда наблюдения на Эльбрусе проводились в каждом из рассматриваемых лет:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Июль</td>
<td>2,2</td>
<td>4,3</td>
<td>4,5</td>
<td>2,7</td>
</tr>
<tr>
<td>Август</td>
<td>4,1</td>
<td>2,3</td>
<td>3,4</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Значительное сокращение радиационного тепла в основные месяцы периода таяния 1963 г. по сравнению с остальными годами было одной из главных причин малой интенсивности таяния. Другой существенной причиной замедления таяния явилось отсутствие летом 1963 г. длительных периодов ясной погody.

Главной причиной интенсивного таяния летом 1962 г. были более низкие температуры воздуха, а также господство длительных периодов с повышенными погодой A и K. Так, за 9 ясных и малооблачных дней, следующих подряд, в июле 1962 г. стояло 36% месячной величины таяния, а за 12 ясных дней в августе — 63% (рис. 2.16). Кроме того, большое таяние 1962 г. было обусловлено высокими температурами воздуха, средняя температура периода таяния 1962 г., а также суммы положительных температур воздуха за этот период гораздо больше, чем за другие рассматриваемые годы.

Как видно из изложенного, влияние радиационного баланса и температурного режима воздуха на интенсивность таяния превалирует через типы погоды. При этом важны повторяемость и последовательность определенных типов, а также величины снегопадов, накопленных на леднике за предыдущий период аккумуляции, от которых зависит, как скоро ожидается, поток воздуха, который может вызвать таяние. Немалое воздействие на ход таяния оказывает фронтальный тип погоды, особенно когда он сопровождается обильными выпадениями снега, так называемыми ледяными снегопадами.

Глава 2. Снег на ледниках в период аблиции

Рис. 2.16. Условия погоды на южном склоне Эльбруса в период аблиции 1962 г.
1 — суточные суммы радиационного баланса, 2 — величины таяния — накопления, 3 — ясный день, 4 — пасмурный день, 5 — день с переменной облачностью

Изменение альбедо поверхности и роль летних снегопадов

Чередование типов погоды, а вместе с ними и интенсивности таяния ведет к непрерывному изменению альбедо поверхности снежного покрова, что прямо влияет на характер последующего таяния. Среди множества факторов, определяющих отражательные свойства снежной поверхности, можно выделить внешние и внутренние (Кузьмин, 1957). К первой группе относятся факторы, не зависящие от свойств снега и его состояния: это утепление и специфический состав радиации. Ко второй группе относятся оттенки цвета и плотность поверхности, ее влажность и степень загрязненности, размеры и форму зерен.

Изменения спектрального состава приходящей радиации в течение дня, а также зеркального отражения в верхних слоях снега в зависимости от угла падения солнечных лучей служат причиной дневного хода альбедо многих видов снега. Как правило, минимальные значения альбедо наблюдаются в околодавечные часы, а в утреннее и вечернее время отражательная способность снега бывает.
Глава 2. Снег на ледниках в период абляции

Рис. 2.17. Изменение средних суточных величин альбедо на южном склоне Эльбруса в периоды абляции 1962 г. (1) и 1963 г. (2)

местные, что в июле 1962 г. значения альбедо менее 60% наблюдались в 62% случаев, а в августе — в 74% случаев, из них половина дней приходилась на альбето со значениями ниже 50%, что свидетельствует о большей загрязненности фирина в этот период. Ни в одном из летних диапазонов 1963 г. альбето не опускалось ниже 50%, а в июле и августе наиболее теплых месяцах преобладали значения от 61 до 70%.

Для режима фириновых областей ледников характерны скачкообразные колебания альбето от одного дня к другому, обусловленные выпадением твёрдых осадков (рис. 2.17). Эти колебания тем значительней, чем больше загрязнена подстилающая поверхность, т.е. чем интенсивнее происходит таяние снега и фирина. В 1962 г. уже начиная с конца мая рост и падение альбето за сутки достигали 15–20%. Особенно заметны суточные скачки альбето в первой половине июля и в течение всего августа. Наоборот, летом 1963 г. когда альбето менялось в пределах 60–70%, суточные колебания его значений не превышали 10%.

Летние снегопады играют в режиме ледников двоякую роль. С одной стороны, это источник летнего питания ледников, а с другой — фактор, существенно влияющий на их таяние. Ещё Л.А. Варданянц (1935) отмечал, что летние снегопады служат решающим фактором существования областей питания кавказских ледников на высотах 3500–3700 м. Если бы питание ледников ограничивалось только зимой, то снеговая линия на Кавказе находилась бы на высоте 4500 м. Варданянц удалось выяснить, что на Центральном Кавказе на высотах 3000–3500 м в самые теплые месяцы не менее 10–15% всего времени занято снегопадами и метелями и не менее 25–35% времени поверхность покрыта снежным снегом.

Влияние летних снегопадов на таяние ледников Алтая изучал М.В. Троин (1964). Он установил, что из-за снегопадов период абляции на ледниках Актру, длительный 80–110 дней, в 1957 г.
Часть 2. Снежный покров на ледниках

Г. Тольнер (Tollner, 1959) связывает замедление отступления крупных ледников и даже случаи наступления небольших ледников Восточных Альп с увеличением повторяемости летних снегопадов вдвое. По мнению В. Кунэ (Kuhn, 1960), увеличение аккумуляции в филинских бассейнах ледников Центральной и Восточной Швейцарии в 1959/60 г. также связано с учащением снегопадов. По данным Кута, массовое Сильвертатта сума зимних осадков за 1959/60 г. была ниже нормы, а аккумуляция только за счет летних снегопадов составила 160 мм от 650 мм за год.

Особенно велико влияние летних снегопадов в конце периода абляции, так как выпадающий в это время снег покрывает большие площади обнаженного льда с низким альбедо. Нередко свежий снег, отложенный на леднике в августе, так и не успевает стаять до конца лета, и этот снегопад по существу становится началом нового периода аккумуляции. Именно так и произошло на леднике Актру в Алтае после обильного снегопада 25–27 августа 1957 г. Но особенно часто снегопады прекращают абляцию на ледниках, находящихся в условиях морского климата и получавших обильные осадки. Во время походлений в конце лета, связанных с глубокими циклонами, в областях аккумуляции, а иногда и в областях абляции этих ледников, вместо обычных здесь дождей приходят сильные снегопады. В 1961 г. на ледорезе ледников Хаббард и Каскасоул, лежащих на хр. Св. Илья на Аляске, на высоте 2600 м период абляции закончился 9 августа, когда в течение 72 часов выпало 48 см снега, или 134 мм в слое воды (Wood, 1964).

Для изучения роли летних снегопадов в режиме ледников мы поставили специальные наблюдения на Эльбрусе и на Центральном Тукусуийском леднике в Западном Альпах. Было выяснено, что после достаточно сильных снегопадов или их серии весь ледник покрывается слоем свежего снега, толщина которого уменьшается по направлению от области питания к концу ледника, а плотность, наоборот, возрастает. В связи с этим волокна в свежепокрытом снеге меняются с высотой, но лишь до того уровня, где снег еще не растает. Ниже этого уровня слой свежего снега значительно меньше, что объясняется не столько различной в количестве выпавших осадках, сколько характером поверхности, на которой лежит снег.

Весьма важно влияние летних снегопадов на сокращение площади ступивания летнего снега и льда. В период абляции граница сезонного снега на леднике постепенно сдвигается вверх. Скорость этого восточного движения может быть различной в зависимости от абсолютной высоты границы, количества отложенного зимой снега и текущих метеорологических условий. На фоне общего поднятия после каждого сильного снегопада происходит резкое опускание границы сезонного снега (рис. 2.18), а превышение ее положение восстанавливается в разные сроки главным образом в зависимости от продолжительности и интенсивности прошедшего снегопада. Примером может служить 10 августа 1964 г., когда за один день благодаря сильному снегопаду граница сезонного снежного покрова на леднике Центральный Тукус снизилась более чем на 150 м. Даже в условиях наступившей летней теплой и безоблачной погоды понадобилось почти 5 дней на восстановление ее прежней высоты.

Подобные периодические опускания границы сезонного снега в теплое время года приводят к тому, что к концу периода абляции она занимает положение на несколько десятков, а то и сотен метров ниже средней многолетней высоты фирменной линии. Наоборот, в те летние периоды, когда снегопады почти не бывают, граница сезонного снега оказывается на 100 м и более выше ее среднего многолетнего положения. При этом следует подчеркнуть, что положение границы сезонного снега в конце теплого сезона на 100 м выше фирменной линии оказывает значительно большее влияние на режим ледника, чем положение ее на те же 100 м ниже среднего: в обширных пологих областях питания долинных ледников открываются большие площади для абляции.

Детальные наблюдения на Эльбрусе летом 1962 г. показали (Лосева, 1964), что за период абляции, длившийся с 19 мая по 15 сентября, т.e. 120 дней, было 60 дней с твердыми осадками (в часах общая продолжительность снегопадов и метелей составила 20% всего времени). Из числа снегопадов, зарегистрированных снегонаблюдами, более 2/3 откладывались снегом более 10 мм (в слое воды), а один — более 100 мм (рис. 2.19). Общая продолжительность таяния снежного снега составила 29 дней, средняя интенсивность таяния свежего снега
Кающиеся снега и льды

Для большинства ледников испарение не характерно, поскольку температура поверхности льда и снега не может подниматься выше 0 °C даже при высоких температурах воздуха, отчего влажность приповерхностного слоя обычно меньше влажности воздуха. Однако так бывает далеко не всегда.

С понижением температуры при неизменной абсолютной влажности или с уменьшением влажности удельный вес испарения в процессе абляции несколько возрастает. Подобные условия складываются в холодных и сухих областях полярных ледников, где влажность в сухих областях ниже, чем в влажных, и на больших высотах – с другой. В последнем случае испарение способствует и интенсивное атмосферное давление, поскольку в разреженном воздухе конденсация газов происходит интенсивнее.

В полярных областях испарение с поверхности снега достигает наибольших величин на крутых склонах ледниковых покровов, где большую часть времени господствуют сухие ветры. Как правило,
при возрастании скорости ветра (до известного предела) интенсивность испарения увеличивается. К тому же стоковые ветры часто приобретают характер фена: адабатическое нагревание спускающегося по склону воздуха сопровождается уменьшением его относительной влажности. Когда дуют стоковые ветры, наблюдается наибольшее различие влажности между прибрежными и внутренними районами в Антарктиде; за короткое время относительная влажность воздуха при сильном стоковом ветре может уменьшиться на 40–50%. Все это вызывает усиленное испарение с поверхности снега и льда.

Испарение в прибрежных районах Антарктиды продолжается в течение всего года, однако зимой интенсивность его крайне невелика. В целом за год, как показывают подсчеты Н.П. Руснок (1961), испарение с поверхности снега в ветреных прибрежных районах Антарктики может превышать 200 мм, но по мере удаления от берега величина его быстро уменьшается и уже в 300 км от берега в целом за год преобладает конденсация. Испарение относительно невелико в центральных районах континента и на поверхности шельфовых ледников.

Высоко в горах, особенно в тропических и внутренних континентальных областях, воздух очень сухой. По наблюдениям Р.Д. Забирова (1955), относительная влажность воздуха на Памире в 15 часов была равна всего 15–30%. В таких условиях таяние не бывает и при очень высоких положительных температурах (до нескольких градусов); на больших высотах в Андах таяние отсутствует даже при температуре 15°С (Libboutry, 1956). В этих случаях тепловая энергия затрачивается на испарение, и снег в высокогорьях Памира, Азор и подобных районов иногда сходит, почти не давая стока. Такая же картина наблюдалась ранней весной в некоторых горных районах Восточного Сибири, например в массиве Буордых (Попов, 1955).

Величины испарения в высокогорных ледниках могут быть самыми разными. При наиболее благоприятных для испарения условиях погоды в фрикционных областях Альп (Hoinkes, Rudolph, 1962) и Кавказа за сутки может испариться до 1 мм снега (в водном эквиваленте), однако такие условия здесь складываются крайне редко. В горах Средней и Центральной Азии величины испарения 1 мм/сут более обычны. На одном из ледников Китая, лежащем в истоках р. Урумчи, испарение в среднем за июль составило 0,65 мм/сут, в фрикционной области ледника Федченко на высоте 4900 м испарение в период аблиции равно 1,4 мм/сут, еще большие величины он достигал на леднике Днепр (на высотах более 4700 м), находящемся в массиве Нанга-Парбат (Wagner, 1962).

Интенсивному испарению обязано своим возникновением «снега касающихся», широко распространенные в Андах, на Килиманджара, на Памире и встречающиеся также в Гренландии, Исландии,
образования этих форм является явное преимущество в таянии наиболее обледенелой солнцем поверхности.

Мы провели наблюдения и измерения на ледниках Акбайтал и Бакчигир и на снежниках у ручья Кокджа на Восточном Памире (рис. 2.21). Исследования выполнялись на высотах 4900-5100 м. Общность изученных «качающихся» заключалась в одинаковом угле наклона 70-75°, ориентировке на юг (рис. 2.22), а также явлением увлажненности только южной стороны и углублений между ними. Но в разные годы и на различных ледниках высота «качающихся» изменялась от нескольких сантиметров до 1 м, не оставалось одинаковым и количество их на единицу площади. Углубления между «качающимися» были обычно сильно загрязнялись, но иногда их поверхность была и совершенно чистой.

Общеизвестно, что если составляющие радиационного баланса можно измерить с достаточной точностью, то определить турбулентные потоки весьма трудно. С учетом этого были проведены непосредственные измерения испарения весовым способом (Лебедева, 1972). По известным величинам испарения и соответствующим градиентам влажности получены численные значения интегральной характеристики условий вертикального переноса. Затем по ним и градиенту температуры в приледниковом слое воздуха был вычислен турбулентный теплообмен.

Глава 2. Снег на ледниках в период абляции

На леднике Бакчигир в августе 1972 г. удалось увидеть зарождение и первую фазу развития «качающихся». Этот ледник находится на высотах около 5000 м в очень суровом и пустынном районе Памира. Он окружен сравнительно невысокими хребтами и потому хорошо доступен ветрам свободной атмосферы.

Первыми днями августа были довольно теплыми и тихими. Снег стоял по 4 см в сутки. Но 6 августа небо затянуло облаками и прервало снегопад. После этого наступило период солнечной, холодной, сухой и ветреной погоды. Температура воздуха ночью опускалась до -10,-12 °С. Днем она доходила до 2-3° тепла, но иногда поднималась выше 5°. Сильный ветер дул постоянно, достигая в ночные и утренние северо-восточные 8-10 м/с. Порывы ветра были еще сильнее. Таяние было очень слабым. При малой закрытости горизонта солнце освещает ледник с часов утра до 6 вечера. Суммарная радиация в полдень в среднем была равна 1.70 кал/(см²·мин), причем на 93% она состояла из прямой. Альбедо поверхности днем было 40%, а утром и вечером 50-55%.

Суммарная радиация составляла 790, а поглощенная − 450 кал/см² в сутки. Это количество энергии — одно из самых больших, полученных к тому времени когда-либо на ледниках. Многие авторы связывают интенсивность таяния с величинами поглощенной радиации. Приведенные данные показывают, что в данных условиях, а они характерны для большей части гималайской области, такой зависимость не существует. В соответствии с величинами поглощенной радиации 450 кал/(см²·сут) интенсивность таяния должна была бы составить 55 мм в сутки, а в действительности это не было совсем. Вся энергия солнечной радиации, а также небольшое количество тепла в результате турбулентного теплопотока (20 кал/см² в сутки) расходовались на эффективное излучение и испарение, сумма которых составила 470 кал/(см²·сут), где 77% приходится на величину Е, а 23% на Е.

Эффективное излучение достигало 360 кал/(см²·сут), так как собственное излучение ледника почти совсем не компенсировалось встречным излучением атмосферы, которое было мало из-за отсутствия облаков, очень низкой температуры и влажности воздуха. Затраты тепла на испарение составили 110 кал/(см²·сут). Из рис. 2.23 можно видеть, что днем солнечной энергии поступало больше, чем требовалось на эффективное излучение и испарение. Однако ее избыток расходовался не на таяние, а на прогревание ледника, вышенного в результате этих процессов в вечернее, ночное и утреннее время. Но было очевидно, что таяние на леднике происходит. Его единственным резервом была прямая радиация, поступающая к микросклонам, расположенным благоприятно к солнечным лучам.

Ни одна естественная поверхность не бывает идеально горизонтальной. Несомненно, что даже очень гладкий снежный покров на самом деле состоит из множества незаметных неровностей, а следо...
Часть 2. Снежный покров на ледниках

Глава 2. Снег на ледниках в период абляции

Рис. 2.24. Разные стадии формирования «кающихихся»
Разъяснение в тексте

Рис. 2.23. Суточный ход теплового баланса, кал/(см²·мин), на леднике Бачычар с 7 по 15 августа (I) и 2 по 5 августа (II) 1972 г. на горизонтальной поверхности (a) и на поверхности, перпендикулярной к полуденному солнцу (b)
1 - ветреникок и прогревание, 2 - расход тепла на таяние

вательно, и микросклонов различной крутизны и ориентировки. При движении солнца по небосклону перпендикулярными лучами последовательно освещаются различные поверхности.

В первые дни после установления ясной, сухой и холодной погоды никаких изменений поверхности замечено не было. Но затем вся поверхность ледника оказалась разрезана каналами глубиной 10–15 см на точечные пластины, ориентированные на юг и наклоненные на 70° к горизонту (рис. 2.24, а). Это означает, что мельчайшие углубления, раз возникнув, начинают саморазвиваться за счет следующих изменений в структуре теплового баланса. Прежде всего изменяется альбедо их дна; только из-за увлажнения оно понижается примерно на 10%, что приводит к усилению таяния благодаря росту солнечной радиации с 3 до 15 мм в среде воды в день. Подобный процесс обеспечивает углубление поверхности фирна, перпендикулярной к солнечным лучам в 12 часов на 3 см в день. Этим и объясняется, что иногда встречаются «кающихиеся» без признаков заряженности. Но в большинстве случаев поверхность между «кающегося» сильно заряжена, так как углубления служит ложем для мелких частиц, слугаемых с обнаженных участках склонов. Вследствие заряженности и увлажнения альбедо дна углубления может уменьшаться на 15–30%, тогда как на горизонтальной поверхности оно остается по-прежнему высоким.

По мере формирования «кающихихся» таяние, по-видимому, замедляется, так как поступление солнечной радиации на поверхность между ними уменьшается из-за увеличения закрытости горизонта для этих микрогоризонтов. Таким образом, структура теплового баланса на вершинах и гранях «кающихихся» и на такой поверхности между ними оказывается различной при одних и тех же условиях погоды.

По расчетам, при полном отсутствии таяния горизонтальной поверхности на участках, ориентированных в направлении солнечных лучей в полдень, таяние может достичь 20–30 мм/день в слое воды. Именно относительно интенсивности свидетельствуют прекрасно выраженные горизонтальные ребра на северных склонах «кающихихся» (рис. 2.25), которые отражают уровень ледяной корки, образующейся на лужицах после захода солнца и не полностью ставшей в течение следующего дня.

Из сказанного следует, что для начала образования «кающихихся» требуется достаточно низкое альбедо фирна или снега. В противном
Глава 2. Снег на ледниках в период аблиции

Рис. 2.26. Многолетняя форма «кающихся», напоминающая очковую змею, на леднике Акбайталь в сентябре 1971 г.

tельно больше, но намного уменьшился расход тепла на эффективное излучение, −168 ккал/см²-сут, и испарение, −22 ккал/см²-сут. Такая структура теплового баланса была обусловлена значительным развитием облачности, усилившей рассеяние радиации, высокой температурой (днем до 6°, ночью до −4°) и слабыми ветрами, не превышавшими 4 м/с.

Благодаря уменьшению расхода тепла на излучение и испарение, таяние происходило на поверхности любого наклона и ориентировки (см. рис. 2.23, 1), благодаря чему поверхность нивелировалась. Пластинки фирина, образовавшиеся во время холодной солнечной погоды, впоследствии, когда устанавливается термическая депрессия, оказываются рассечены, а мелкие образования становятся полностью (см. рис. 2.24, 4). Самые крупные «кающихся», уже получившие наклон и форму, вдоль которой скользят солнечные лучи, продолжают увеличиваться в высоту за счет более сильного таяния окружающей поверхности и укрепляться за счет сосулек и намерзания воды в основании фигуры (см. рис. 2.24, 5). В самой тонкой их части, на вершине, протекают отверстия (рис. 2.26).

Таким образом, при уменьшении расхода солнечной энергии на эффективное излучение и испарение и увеличении турбулентного теплообмена происходит уничтожение мелких форм и упрочнение крупных. Дальнейшее изменение структуры теплового баланса в том...
Часть 2. Снежный покров на ледниках

же направлении приводит к тому, что эффективное излучение входит в приходную часть баланса, испарение снега скважина, а турбулентный теплообмен усиливается. В результате при таком же количестве прямой солнечной радиации, которое обеспечивало образование «кашящихся», они будут полностью уничтожены таянием. Однако условия погоды, приводящие к такой структуре теплового баланса, на высотах 5000 м на Памире бьют лишь в редких случаях, при очень глубокой и длительной термической депрессии. Такие условия типичны для более низких уровней гляциальной зоны, где «кашящихся» поэтому не бывает.

Другой мощный фактор разрушения «кашящихся» — таяние зимнего снежного покрова. Так, благодаря очень теплой погоде в июле 1973 г. сезонный снег интенсивно таял, а сток шел под снегом по ледяной поверхности 1971 г. «Кашящихся», которые мы видели в сентябре 1971 г., были размыты и разрушены; уцелели только самые крупные (см. рис. 2.24, 2).

Таким образом, в горах Средней Азии образование «кашящихся» происходит во время развития антициклонального поля в заключительной фазе холодных втормен и начальной стадии трансформации. По данным равнинных метеостанций, до уборки из двух основных типов циркуляции — термической депрессии и вогнутости — составляет соответственно 8 и 58% времени теплого полугода (Хлоптакий., 1957). Однако на Памире в период интенсивной аблиции, т.е. в июне и августе, соотношение между термическими депрессиями, вогнутостями и антициклональным полем иное (табл. 2.12).

<table>
<thead>
<tr>
<th>Год</th>
<th>Термическая депрессия</th>
<th>Вогнутость</th>
<th>Антициклональное поле</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>34</td>
<td>42</td>
<td>24</td>
</tr>
<tr>
<td>1970</td>
<td>34</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td>1971</td>
<td>18</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>1972</td>
<td>21</td>
<td>43</td>
<td>36</td>
</tr>
<tr>
<td>1973</td>
<td>37</td>
<td>24</td>
<td>39</td>
</tr>
<tr>
<td>Среднее</td>
<td>29</td>
<td>34</td>
<td>37</td>
</tr>
</tbody>
</table>

Глава 2. Снег на ледниках в период аблиции

Во время термических депрессий происходит интенсивное таяние с тенденцией быстрого спуска поверхности, а в период вогнутости оно ослабевает или прекращается совсем и выпадает снег. Поэтому условия, когда возможно образование «кашящихся», в июне и августе бывают примерно в течение 24 дней. При средней интенсивности селективного таяния 30 мм/сут в водном эквиваленте «кашящихся» во льду достигают высоты 70 см, а на фирме 1,5 м. В отдельные годы с особенно благоприятными условиями, как это было в 1971 г. (см. табл. 2.12), они могут иметь и большие размеры.

Do сих пор я говорил о процессах таяния на Памире на высоте 5000 м. Очевидно, с дальнейшим подъемом и уменьшением температуры воздуха таяние прекращается не только во время вогнутости, сопровождающейся сильной облачностью и осадками, но и в последующий период холодной ясной погоды. Единственным типом циркуляции, когда сохраняются условия для образования «кашящихся», становится термическая депрессия в период ее максимального развития. Но поскольку на долю термической депрессии приходится значительно меньше времени, чем на антициклональное поле (всего 29% в июле и августе), то с увеличением абсолютной высоты размеры «кашящихся» уменьшаются. Кроме того, в высоких фировых областях их образование мешает большое альбедо поверхности.

Таким образом, «кашящихся» могут формироваться при разных количествах солнечной радиации, на всех широтах, но при условии, что поступление тепла несколько больше его расхода только на поверхность, перпендикулярную полуденному солнечному лучу. Поэтому угол наклона «кашящихся» соответствует максимальной высоте солнца в тот период, когда они формируются.

В тропиках полуденным солнечным лучам перпендикулярна горизонтальная поверхность, поэтому при образовании «кашящихся» не тает никакая другая, кроме нее, а сами фигуры становятся вертикальными (рис. 2.27). К северу и югу угол наклона «кашящихся» уменьшается. В средней полосе России на поверхности снегового покрова в марте появляются «кашящихся», наклоненные к горизонту под углом около 50°. На широте полярного круга при максимальной высоте солнца угол «кашящихся» составляет примерно 45°. Соответственно к полюсам уменьшается и высота «кашящихся».

Решающими условиями для образования «кашящихся» служат градиентное преобладание прямой радиации над рассеянной, малую величину турбулентного теплообмена (который может быть и отрицательным) и большая отдача тепла в результате эффективного излучения и испарения.

Большие коррективы в процесс образования «кашящихся» вносят циркуляционные процессы, приостанавливающие их развитие при облачности и осадках и деформирующих или полностью уничтожая при
Глава 2. Снег на ледниках в период аблиции

Ледник полностью выравнивается через несколько лет, и формы, похожие на «кающиеся», исчезают. При подвижках более высоких ледников блоки льда сохраняются долгие годы и могут приобретать вторичную форму «кающиеся» под влиянием процессов, рассмотренных выше. Именно так выглядит ледник Октябрьский на Восточном Памире, где К.К. Марков (1936) описал «кающиеся» на высоте 4500 м. Однако в действительности это видоизмененные блоки льда, первоначально возникшие при подвижке, а сам ледник, по-видимому, относится к классу пульсирующих.

Не имеют ничего общего «кающиеся» и с сераками — глыбами льда, образующимися на ледопадах. Однако если на леднике Фелченко сераки, распространенные на высотах 3000—3500 м, имеют гладкую поверхность, и их трудно спутать с «кающийми», то на леднике Октябрьском сераки покрыты «кающимися», поскольку находятся на 1500 м выше.

Итак, «кающиеся» представляют собой формы избирательного таяния снега и льда в условиях солнечной, сухой, умеренно холодной погоды, приводящих к большему отрицательным большим высоким дополнительным баллистам и затратам тепла на испарение. При этом таяние происходит за счет некоторого избыточного тепла лишь на поверхности, перпендикулярных солнечным лучам при наиболее высоком стоянии солнца. Такие условия складываются на разных абсолютных высотах в зависимости от ширины местности, но зона развития «кающихихся» весьма изменчивая по высоте из-за изменений циклонических процессов от года к году и в течение периода аблиции.

Больше почему «кающиеся» не занимают неизменного положения в ледниковой зоне и не служат характерным признаком определенных климатических условий, господствовавших здесь, как это принято считать. Но они играют важную индикационную роль, так как характеризуют условия погоды в период, непосредственно предшествовавший их образованию. Поэтому, имея представление о величине «кающихихся», их однородности и выраженности по аэрофотограммам крупного масштаба, перспективным фотографиям или нередко существенным наблюдениям, можно с большей достоверностью судить о погоде, господствовавшей здесь в период перед наблюдениями, а иногда в течение всего лета и в предшествующую весну. А это очень важно в высокогорье, где метеорологические наблюдения, как правило, не ведутся.

Таяние и аблиция снежного покрова

Длительность периода между началом таяния и аблиции снежного покрова зависит, помимо метеорологических условий, от количества
Часть 2. Снежный покров на ледниках

и строения отложенного зимою снега, запаса холода в снежной толще, уклонов поверхности. На плоских фирновых бассейнах высоко в горах или на ледниковых куполах этот срок может быть равен 10–15 дням и более (в зависимости от погоды). Из-за этой зависимости различия между величинами таяния и абляции тем больше, чем холоднее снежно-фирновая толща, чем больше снега (в особенности плотного и неоднородного) было накоплено зимой, чем более полога поверхность фирнового бассейна.

Особенно велико в разные годы несоответствие между величинами таяния и абляции вблизи фирновой линии, где один и тот же участок поверхности в один год принадлежит к области аккумуляции ледника, а в другой – к области абляции. В таких местах фактическая величина абляции зависит от того, лежит ли под слоем сезонного снежного покрова монолитный лед, по которому быстро налаживается сток, или на этом уровне оказывается инфильтрационный фильтр прошлого года, впитывающий большое количество талой воды. Так, на куполе Чурлянса (Земля Франца-Иосифа), несмотря на почти одинаковую интенсивность таяния летом 1948 и 1959 гг., абляция в 1948 г. была в два с лишним раза меньше, что объяснялось значительной аккумуляцией в 1947/48 и 1946/47 гг., в результате чего на лыжу накопился некоторый запас фирна, впитывающего талу воду (Оценение Земли... 1973).

Таким образом, существенное влияние на абляцию оказывают условия аккумуляции предшествующей зимы (Оценение Земли..., 1973; Hoinkes, Rudolph, 1962; Meier, 1961). Это влияние двояко. С одной стороны, следствием повышенного снегонакопления служит более высокое значение альбельдово поверхности снега, особенно в первую половину теплоznады, что приводит к уменьшению радиационного баланса и сокращению таяния. С другой стороны, снежок покров имеет большую толщину и задерживает часть появившейся в результате таяния воды, отчасти аблиция еще больше уменьшается.

Глава 2. Снег на ледниках в период абляции

же величины абляции характерны и для ледников, расположенных в районах повышенной снежности, где из-за обильного питания их языки спускаются на очень низкие уровни: на Камчатке или Аляске нередки случаи ежегодной абляции на концах ледников до 10 м/год и более. Наоборот, малые ледники, не выделяющие своих концов низко, отличаются меньшей абляцией: в низких частях многих карово-долинных ледников на западе США, Полярном Урале, Алтае абляция составляет 2—4 м/год.

На языках долинных ледников зависимость абляции от абсолютной высоты близка к линейной, т.е. высотный градиент абляции — постоянная величина. На этом основании Р. Хефели (Haefeli, 1962) предложил для вычисления годовой абляции a на той или иной высоте использовать выражение:

\[a = g \Delta H = tg \alpha \Delta H, \]

где \(\alpha \) — угол, дополняющий до 90° средний угол наклона поверхности ледника, \(\Delta H \) — разность высот фронтовой линии и данного пункта. Средний градиент абляции на языке ледника \(g = tg \alpha \), фактический градиент абляции получается как частное от деления величины абляции у конца ледника на разность высот фронтовой линии и этого конца. Значение градиента абляции — величина достаточно постоянная для данного ледника (по материалам Хефели, градиенты абляции на языках ряда альпийских ледников почти не изменялись за 100 лет, несмотря на значительный рост температуры воздуха за это время), а также для группы ледников, близких по своей морфологии и режиму. Поэтому градиент абляции может служить хорошим альпоморфологическим показателем для сравнения режима разных ледников, подобных энергии определения П.А. Шумского.

Наши расчеты по данным о годовой абляции на языках ядра ледников показывают, что высотный градиент абляции на ледниках Альп, Алтая, Кавказа, гор запада США, т.е. в большинстве среднеполюдных горных стран Северного полушария, равен приблизительно 10 мм/м (в водном эквиваленте), на ледниках Тянь-Шаня он составляет 5—6 мм/м, а в арктических районах (на широтах 70—80°) снижается до 3—5 мм/м.

Однако большие колебания от года к году скоростей питания и таяния приводят к некоторым изменениям высотного градиента таяния. По-видимому, общей закономерностью является увеличение градиента с возрастанием величины таяния. Например, в области ледоплава Северного острова Новой Земли (на высоте 800 м) таяние в 1958 г. составляло 340 мм в 1959 г. 800 мм, а на 500 м ниже (в области аблиции ледника) в 1958 г. оно было равно 860 мм и в 1959 г. — 1950 мм (Определение Новой Земли, 1968). Отсюда высотный градиент таяния (не абляции!) на Новой Земле в 1958 г. составил 1,0 мм/м, а в 1959 г. — 2,3 мм/м. Сказать, что либо о градиенте абляции в этом
Часть 2. Снежный покров на ледниках

Глава 2. Снег на ледниках в период абляции

Резкое уменьшение таяния на горизонтальных площадках объясняется, помимо неблагоприятного положения по отношению к солнцу (по сравнению со склонами), также большой величиной снегонакопления в таких местах и затрудненностью стока.

На основе приведенных выше данных можно вычислить высотный градиент таяния в фиордовой области Эльбруса. На южном склоне в целом за период абляции градиент таяния на высотах 3700–4000 м равен 2 мм/м, а на высотах 4000–4300 м — примерно 1 мм/м. В 1957 г. при меньшей интенсивности таяния здесь же на высотах 3700–4000 м градиент был на несколько меньше — 1,7 мм/м (Оледенение Эльбруса, 1968).

Значения высотного градиента таяния убывают по мере перехода к более континентальным и арктическим районам. Так, вдоль фиордовой линии на леднике № 31 на хр. Сунтар-Хаята градиент таяния составляет примерно 1,7 мм/м, а на ледниках о. Гукера на Земле Франца-Иосифа — всего 0,25 мм/м. Однако на более низких уровнях здесь, как и на обычных других ледниках, высотный градиент таяния увеличивается.

Таким образом, темп убывания таяния с возрастанием высоты замедляется. Эта особенность характерна для всех ледников (Шумский, 1947). Очевидно, причиной может быть уменьшение высотой радиационного баланса или относительного его соотношения, так как соответствующие высотные градиенты очень малы (Кулинан, 1961). Наоборот, убыв таяния с высоты другого источника снеготаяния — биотурбулентного теплообмена с атмосферой — весьма значительна, и она может служить источником замедления таяния. Отсюда следует, что ведущую роль в изменениях величины высотного градиента таяния играет температура воздуха. Здесь мы подходим к важнейшему в эмпирических расчетах вопросу о связи таяния с температурой воздуха и радиационным балансом как показателями, отражающими воздействие двух основных факторов поверхностью аблиции — циркуляционного и радиационного.

Связь таяния с температурой воздуха

Найболее точным способом вычисления величины таяния снега или льда служит анализ и учет составляющих теплового баланса. Однако из-за трудности этого способа и невозможности в ряде случаев получить необходимые для подобных расчетов исходные характеристики при вычислении таяния используются сведения о температуре воздуха. Этот способ известен много десятилетий, а применительно к расчетам вскрытия рек ото льда он использовался еще в XIX в. Значение температурного показателя в
Глава 2. Снег на ледниках и в период абляции

Расчеты таяния ледников убедительно показали А.Н. Кренке и В.Г. Ходаков (1966).

Высокая положительная температура воздуха усиливает эффект солнечной радиации, а отрицательная температура, наоборот, ослабляет его, так как в тех случаях, когда в период абляции к леднику приходит холодный воздух, поток тела оказывается направленным от поверхности снега или льда вверх. В условиях постоянной температуры поверхности таяющего снега динамический баланс прямая зависимость от температуры воздуха и связанной с ней влажности, что в конечном счете приводит к связи между радиационным балансом и разностью температуры на уровне 2 м над поверхностью и на самой поверхности (Кренке, Ходаков, 1966). Термобаты тепло и влагообмен на поверхности снега и льда также возрастает с повышением температуры, что служит причиной усиления таяния. В случае роста влагообмена происходит смена испарения конденсации, в результате чего выделяется дополнительное количество тепла.

Воздействие температуры коротковолновой радиации на таяние также в известной мере связано с температурой воздуха. В качестве примера приведем полученную на средиземноморских эмпирическую формулу У.Н. Антроповой (1963), связанную с градусами суток, средней суточной температурой воздуха t:

$$ a = b t + c t. $$

В этой формуле c — коэффициент пропорциональности, равный 0,1, a — коэффициент, зависящий от средней суточной температуры воздуха. Таким образом, как показывает первый член правой части уравнения, воздействие величины радиационного тепла, пошедшего на таяние снега, прямо связано с температурой воздуха.

Точность вычисления таяния по температуре можно повысить правильным выбором температурных показателей. Разные исследователи в этих целях используют среднюю суточную, среднюю дневную, солнечную 1-часовую, максимальную температуру, сумму положительных температур и т.п. При этом средние суточные значения иногда вычисляются как средние из дневных минимумов и максимумов (Аляска, Канада) или как средние из трех сроков наблюдений: 7, 13 и 19 часов (Россия).

Самым подходящим показателем для расчета таяния служит сумма положительных температур воздуха (либо сумма положительных средних суточных температур, либо сумма положительных температур за отдельные сроки). Преимущества этого показателя заключаются в том, что сумма положительных температур учитывает лишь те периоды, когда действительно происходило таяние (исключаются отдельные часы и дни с отрицательной температурой в температуре и, наоборот, включаются часы и дни с положительной температурой во время походов). Самая большая потеря в суммах температур и в расчетных по ним величинах таяния возникает при неоднократных переходах температуры через 0 °C, что характерно для ледниковых районов. В близкоразмерные суммы положительных температур равна произведению числа сроков или суток на среднюю температуру этого периода, а в случае замерзания сумма положительных температур всегда меньше этого произведения.

Несмотря на возможность получения коррелятивной связи между температурой снега и температурой воздуха, весьма попытки обнаружить подобные связи по данным за сутки, как правило, не приносили успеха. Это объясняется, как неточной определения температуры на вершине за короткие отрезки времени, так и невозможностью учета изменения температуры воздуха и интенсивности тепло- и влагообмена между снеговой поверхностью и воздухом в течение суток. Поэтому А.Н. Кренке и В.Г. Ходаков (1966) выбирали пентаду как наиболее короткий срок, для которого они получали хорошие связи таяния и температуры воздуха. Такая пятидневка достаточно близка к естественному синоптическому периоду и, следовательно, характеризуется более или менее однородными условиями погоды. Если же происходит резкие изменения погоды, пять дней обычно бывает достаточно для их выравнивания.

В тех случаях, когда температура на леднике непосредственно не измеряется, ее величину можно получить коэффициентом способом: по данным ближайшей к леднику метеостанции с учетом вертикального температурного градиента, равного 0,6–0,7 °C на 100 м. В этом случае необходимо также учесть поправку на охлаждение влияние самого ледника. По расчетам В.Г. Ходакова (1965), величина этой поправки составляет 0,5 °C для ледников с площадью около 1 км² и колеблется от 1 до 1,5 °C для ледников с площадью около 10 км².

Для косвенного определения величины поглощенной коротковолновой радиации надо знать суммарную радиацию и альбедо поверхности. Для приближенной оценки первой из этих величин можно использовать данные об облачности; отражательная же способность ледника может быть получена на основе аэрофотосъемки или наземными альбедоустройствами.

Наличие связи между таянием снега и температурой воздуха приводит к понятию «температурного коэффициента снеготаяния» — величины слоя воды, стоящей на 1 см средней суточной температуре воздуха. Это понятие широко используется в литературе (Кузьмин, 1961), и некоторые исследователи говорят об устойчивости этого показателя в самых разных географических условиях. Однако в действительности так быть не может, поскольку температурный коэффициент снеготаяния формируется под влиянием ряда изменяющихся факторов.
Часть 2. Снежный покров на ледниках

Хотя этот коэффициент и называется «температурным», он отражает комплексное воздействие на таяние и турбулентной, и радиационной составляющих теплового баланса. Естественно, с возрастанием доли радиационной составляющей температурный коэффициент снеготаяния принимает все большие значения, т.е. величины таяния растет на 1° положительной температуры. Отсюда зависимость коэффициента таяния от облачности: при пасмурной погоде он меньше, чем при ясной. Например, на ледниках Заилийского Алатау (Кальмикова, 1963) при облачности 6–9 баллов на 1° положительной средней суточной температуры ставило 6 мм льда (в слое воды), при облачности 4–7 баллов – 6–8 мм и при облачности 3–5 баллов – 7,2 мм. На Алтае (Трсов, 1962) температурный коэффициент таяния увеличивается с 4 мм/град при пасмурной погоде до 9 мм/град при ясной теплой антициклонической погоде.

Влияние радиационного режима на температурный коэффициент таяния оказывается и в тех районах, где относительно велика доля турбулентного теплообмена в таянии. На Полярном Урале (Живкович, 1964) в зависимости от величины радиационного баланса температурный коэффициент при средней суточной температуре около 0°С может различаться в несколько раз (от 1 до 10 мм/град), а при температуре около 5°С лишь в два раза. С дальнейшим повышением температуры его значение еще более статистируется, и при температурах 12–13°C он оказывается равным 5,5–6,0 мм/град. Таким образом, связь между таянием и температурой воздуха улучшается с ростом температуры и ухудшается по мере того, как температура оказывается все ближе к 0°С или становится отрицательной.

В таких условиях некоторая доля таяния происходит в дни с отрицательной средней суточной температурой, что автоматически влечет за собой возрастание температурного коэффициента таяния. Большая доля таяния в дни с отрицательной средней суточной температурой воздуха характерна для полярных и высокогорных районов. Вследствие этого температурный коэффициент снеготаяния увеличивается с возрастанием абсолютной высоты и в более высоких широтах, а также в более холодные периоды абляции по сравнению с более теплыми.

Таким образом, температурный коэффициент снеготаяния – весьма изменчивая величина, в конечном счете зависящая от абсолютной высоты, широты, условий погоды и т.п. Эта зависимость не линейна, так как определяется целой группой факторов. По связи с температурой можно определить таяние и за весь период абляции. В нашей стране широко используется формула А.Н. Кренке и В.Г. Ходакова (1966), которые установили зависимость среднего за летний период таяния a от средней температуры трех летних месяцев t_{avg} (рис. 2.29):

$$a = (t_{avg} + 9,5)^2.$$
(7)

Рис. 2.29. Зависимость среднего за летний период таяния $a_{v,av}$ от средней летней температуры t_{avg}

По А.Н. Кренке и В.Г. Ходакову (1966)

Вычисленные по этой формуле величины таяния оказываются заниженными в районах и в годы с большим (против среднего) значениями радиационного баланса, скорости ветра и влажности воздуха и заниженными при меньших значениях этих показателей. Однако, как и при расчетах за короткие отрезки времени, температура
Часть 2. Снежный покров на ледниках

воздуха вновь оказывается доминирующим фактором. В этом случае значение ее возрастает еще и потому, что температура воздуха на значительной степени определяет продолжительность периода аблации. В дни с положительной температурой воздуха поток лучистой энергии расходуется на таяние, а в дни с отрицательной температурой это тепло идет на прогревание снега и льда и приповерхностного слоя воздуха. Результатом этого оказывается хорошая связь между таянием и продолжительностью периода аблации (Hoinkes, Rudolph, 1962).

Как видно из формул (7), зависимость между температурой окружающего воздуха и температурой таяния не линейна. Это еще в 30-х годах показал X. Альман (Altmann, 1940) на основании исследований на леднике Сингтедаль в Норвегии. Вогнутый характер рассмотриваемой кривой повторяет ту же вогнутую форму кривой связи средних летних температур и сумм положительных температур воздуха. Последние А.Н. Кренке и В.Г. Ходаков объясняют уменьшением градиента величины положительных температур воздуха с понижением средних летних темп- ратур из-за сопровождающего этот процесс увеличения числа дней с температурой ниже нуля.

Аналогична и связь таяния с абсолютной высотой. Средняя температура летом уменьшается с высотой линейно, но зависимость суммы положительных температур воздуха и, следовательно, зависимости таяния от высоты имеют криволинейную (вогнутую) форму, т.е. с возрастанием абсолютной высоты вертикальные градиенты этих показателей уменьшаются.

Рассмотренные связи таяния и температуры воздуха могут быть применены для реконструкции таяния снега и льда за прошедшие годы по имеющимся значениям температуры воздуха за летние месяцы. Некоторые метеостанции, расположенные сравнительно далеко от ледников, имеют длинные ряды температурных измерений, которые можно использовать для этой цели. Последовательность действий такова. Имея данные наблюдений на леднике в течение хотя бы одного сезона аблации, строят кривую связи между суммой положительных температур (или средней летней температурой) на этой высоте и величиной таяния снега или льда. Затем находят связь соответствующего температурного показателя на леднике и на ближайшей прилендиновой метеостанции. Чем тщательнее последняя связь, тем более устойчивы во времени значения высотных градиентов температуры и влажности и тем надежнее расчет таяния на леднике за прошедшие годы.

Изложенная методика находит успешное применение при реконструкции величины таяния на многих ледниках. Однако, рассчитывая таким путем таяние, мы еще ничего не можем сказать об абляции от фронтов областей ледников, так как неизвестна доля талой воды, пошедшей в сток. Проще обстоит дело с языками ледников, где полученные величины таяния можно приравнять к абляции.

Глава 2. Снег на ледниках в период аблации

Льдообразование внутри снежно-фирновой толщи

Появление воды в снежно-фирновой толще ледников, ее инфильтрация и дальнейшее замерзание приводят к значительным изменениям газового состава воздуха, так как кислород и в особенности углекислый газ хорошо растворимы в воде. На участках замерзания тальных вод влажные включения обогащены выделившимися газами, а с уменьшением доли участия тальных вод в льдообразовании газовый состав влажных включений все больше приближается к атмосферному. На этом основании по химическому анализу включенных в лед воздуха можно определить участки преимущественного замерзания тальных вод.

Подобные наблюдения на Эльбрусе проводились на высотах от 3200 до 4200 м (Определение Эльбруса, 1968). Во всех обследованных образах фрона и льда количество углекислого газа во много раз превышало его содержание в атмосфере (0,03%). Больше всего (0,65%) углекислого газа содержалось в инфильтрационно-кондукционном льду близ фронтовой линии, где талых вод чрезвычайно много, а сток относительно невелик. В этом льде и кислорода оказалось на 2% больше, чем в атмосфере. На языке ледника Гаранин содержание углекислого газа уменьшалось от 0,34% на высоте 3700 м до 0,23% на высоте 3200 м, что свидетельствует об уменьшении доли сток воды и уменьшении вероятности ее замерзания с переходом на более низкие уровни. В инфильтрационном фронте углекислого газа содержалось около 0,21%. Меньше всего (0,17–0,20%) углекислого газа было в наложном льду на высоте 4200 м, что можно объяснить сравнительно малой интенсивностью таяния в этот период времени льдом больших талых вод из-за значительного уклона.

Приведенные цифры говорят о большом участии тальных вод в процессе льдообразования на Эльбрусе. Очевидно, насыщенность углекислым газом включенного в лед воздуха вполне может служить косвенным показателем количества талых вод, участвующих в льдообразовании.

Льдообразование внутри толщи происходит в течение всего периода таяния. Можно выделить три основных этапа льдообразования: весеннее, летнее и осеннее. Весеннее льдообразование происходит в самом начале таяния, когда таль на снега обладает значительным запасом холода, который расходуется на замерзание просачивающихся вод, что ведет к увеличению плотности и появлению ледяных включений в снеге. Переход к летнему льдообразованию, как правило, совпадает с началом интенсивного таяния. В это время тальные воды достигают непроницаемого холодного льда и замерзают на его
Часть 2. Снежный покров на ледниках

поверхности. Дальнейшие порции талой воды частично стекают по этому горизонту, а частично замерзают, так что толщина его в течение лета медленно растет. К концу лета основная часть тальных вод из физической толщи стекает, а внутри нее остаются сравнительно небольшое количество жидкости, замерзающей осенью с наступлением холодов.

Влагосодержание фирна перед его окончательным замерзанием составляет несколько процентов. При наличии уклона поверхности и водоупорного горизонта почти вся вода стекает, и фирн содержит не более 2% влаги (плешовая вода). И лишь в местах заносов тальных вод горизонты могут быть либо небольшие, либо, отчего влагосодержание фирна здесь приближается к максимальному — 15–20%.

При небольшой мощности физической толщи, не превышающей 1 м, основное льдообразование происходит летом на поверхности ледя, сильно выхоложенного за зиму под таким маломощным покровом фирна. Наоборот, при толщине фирна в 10 м для более глубокого льдообразования отклонение величина менять (выхоложивание льда преобладает на большую глубину), а основное значение имеет весенее и особенно осенние льдообразования. Следовательно, по мере увеличения толщины фирна, как указывает Е.Н. Цыкки (1962), все больше количество стоящего снега идет на внутреннее питание ледника, а сток из фирновой области уменьшается.

Соответственно в зонах фирнового питания основными видами льдообразования служат весенне и осеннее, а в зоне ледяного питания — летнее. В последнем случае осеннее льдообразование играет большую роль. До 10-метровых участков застывания тальных вод, где они превращаются в лед лишь на последних участках, происходит частичное замерзание талых вод и образуется дополнительный слой льда. Количество талого инфильтрационного льда может быть даже больше, чем в зоне ледяного питания, как это наблюдалось, например, на ледниках хр. Сунтар-Хая и Земли Франц-Иосифа. Однако в середине или во второй половине лета после исчезновения снежного покрова этот лед также ставится.

Внутреннее питание, или вторичное замерзание талой воды в толще фирна и льда, с гидрологической точки зрения представляет собой талих по воде, которые не участвуют в ледовом стоке данного года. Внутреннее питание ледников зависит от соотношения выпадающих твердых и жидких осадков, интенсивности таяния, температурного режима и строения снежно-фирновой толщи, условий стока талых вод из зоны питания ледника. На ледниках с талым физическим типом льдообразования внутреннее питание составляет 10–20% общего количества тальных вод, а на ледниках с холодным физическим типом льдообразования может достигать 50% и более.

Таблица 2.13

<table>
<thead>
<tr>
<th>Абс. высота, м</th>
<th>Зона ледяного питания</th>
<th>Толщина фирна, см</th>
<th>Величина льдообразования</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>весенее</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3730</td>
<td>Ледяное питание</td>
<td>30</td>
<td>0,2</td>
</tr>
<tr>
<td>3775</td>
<td>Фирновое питание</td>
<td>320</td>
<td>4,5</td>
</tr>
<tr>
<td>4190</td>
<td>Фирновое питание</td>
<td>35</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Ледник Северный Акту

3975	Ледяное питание	0		10,1		10,1
4075	Фирновое питание	350	7,6	5,9	6,3	19,8
4175	Фирновое питание	85	2,1	9,8	2,3	15,0

Абсолютные величины внутреннего питания ледников могут быть достаточно велики. В областях питания ледников Полярного Урала (Определение Урала, 1966) они достигают 10–15 см/м², а при пересчете на всю площадь ледника — 2,5–4 см/м². В районах морского климата значительную долю внутреннего питания могут составлять фильтрация тальных и дождевых вод. Так, на ледникке, расположенном на Береговом хребте Северной Америки (Miller, 1962), скорость фильтрации при дождях резко возрастает и основная часть просачивающихся вод переходит на глубину 6–12 м.

По расчетам Е.Н. Цыкки (1962) для ледников Тянь-Шаня, наименьшей величины внутреннее питание достигает в средней части фирновой области, главным образом за счет осенного льдообразования (табл. 2.13). Выше этого уровня величина внутреннего питания снижается из-за уменьшения снежно-фирновой толщи, а в зоне ледяного питания — из-за большей доли стока талых вод.

Понятие о внутреннем питании ледников ввел П.А. Шумский (1964), он предложил для его расчета вторичное измерять плотность снежно-фирновой толщи, скорость ее осаждения, поверхностные деформации рефракции — ежду. А.Б. Бажен (1973) разработал схему приближенного расчета внутреннего питания по двукратным
Таблица 2.14
Расчет количества воды, участвующей в преобразовании фирновой толщи в процессе таяния на южном склоне Эльбруса*

<table>
<thead>
<tr>
<th>№ скважин (высота над ур. моря, м)</th>
<th>Максимальное снегонакопление</th>
<th>Неставший остаток</th>
<th>Количество ста- навшегося в мм слоя воды</th>
<th>Количество воды, пошедшей на увеличение плотности, мм</th>
<th>Количество стекшей воды, мм</th>
<th>Дополнительная вода, необхо- димая для препрекания таяния фирнового остатка в лед, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>без учета летних осадков</td>
<td>с учетом летних осадков, в мм слоя воды</td>
<td>см</td>
<td>средняя плотность, г/см³</td>
<td>в мм слоя воды</td>
<td></td>
</tr>
<tr>
<td>см снега</td>
<td>мм воды</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (3977)</td>
<td>368</td>
<td>1510</td>
<td>2010</td>
<td>209</td>
<td>0,55</td>
<td>194</td>
</tr>
<tr>
<td>4 (3937)</td>
<td>339</td>
<td>1390</td>
<td>1890</td>
<td>86</td>
<td>0,59</td>
<td>150</td>
</tr>
<tr>
<td>5 (3838)</td>
<td>462</td>
<td>1890</td>
<td>2390</td>
<td>224</td>
<td>0,57</td>
<td>123</td>
</tr>
<tr>
<td>6 (3794)</td>
<td>257</td>
<td>2280</td>
<td>2780</td>
<td>270</td>
<td>0,59</td>
<td>979</td>
</tr>
<tr>
<td>7 (3770)</td>
<td>290</td>
<td>1190</td>
<td>1690</td>
<td>76</td>
<td>0,57</td>
<td>123</td>
</tr>
</tbody>
</table>

*Плотность снега для расчета максимального снегонакопления и слоя воды принята равной 0,41 г/см³; плотность инфильтрационного льда – 0,88 г/см³. Количество летних осадков на основании данных по нижнему фирновому поло принято равным 500 мм для всего южного склона.
Часть 2. Снежный покров на ледниках

Начало разработки этого метода было положено работами нашей экспедиции на Эльбрусе. Летом 1962 г. в пяти точках южного склона Эльбруса на высотах 3770–3980 м удалось подсчитать (Песарева, 1964) количество воды, стекшей и, вероятно, затраченной на образование льда в нижележащей толще фирны (табл. 2.14).

Посчет количества воды, участвовавшей в преобразовании фирновой толщи в процессе таяния, проводился следующим образом. Максимальное снегонакопление слялось из двух величин — зимних и летних осадков. Нестающий остаток рассчитывался путем умножения толщины слоя биры, оставшегося в конце сезона абляции, на соответствующую плотность с учетом количества льда, содержащегося в этом остатке в виде ледяных корок. Количество стекшей воды было получено как разность величин максимального снегонакопления и нестающего остатка, следовательно, не учитывалось вода, затраченная на увеличение плотности остатка. Количество воды, необходимое для увеличения плотности, получено путем умножения воды, пошедшей на увеличение плотности нестающего остатка от 0,41 до 0,55–0,59 \(\text{см}^3 \). Количество столького снега складывалось из количества стекшей воды и воды, затраченной на увеличение плотности остатка. Дополнительное количество воды, необходимое для превращения фирнового остатка в лед, было подсчитано путем умножения ее на количество, которое необходимо для увеличения плотности остатка от 0,55–0,59 \(\text{см}^3 \) до плотности инфильтрационного льда, равной 0,88 \(\text{см}^3 \).

Анализируя табл. 2.14, легко заметить, что количество воды, пошедшей на увеличение плотности фирновой толщи, пропорционально величине нестающего остатка (т.е. инфильтрационное уплотнение повсюду происходит одинаково). Больше всего стекшей воды в тех местах, где нестающий остаток сезонного снега невелик. На этом основании можно предполагать, что в таких местах, как для мест, где нестающий остаток сезонного снега невелик. На этом основании можно предполагать, что в таких местах трудности снега, относительно меньше, а значительная часть стекшей воды (в особенности на высоте 3770 м, недалеко от фирновой линии) идет в сток. В 1963 г. подобные наблюдения охватили и более высокие уровни, вплоть до высоты 4500 м. Данные табл. 2.15 показывают, что на южном склоне Эльбруса в пределах высот 4100–4500 м количество стекшей воды несущественно с нестающим остатком текущего года. Почти все тающие воды (из-за крутизны склона) стекают отдельно, что приводит к отсутствию на этих высотах фирновой толщи и к инверсии физиогномических зон на Эльбрусе.

Стеающие со склонов тающие воды в первой половине периода абляции скапливаются в снежно-фирновой толще на лежащих ниже плоских фирновых полях, что вызывает здесь временное увеличение водопадов в снежном покрове. На верхнем фирновом поле Эльбруса, расположенном на высоте 4000 м у основания кругового южного склона,

Глава 2. Снег на ледниках в период абляции

Таблица 2.15

<table>
<thead>
<tr>
<th>Абсолютная высота (м) и рельеф</th>
<th>Максимальное снегонакопление с учетом летних осадков</th>
<th>Нестающий остаток сезонного снега</th>
<th>Количество стекшей воды</th>
<th>Количествовода, пошедшей на увеличение плотности</th>
<th>Количество столького снега</th>
</tr>
</thead>
<tbody>
<tr>
<td>3700, склон</td>
<td>138</td>
<td>—</td>
<td>190</td>
<td>—</td>
<td>190</td>
</tr>
<tr>
<td>3780, поле</td>
<td>191</td>
<td>—</td>
<td>103</td>
<td>24</td>
<td>127</td>
</tr>
<tr>
<td>4000, поле</td>
<td>257</td>
<td>181</td>
<td>76</td>
<td>23</td>
<td>99</td>
</tr>
<tr>
<td>4100, склон</td>
<td>117</td>
<td>6</td>
<td>111</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>4300, склон</td>
<td>86</td>
<td>8</td>
<td>78</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>4500, склон</td>
<td>64</td>
<td>9</td>
<td>55</td>
<td>1</td>
<td>56</td>
</tr>
</tbody>
</table>

водопады в толще сезонного снежного покрова с 24 мая по 3 июля 1963 г. увеличивался на 430 мм, а осадки за это время выпадали лишь 150 мм. Далее, вплоть до 7 августа, независимо от интенсивности таяния, водопады в толще сезонного снега возросли еще на 150 мм, и резко снизилось же за это время выпадение осадков. И лишь в августе, когда тающие воды промочили всю снежную толщу, начался быстрый сток воды за пределы фирнового поля. Водопады в снежно-фирновой толще за период с 8 августа по 7 сентября уменьшились на 920 мм.

Таким образом, плоские фирновые поля на горных ледниках служат естественными регуляторами стока, а в годы с малой интенсивностью таяния могут значительно ослабить сток за пределы области аккумуляции.

Очевидно, что сток из фирновой области равен разности между количеством столького сезона за период абляции снега и фирна и величиной внутреннего питания ледника. Как та, так и другая величины определяются с известными трудностями, но данные о стоке из областей питания ледников в литературе встречаются редко. Попытка подобных расчетов была предпринята на леднике Флешчеко (Ледник Флешчеко, 1962, т. 2), где для определения объема стока из области питания по данным за 1958 и 1959 гг. были построены два графика зависимости расхода снега на таяние и испарение от абсолютной высоты (методика вычисления величины расхода снега не приведена). Объемы стока из фирновой области ледника Флешчеко,

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Часть 2. Снежный покров на ледниках

за эти годы были равны 0,012 и 0,016 км², что составляет соответственно 11 и 13% суммы накопленных за год осадков (в том числе около 2% снега испаряется, как это следует из учета соотношения суммы тепла, идущего на таяние и испарение). Сток из фирновой области ледника Федеренко составляет лишь 3% стока из всего ледникового бассейна.

Стекание воды по склону под снегом идет быстрее вертикального просачивания (Комаров, 1956). В снежно-фирновой толще быстро образуется система каналов и происходит сбегание тальных вод, а по мере приближения к фрязовой линии значительная часть их попадает в траншены и продолжает свое движение внутри ледника. Однако на больших выровненных участках с малым уклоном в области питания влиять фризовую линию возможно застаяние тальных вод и насыщение ими снега.

С повышением влажности снега прочность его увеличивается, причем в этом случае возникает капилярная сила на стыках ледяных зерен (Мосалев, 1966). Однако так продолжается лишь до тех пор, пока влажность снега не превысит его максимальную влагоудерживающую способность. После этого прочность снега резко уменьшается, и получается способностью растекаться даже при небольших уклонах поверхности. Образующаяся в результате насыщения водой (снег-ледяная каша) во многих случаях течет уже при угле наклона 1°. Так возникают своеобразные гидропарные лавины, перепадая большие массы снега из фризовой области в область аблиции и за пределы ледника.

Образование таких лавин на ледниках способствуют малый уклон поверхности, приводящих к задержанию тальных вод в снеге, непроницаемая подстилающая поверхность (холодный лед), сравнительно малая толщина снежного покрова и интенсивное таяние, быстро приводящее к насыщению снега водой. Подобные условия складываются на полярных ледниковых куполах далеко от фризов линии. В первую половину периода аблиции они характерны для участков ледника, расположенных непосредственно ниже фризовой линии (в зоне ледяного питания), в середине лета возникают в полосе, прымывающей к фризовой линии сверху. Размеры лавин зависят от толщины снежного покрова, скорости таяния и уклона поверхности.

Гидропарные лавины, сходящие из областей питания ледников, уносят с собой большое количество тепла, что способствует понижению температуры ледника в районе фризовой линии. Вместе с тем единовременный сток большого количества тальных вод в виде лавины обусловлен от снега большие площади льда, что создает благоприятные условия для последующего стока из нижней части областей питания.

В заключение этой главы несколько слов об гляциологических зонах. Как известно, в нашей литературе принята система зон, предложенная П.А. Шумским (1955). На каждом леднике, если он достаточно велик, может существовать не одна, а несколько зон льдообразования, закономерно сменяющих друг друга по мере поднятия вверх. Наиболее полный набор зон представлен на Гренландском и Антарктическом ледниковых покровах, где распространены все зоны, за исключением теплой фризовой. Последняя отличается тем, что здесь вся толща фирна и льда летом прогревается до 0°С, тогда как в холодной фризовой зоне температура остается отрицательной. Поэтому холодная фризовая зона характерна для ледников, расположенных в областях континентального климата с малым количеством зимних осадков и большим запасом холодо-во льду. Наоборот, теплая фирзовая зона распространена на ледниках, лежащих в районах морского климата с обильными зимними осадками и теплой зимой. Эта зона занимает наиболее площади в областях питания ледников Аля, Кавказа и подобных районов.

Пришло время вместо выделения полярных и умеренных ледников, подобных альпийскому, говорить об закономерных набора льдообразования на ледниках в условиях морского и континентального климата. В континентальных областях, к которым относятся Антарктический и Гренландский ледниковые покровы, а также ледники Центральной Азии и Восточной Сибири, встречаются (сверху вниз) снежная, снежно-фирзовая, холодная фирзовая и ледяная зоны. На ледниках в районах морского климата, подобных низким областям питания занимает теплая фирзовая зона, на остальных участках сменяющаяся зоной ледяного питания; в наиболее высоких частях ледника иногда можно увидеть снежно-фирзовую зону. Конечно, в зависимости от абсолютной высоты ледника верхние, наиболее холодные зоны могут иногда выпадать, а в связи с местными особенностями питания и таяния может несколько нарушаться.
Глава 2. Снег на ледниках в период аблиции

и наледевания снега. Как показали результаты исследований летом 1962 г. на южном склоне Эльбруса (Пасарев, 1964), на участках преимущественного сноса, отличающихся сравнительно малой скоростью аккумуляции, преобладает инфильтрационный тип льдообразования, а на участках преимущественного наледевания с повышенной скоростью аккумуляции талые воды не проникают во всю толщу фирина, и льдообразование здесь заканчивается путем рекристаллизации (рис. 2.31).

Таким образом, на горных ледниках в пределах теплой фирновой зоны могут наблюдаться участки с разными типами льдообразования, что определяется в первую очередь величиной аккумуляции. На ледниках, расположенных на изолированных вершинах, подобных Эльбрусу, неравномерность снегонакопления служит причиной инверсии зон. Из-за сноса снега метелями и лавинами с крутых склонов вниз, на высоты 3700–4000 м, здесь формируется полоса повышенного питания и соответственно тепла фирновая зона, а ниже и выше (!) этой зоны располагаются участки ледяного питания, что удалось выяснить на основе структурных исследований 1957–1959 и 1962 гг. и термокаротированных осенью 1961 г. (Пасарев, 1964; Определение Эльбруса, 1968; Цыкин, 1962а). В отдельные годы с чрезвычайно интенсивным таянием, каким отличалось лето 1962 г., на участках ледяной и холодной фирновой зон в пределах 4000–4300 м аблиция затронула весь сезонный снеговой покров и фирн, в результате чего участки аблиции на Эльбрусе оказались выше области питания (см. рис. 2.31).

В области эльбруского определения, для которого характерно чередование крутиз склонов с выполнеными участками, на последних в районе фирновой линии, а иногда и на более высоких уровнях встречаются участки с льдообразованием, протекающим по инфильтрационно-конденсационному типу, но такие участки, естественно, не образуют настоящей зоны ледяного питания. На горных ледниках вообще участки питания наложенным льдом бывают приурочены, как правило, к тем местам, с которых снег преимущественно сметается ветрами.

Быстрое движение ледника нередко приводит к тому, что фирновая толща оказывается в условиях, не свойственных для ее образования и сохранения. Такое несоответствие между строением верхних слоев ледника и внешними условиями служит причиной возникновения переходных зон, в которых льдообразование происходит по какому-то промежуточному типу. Кроме того, постоянные колебания климата ведут к изменению условий льдообразования, иногда более быстрому, чем сам процесс льдообразования. В результате таких климатических изменений верхние слои ледника часто оказываются в неустойчивом состоянии, когда тип льдообразования в одном и том же месте ледника периодически изменяется.
Глава 2. Снег на ледниках в период аблиции

Рис. 2.32. Схема зон льдообразования (а) и разрез фирновой-ледяной толщи (б) на ледниковых покрове Северного острова Новой Земли
Положение стратиграфических границ
1 - верхняя часть холодной фирновой зоны, 2 - нижняя часть холодной фирновой зоны, 3 - зона ледяного питания, 4 - область аблиции, 5 - зона распространения навсяких ледников и снежников, 6 - границы ледников, 7 - граница питания, 8 - фирновая линия, 9 - положение профиля, 10 - снег, 11 - фирн, 12 - слой льда, 13 - трещины, 14 - шурфы, 15 - скважина

Стратиграфические исследования в области аккумуляции на Земле Эльсмюра показали (Péguy, Corbel, 1961), что в слоях фирновой толщи, относящихся по времени образования к периоду от 1930 г. до конца 50-х годов, встречается очень много льда, тогда как в более ранних, годовых слоях льда почти нет. Эти данные свидетельствуют о том, что инфильтрационно-рециркуляционный тип льдообразования, господствовавший здесь в первые десятилетия XX в., в конце 30-х годов сменился инфильтрационным типом, что связано с широким и особенно теплым периодом Арктики в те годы. Аналогичный процесс происходил и на ледниковом покрове Новой Земли, где его удалось изучить путем сравнения наблюдений, проведенных в периоды 2-го Международного полярного года (1932–1933) и Международного геофизического года (1957–1959).

При пересечении Новоземельского ледникового покрова экспорция 2-го МПГ нигде, в том числе и на ледоразделе, не обнаружила на поверхности фирна. Однако во время исследований в период МГТ на

Рис. 2.33. Диаграмма изменения годовой аккумуляции в области питания южного склона Эльбруса с 1955 по 1962 год
Водозапас в каждом слое: 1 – фирна, 2 – льда. Цифры у столбцов обозначают процен ты к общему водозапасу годового слоя
Глава 3
СНЕГ И ЛЕД В ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКЕ ЗЕМЛИ

Режим ледников и энергия оледенения

Внешние условия существования ледников находят свое выражение в их режиме. Ранее X. Альман (Ahlmann, 1948) предложил использовать термин «режим» в применении к ледникам как показатель, представляющий собой сумму годовой аккумуляции и годовой абляции за один балансовый год. Однако, неотрицательная важность такой характеристики, понятие «режим» следует употреблять в более широком смысле, подобно тому, как в гидрологии говорят о режиме реки.

Режим ледника есть совокупность всех процессов, происходящих на его поверхности и в толще. Режим ледников определяется такими количественными показателями, как высота границы питания, интенсивность процессов аккумуляции–абляции (всего года аккумуляции на высоте границы питания), площади областей питания и абляции, ледниковый коэффициент, высотные градиенты аккумуляции и абляции и их сума — высотный градиент баланса массы, а также таким показателем, как внутренний массоэнергообмен ледника (движение льда и пр.). Очевидно, каждый из перечисленных показателей на конкретном леднике в разные годы меняется, что служит причиной постоянных колебаний его режима.

Важнейшей характеристикой режима ледника служит высотный градиент его баланса массы, или тангенс угла наклона кривой, выражающей зависимость баланса массы от абсолютной высоты. Эту величину П.А. Шумский (1955) назвал «энергией оледенения», а М. Майер (Meier, 1962) — «показателем активности» ледника. Первоначально Шумский определил ее как сумму градиентов кривых годового прироста и убыли вещества у границы питания, но, как видно из простых геометрических построений, эта сумма равна высотному градиенту баланса массы ледника в любой его точке.

В области питания ледника баланс массы представляет собой годовой прирост фирна и льда A, а в области расхода — годовую убыль льда a. Исходя из содержания понятия «энергия оледенения» E, для
Глава 3. Снег и лед в географической оболочке Земли

Градиент баланса массы на полярных ледниках, так же как и на горных, уменьшается по мере удаления от источников поступления метана и от преимущественных путей циклонов: если в Исландии E равно 9—11 мм/м, то на Северной Земле — только 2—4 мм/м.

Понятие «энергия оледенения» неприменимо к Антарктическому ледниковому покрову, так как граница оледенения в большинстве случаев здесь проходит на уровне моря, и почти весь расход льда происходит путем оттока айсбергов. Об активности же оледенения можно судить по скоростям движения льда, которые составляют 500—1500 мм/год в местах значительной концентрации стока и гораздо меньше на остальных участках края ледника. Учитывая огромный радиус Антарктического ледникового покрова (1500—2000 км), следует признать, что наблюдаемые здесь скорости движения нефледороформированного края льда свидетельствуют о весьма низкой энергии оледенения, что, однако, не противоречит выводу о большой активности ледникового покрова Антарктиды, обязанной его гигантским размерам.

Интенсивность процессов аккумуляции—абляции на ледниках изменяется пропорционально изменению высотного градиента баланса массы. Например, на альпийских ледниках значения годовой аккумуляции (и соответственно годовой абляции) на уровне границы ледников от 200—240 см/сек., а на карбонатры — 50—60 см/сек., а в Исландии эти величины составляют 180—250 см/сек., а на Северной Земле — примерно 35 см/сек.

Важным показателем режима ледника служит также ледниковый коэффициент $K = S/S$, представляющий отношение площади области аккумуляции S, к площади области абляции S. За рубежком, однако, используется другой параметр, предложенный в свое время М. Мейером и воспринятый в обход с абревиатурой AAR. Он представляет собой отношение площади области аккумуляции к площади всего ледника S, т.е. $AAR = S/S$. Очевидно, оба названных коэффициенты связаны между собой простым соотношением:

\[K = AAR(1 - AAR). \]

\[AAR = (K + 1)/K. \]

Будем считать, что стационарному состоянию данного ледника отвечает ледниковый коэффициент K. Девятнадцать исследований ледника Хинтерайферн (Hoinkes, Rudolph, 1962) позволили установить, что при нулевом балансе массы ледниковый коэффициент на этом леднике равен 2,73. Соответствующее значение K для Центрального Тунгусского ледника, по определению Н.Н. Пальтова (1964), равно 2,64. В современную эпоху статуса горных ледников значение K, как правило, меньше K. Так, на леднике Хинтерайфермер в среднем за 1952—1961 гг. ледниковый коэффициент составлял всего 1,47, а на Тунгусском леднике в среднем за 1937—1962 гг. он был равен 1,13.
Глава 3. Снег и лед в географической оболочке Земли

Глициальные ландшафты, взаимосвязанные со всей природной обстановкой, но подчиняющиеся некоторым особым, присущим лишь им закономерностям.

Задача глициологического районирования состоит в том, чтобы рассматривать инвально-глициальные явления и природные льды как целое, подразделяя их на части, каждая из которых обладает своими свойствами, отличными от других частей, и вступает с другими в отношения равноправных взаимосвязей. Основными факторами районирования служат: широтное положение территории, степень ее континентальности, источник питания льдов, особенности рельефа.

В качестве главных факторов, воздействующих на инвально-глициальные явления, следует рассматривать зональные, азональные и высоко-поясные. Многие глициологические явления, и в том числе зоны льдообразования на горных ледниках, есть продукт высотной поясности; в то время как зоны льдообразования на материковых ледниках — это зеркало выражение общей зональности в специфических ледниковых условиях.

Инвально-глициальные явления развиты в полярных и умеренных поясах, а вне их встречаются лишь в горах (как правило, в высоко-горье). Поэтому существующие в Северном и Южном полушариях пояса и зоны имеют глубокие различия, связанные с существенно разным расположением суши и моря в этих полушариях.

Первую попытку классификации ледников, оставившую заметный след в районировании ледниковых областей, сделал К. Альман (Ahlmann, 1948), выделивший умеренные (более теплые) и полярные ледники, а среди последних — субполярные и высоко-полярные. Это первая классификация была развита в работах Г.А. Авсюк (1955), который, исходя из природных факторов, обусловливающих температурный режим ледников, выделил пять основных типов, закономерно размещенных на территории земного шара: 1) сухой полярный ледник (Антарктида и Гренландия), 2) субполярный ледник (на высотах 6000 м), 3) влажный полярный (по периферии упомянутых ледников), 4) влажный холодный (на вершинах части ледников на арктических островах и в Патагонии), 5) морской (Аляска, Канада, Камчатка, Новой Зеландии и др.), 6) континентальный (ледники гор Средней и Центральной Азии, Сибири, Канадского архипелага).

Климатические условия существования ледников отражены в классификации Л. Либрути (Liboutry, 1956). Он выделил пять типов ледников, назвав характерные районы, в которых они распространены: 1) глобальные ледники (Антарктика), 2) полярные (Антарктида и Гренландия), 3) ледники сухого субполярного климата (Канадский архипелаг), 4) влажные субполярные (Аляска, Патагония, Исландия), 5) ледники умеренного климата (Алпы, Кавказ, Тянь-Шань и многие другие), 6) субпро-
Часть 2. Снежный покров на ледниках

Поверхностные, или туркестанские ледники (Памир, Каракорум, Центральные Анды, 7) тропические, или гималайские ледники (махан Нанга-Парбат) и 8) экваториальные ледники (Рукинжер, Килиманджаро и т. д.).

Однако для географического районирования одной типизации ледников недостаточно, так как в обширном ледниковом районе могут встречаться ледники разных морфологических типов, обладающие неоднаковым температурным режимом. В то же время существования ледников и в значительной мере их режим связаны в первую очередь с циркуляцией атмосферы. Поэтому в основу ледникового районирования следует положить закономерности атмосферной циркуляции и взаимодействия ее с рельефом ледниковых областей.

Поскольку основное питание ледников приносится снегами, естественным генетическим признаком района, как отмечает А.Н. Кренке (1963), служит приуроченность ледников к основным траекториям движения циклонов.

Связь ледников с основными путями циклонов особенно хорошо проявляется в распределении арктических ледниковых куполов. А.Н. Кренке (1963) убедительно показал, что почти все арктические ледники расположены вдоль бархимских линий, преобладающих циклонов асимметричные и сдвинуты к оси этих линий. На склонах ледниковых куполов, обращенных к бархимским линиям, высотный градиент баланса и скорость движения льда больше, чем на противоположных склонах; граница питания и соответствующие зоны ледообразования располагаются здесь ниже.

Ледниковое районирование должно исходить из соответствия современных ледниковых областей и циркуляции атмосферы, источников питания ледников, а также и условий ее выпадения на ледники. Идея о выделении ледниковых провинций по принципу источников питания высказал еще Д.М. Колесов (1952); о ней также говорил Тихоокеанскую и Атлантическую ледниковые провинции. Впоследствии эта идея была развита Н.С. Преображенским (1961), который в пределах Тихоокеанской провинции выделил Североамериканский, а в нем - Океанический и Субконтинентальный подохроты, объединяющие такие ледниковые районы, как хр. Сунтар-Хаята, Камчатка, Корякское нагорье и др.

Итак, основные районы оледенения Земли находятся в зонах большой повторяемости циклонов, а источниками влаги служат Тихий, Атлантический и Индийский океаны. При этом наиболее значительное значение имеет Атлантический океан, снабжающий влагой всю арктическую область и большую часть Евразии. Влага с Тихого океана поступает лишь на ледники Северной и Южной Америки, Новой Зеландии и крайнего севера-востока Азии. Наконец, в соответствии с муссонной циркуляцией в северной части Индийского океана влага отхода переносится в ледниковые районы Центральной Азии. На освещенных пространствах континентов происходит трансформация воздушных масс, причем значительную роль в этом процессе играют горные сооружения, несущие на себе ледники.

Исходя из двух основных факторов, определяющих питание ледников, - циркуляцию атмосферы и макрорельефа земной поверхности, в 80-х годах было предложено ледниковое районирование земного шара, основанные как основными, так и дополнительными признаками, были два: провинции и области. Основной для выделения географических провинций служит источник питания ледников, а область - направление движения их.

Это районирование послужило отправной точкой гляциологического районирования в Атласе снежно-ледовых ресурсов мира, которое строится по шестиуровневой схеме с учетом регионального положения таксономических единиц. Районы и области - классификация, а провинции и бассейны, также область - район - бассейн. Поиска и области выделяются исходя из общей географической зональности с учетом географического и временного развития снежно-ледовых явлений. Каждая из зон подразделяется на гляциологические провинции, провинции в свою очередь, на гляциологические провинции и области, а в последовательности от характера циркуляции атмосферы и макрорельефа земной поверхности. При выделении провинций главным следует считать источник влаги и поступление ее к тому или иному континенту, областей - их совпадение с крупными горными или равнинными территориями, в пределах которых наблюдается определенное естественно-глациональных явлений.

При выделении районов учитываются преобладание определенных видов глациональных явлений, степень алевролизации и ее дисперсности или компактности, высотной поясности гляциологических явлений, особенности их режима и межгодовой изменчивости. В качестве элементарной единицы районирования принимается река с той или иной степенью развития в нем глациональных явлений, называемых ледниковым бассейном.

Ледниковым бассейном считается такой бассейн, на поверхности которого, влажный при этом, затопляющего участка, существуют ледники и (или) многочисленные снежники. Нижнюю границу ледникового бассейна целесообразно проводить на уровне границы снежников (орографической снеговой линии), т. е. ниже основной массы сезонных и всех перелетающих снежников в бассейне. Географический непрерывный и достаточно одинаковый в бассейне, снежник расположен на поверхности коркового слоя ледникового бассейна, а группа таких районов объединяется в гляциологическую область. Иногда в качестве промежуточной ступени выделяется подобласть.

В основе районирования - пять поясов временных и постоянных глациональных явлений в Северном и Южном полушариях (см.
Глава 3. Снег и лед в географической оболочке Земли

охватывает территории с современным оледенением горных стран. Общая площадь пояса Б равна 35 млн км².

Пояс в — пояс постоянных нивально-глациальных явлений Южного полушария — включает Антарктиду (зона В1) и часть Южного океана, занимаемую айсбергами, сезонными и многолетними морскими льдами (зона ВII). На островах зоны ВII распространено современное горно-ледяное оледенение, вся поверхность пояса в холодную половину года занята снежным покровом. Общая площадь пояса В равна 35 млн км².

Пояс Г — пояс временных нивально-глациальных явлений Южного полушария — включает в себя однозону ГI распространения айсбергов, проливающих ледяным критику Антарктиды. На островах зоны его форма современного горно-ледяного оледенение. Сезонный снежный покров характерен для поверхности как островов, так и айсбергов. Площадь их и других примерно одинакова — первые тысячи квадратных километров. Площадь пояса Г достигает 40 млн км².

Пояс Д — пояс нивально-глациальных явлений в экваториальной, тропической и южном умеренном поясе.

Пояс А (обозначения даны на карте; рис. 1.26, с 75) — пояс постоянных нивально-глациальных явлений Северного полушария — охватывает Гренландию, Северный Ледовитый и северные части Тихого и Атлантического океанов, занятые морскими льдами, северные и норвежские острова и Северной Америки с покровом многолетних ледяных пород и современным оледенением в горах. Зона A1 включает Гренландский ледяной шельф и Центральный Арктический бассейн с его массивом многолетних морских льдов, зона AII — океанские моря Северного Ледовитого и часть Атлантического океана с сезонными и многолетними морскими и современными горно-ледяным оледенением на островах, зона AIII — территории двух материков в пределах распространения многолетних ледяных пород и зеркала озера Ханлосского и Берингова морей. Общая площадь пояса А равна 38 млн км². Устойчивый сезонный снежный покров на юге зоны делает ее необъятной по всей территории пояса в холодную половину года.

Пояс Б — пояс временных нивально-глациальных явлений Северного полушария — охватывает распространение снежного покрова в Евразии и Северной Америке на сезонных гололедных грунтах с остро- водами вечной мерзлоты, а также часть морей Атлантического океана, замерзающую в отдельные годы. В нем выделены зоны устойчивого (зона Б1) и неустойчивого (зона БII) снежного покрова. Открывая границы между ними довольно сложно: зона Б1, к которой относится Тибет и Гималаи, крупными "заливами" проникает далеко на юг, в зону БII,
Глава 3. Снег и лед в географической оболочке Земли

ряду масштабов: в-четвертых, полями основных параметров в их пределах, т.е. обобщенными представлениями о распределении по территории той или иной характеристики системы. К таким параметрам относятся, например, абсолютные и относительные высоты рельефа, высотное положение границы питаения ледников, температура воздуха на ее высоте или на фиксированном уровне, величина аккумуляции—абляции на высоте границы питания ледников. Полустроются методами проведения изолиний между величинами, вычисленными для отдельных точек территории.

Наиболее совершенный метод исследования — создание физических моделей нивально-глациальных систем — практически не применим к достаточно сложным системам, состоящим из многих элементов. В этом случае прибегают к одному из излагаемых ниже методов: эталонному, статистическому или методу «полей».

Эталонный метод состоит в изучении «типичного» блока системы, включающего основные виды гляциальных объектов, например, отдельного ледника или горно-льдникового бассейна. Затем полученные результаты переносятся на другие блоки системы. Например, кривая зависимости удельного баланса массы от высоты или от превышения над границей питаия, выведенная на одном леднике, переносится на всю ледниковоющую систему горной страны.

Статистический метод заключается в учете простых свойств всех элементов системы и их взаимосвязи без анализа физической сущности и учета природности этих свойств к конкретным элементам системы и положению их в пространстве. Рассматриваются характеристики распределения и варианты свойств и интенсивности процессов во времени и пространстве: оценка доли отсутствующих ледников, варианты появления незаделанных перед их концами, изменения энтропии ледниковой системы по разнообразию размеров или типов ледников и т.д.

Метод полей или картографического моделирования состоит в построении полей простых характеристик отдельных элементов с учетом их пространственного положения, например, проведение изохон, в сопоставлении разных полей с определением степени их сходства для выявления взаимосвязей и причинности, а также в выявлении пространственных законов изменения характеристик по конфигурации их полей, в разложении полей на составляющие для выделения определяющих факторов.

Глобальная нивально-глациальная система включает все снеголедовые объекты и явления, из которых наиболее важны следующие: снежный покров, ледники, морские и подземные льды (рис. 2.34). Все элементы системы образуют два генетических ряда: основной первого служит преимущественно сублимационный, а второго — кондукционный типы льдообразования. Сила взаимосвязей между
Часть 2. Снежный покров на ледниках

Глава 3. Снег и лед в географической оболочке Земли

Нивально-гляциальная система Памира и Гиссаро-Алай

Есть несколько близких вариантов проведения границы между Восточным и Западным Памиром разными авторами (рис. 2.35). Все они хорошо коррелируют с характеристиками рельефа, прежде всего с относительной глубиной его расчленения. Подобную карту, характеризующую максимальный перепад высот, мы построили путем сопоставления двух структур: максимальных и минимальных высот рельефа. Геоморфологически граница Западного и Восточного Памира ближе всего соответствует на приводимой карте изолинии в 2000 м. Максимальный перепад высот на Западном Памире составляет 5 км, на Восточном контрасты высот вдвое меньше.

Наши полевые работы включали наземные исследования ледников и наблюдения с борта вертолета при систематических облетах всех ледников того или иного бассейна. В полете проводилось аэровизуальное дешифрование аэрофotosнимков, выполненных 15–20 лет назад, коректировались границы ледников, выяснялись все случаи их наступления или отступления, отмечалось положение фронтовой линии, велись наблюдения за характером питания в фиоформных областях ледников и т.п. Особое внимание уделялось изучению режима специально выбранных эталонных ледников.

Наблюдения за режимом фиоформных областей ледников были выполнены в 1965 г. на ледниках Медвединый и РГО в верховьях
Глава 3. Снег и лед в географической оболочке Земли

Рис. 2.36. Степень оледенения Памиро-Алая

9830 км², из них около 8,5 тыс. ледников имеют размеры более 0,1 км². Степень оледенения, т.е. доля площади ледников в общей площади рассматриваемого района, очень велика. Для картографирования этой величины мы использовали сетку квадратов со стороной 15 км, как при построении карт высот гор. В каждом из квадратов по данным Каталога ледников подсчитана суммарная площадь льда, вычисленная ее доля в процентах и по полученному полю точек проведены изолинии равной степени оледенения (рис. 2.36).

Размер медианного ледника (Кренке, 1976) на Памире равен 5 км². Сводные данные о расположении ледников по размерам, экспозиции и морфологическим типам приведены на рис. 2.37. Здесь же для сравнения даются аналогичные данные по ледниковой системе Кавказа. Виды значительные различия приводимых параметров в двух памиро-алаийских системах и в то же время близкое соответствие между Гиссаро-Алайским и Кавказским. Такое сопоставление приводит к важному выводу о том, что общие закономерности современного оледенения в отдельной ледниковой системе в значительной мере определяются степенью ее зрелости, зависящей от характера рельефа и климата горной страны (или довольно близко к Кавказу и Гиссаро-Алайским), чем положением этой страны внутри континента.

Действительно, представленные на рис. 2.37 кривые распределения для Памира характеризуются большим разнообразием, чем для Гиссаро-Алай и Кавказа. При логарифмической шкале площадей с шагом в «а» раз энтропия распределения площадей по размерам для
Глава 3. Снег и лед в географической оболочке Земли

Рис. 2.38. Совмещенный график высотного положения и соотношения площадей областей аккумуляции и аблиции ледников в основных бассейнах Памиро-Алая

1 — нижние притоки Панджа, 2 — Обихинское, 3 — Вачн, 4 — Ялагулам, 5 — Муксу (западная часть), 6 — бассейн ледника Федченко, 7 — Батанг (западная часть), 8 — Кзылсай (левобережье), 9 — Муксу (восточная часть), 10 — Батанг (восточная часть), 11 — Марканны, 12 — оз. Каракул, 13 — Мургаб, 14 — притоки Панджа между устьями Ялагулама и Гунта, 15 — Гунт (западная часть), 16 — верховья Панджа, 17 — Гунт (восточная часть), 18 — Сурхоб, 19 — Кафирнаган, 20 — Суха-дарья, 21 — левый приток Сырдарьи, 22 — правый приток Сырдарьи и Иккиза, 23 — Зарифаш.

- области аккумуляции, 6 — области аблиции, свободные от моренных покровов, в — часть областей аблиции, закрытая моренами;

- дипазон высот крупных точек ледников в бассейне

выраженный на Кавказе, где таких комплексов больше (в том числе ледники конических вершин). Сказанное объясняется иным положением и месторасположением Памира относительно других областей. В Гессаро-Алае сложные ледники сильно уступают долинным — это классическая страна простых долинных ледников.

Большинство главных горных цепей Памир-Алая вытянуто в широтном направлении, хотя из-за сложного их расположения встречаются склоны различной ориентации. Тем не менее, преобладают ледники северных румбов. Диапазон высот ледниковой зоны Памиро-Алая достигает 5 км. от 2320 м. (самый низкий конец ледника на северном склоне хр. Петр Первого) до 7300 м. (начало ледников на склонах пика Исьмона, выше пика Кунгурака). Различия в высотном положении ледниковой зоны зависят не только от уровня увлажненности и абсолютной высоты, но также от геологического строения и орографических условий района.
Глава 3. Снег и лед в географической оболочке Земли

Детальное изучение морфологических типов ледников показало, что они закономерно расположены на склонах разных румбов. В качестве примера приведу данные по бассейну р. Сурхо (рис. 2.39). Здесь долинные ледники встречаются на склонах всех экспозиций, каровые ледники отсутствуют на западном склоне, склоновые имеют лишь северную и западную экспозиции, висячие встречаются только на склонах западных румбов и очень высоко на северных склонах.

Это объясняется особенностями накопления осадков и таяния. Условия питания долинных ледников мало различаются на склонах разных румбов. Каровые ледники, существующие за счет значительной температуры и ледяной концентрации снега, отсутствуют именно на западном наветренном склоне, где такая концентрация затруднена. Склоновые ледники, отложившиеся на склоне, отсутствуют на склоне, прилегающем либо к восточному западному склону, либо к северному, получавшему меньше энергии солнечной радиации, но встречаются они и на сравнительно пологих южных склонах. Наконец, для висячих ледников наиболее удобен северный склон, меньше освещенный солнцем, а также западный ветренный склон.

Сказанное подкрепляется данными о ледниковой концентрации. Большая величина коэффициента означает, что, при прочих равных условиях, т.е. при близком к нулевому балансу массы или при одном и том же характере этого баланса у сравниваемых ледников, концентрация снега в областях питания меньше.

Возьмем для примера бассейн р. Коксу (рис. 2.40). Наибольший коэффициент (2–2,5) здесь имеют склоновые и висячие ледники. Склоновые потому, что лежат на открытом, незагороженных склонах и имеют очень низкую концентрацию снега на поверхности; висячие отличаются частными обвалами льда и крутого уклона, что служит причиной небольшой областей аркози. Наименьший коэффициент (1,4–1,5) имеют каровые ледники, которые отличаются максимальной концентрацией снега. Средние значения ледикового коэффициента у долинных ледников (1,6–1,7), что свидетельствует о средних условиях их питания и режима. Это говорит в пользу того, что долинные ледники являются самыми репрезентативными. Вот почему в качестве эталонных ледников, на которых мы проводили полустационарные наблюдения, были выбраны долинные или карово-долинные ледники.

На основе полученных данных выполнены детальные расчеты элементов внешнего массообмена в области питания шести ледников, приведенные в табл. 2.16. Примененная методика исходит из понимания внутреннего инфильтрационного питания и его составляющих, изложенного в предыдущей главе. Исходными служат три величины, получаемые в результате наблюдений в поле: несаяший остаток снега s, внутреннее инфильтрационное питание u и общее таяние A; несаящий остаток снега s получаем как производное толщины годового слоя в конце периода аблиции и средней плотности.
Глава 3. Снег и лед в географической оболочке Земли

![Diagram of snow and ice distribution](image)

Рис. 2.40. Высотное положение и средние значения ледникового коэффициента долинных (D), карово-долинных (K-D), склоновых (S), каровых (K) и висячих (B) ледников в бассейне р. Коксу на южном склоне Алайского хребта. Справа – распределение площадей определения по румбам в этом бассейне

1 — положительная разность определения, 2 — отрицательная разность определения, 3 — ледниковый коэффициент (козф.)

Снега перед началом таяния (на основе наблюдений она принята равной 0,35 см/см³). Величина внутреннего питания вычисляется по изменению стратиграфии и плотности нескольких годовых горизонтов, в которые просачивается вода в текущем лете. Величину общего таяния рассчитываем на основе измерений таяния по рейкам на протяжении периода аблации.

Сумма нестабильного остатка снега и внутреннего питания дает годовой приход I. Разность между общим таянием и внутренним питанием, представляющая часть тайной воды, задержанной в фирновой толще, дает величину стока R. Годовая аккумуляция С получается как сумма трех составляющих: нестабильного остатка снега, общего таяния и летнего испарения E. Величину испарения за лето мы приняли равной 10 см² на основе наблюдений в фирновой области ледника Федченко на высоте более 4000 м.

Данные таблицы показывают, что элементы режима ледников закономерно изменяются от хорошо увлажненной северо-западной периферии Памиро-Алтайской ледниковой области к ее юго-восточной внутритерриториальной части (рис. 2.41). В целом с северо-запада на юго-восток абсолютные величины годовой аккумуляции, таяния

Таблица 2.16

<table>
<thead>
<tr>
<th>Ледник (рекинский бассейн)</th>
<th>Абсолютная высота, м</th>
<th>Центральная часть</th>
<th>Южная часть</th>
<th>Восточный Памир</th>
</tr>
</thead>
<tbody>
<tr>
<td>Объёлк (Сербо)</td>
<td>3650</td>
<td>4200</td>
<td>4400</td>
<td>4000</td>
</tr>
<tr>
<td>Ингант (Сербо)</td>
<td>3980</td>
<td>4050</td>
<td>4240</td>
<td>4000</td>
</tr>
<tr>
<td>Скотан (Омбай)</td>
<td>4200</td>
<td>4000</td>
<td>4300</td>
<td>4100</td>
</tr>
<tr>
<td>Ледник (Сербо)</td>
<td>4250</td>
<td>4200</td>
<td>4400</td>
<td>4100</td>
</tr>
<tr>
<td>Беково (Сербо)</td>
<td>4950</td>
<td>5050</td>
<td>5100</td>
<td>5000</td>
</tr>
</tbody>
</table>

Д. — преобладающая стратиграфия и плотность нескольких годовых горизонтов, в которые просачивается вода в текущем лете. Величину общего таяния рассчитываем на основе измерений таяния по рейкам на протяжении периода аблации.
Часть 2. Снежный покров на ледниках

Глава 3. Снег и лед в географической оболочке Земли

Рис. 2.41. Изменение основных показателей режима ледников Памиро-Алая с северо-запада на юго-восток
1 – годовая аккумуляция С, 2 – общее таяние А, 3 – внутреннее инфильтрационное питание Ь, 4 – годовой приход Ь, 5 – сток Р; а – абсолютные величины, г/см³; б – доля внутреннего питания от общего таяния, %

и внутреннего питания уменьшаются. Однако годовой приход больше всего на ледниках центральной части Памиро-Алая. Это обусловлено тем, что относительная величина таяния здесь меньше, чем на северо-западе и юго-востоке. В центральном районе при значительном снежном остатке и минимальном стоке наиболее благоприятны условия для внутреннего питания (до 100% объема тальных вод). Поэтому здесь годовой приход вещества почти равен годовой аккумуляции за год.

Результаты расчетов составляющих баланса массы ледников приведены на рис. 2.42. По соотношению элементов режима эти ледники можно объединить в четыре группы, характеризующие разные участки территории Памиро-Алая. О западной части Памиро-Алая дают представление ледники Обикома, Нытаналлы и Писода, о центральной части Памира – ледники Скогач, Русского географического общества и Мельский. Южная часть Памира представлена ледниками Ляджур и Бакчир, а Восточный Памир – ледником Краснослободцева.

Общее климатологическое значение имеют измерения и расчеты годовых сумм осадков и аккумуляции на ледниках, которые, как показывает наше исследование, весьма велики в гляциальной зоне и значительно превышают давшиеся ранее оценки. Теперь ясно, что
Глава 3. Снег и лед в географической оболочке Земли

III. Северо-восточный район занимает значительную восточную часть Алайского хребта, увлажнение которой в отличие от более западных районов зависит от воздушных потоков, поступающих с запада, северо-запада и севера. Эти потоки влажные, идущие над Ферганской долиной, разрушаются в тылу долины перед поперечным Ферганским хребтом. Аккумуляция снега на ледниках северных периферийных отрогов Алайского хребта превышает 150 см³/м², а в осевой части главного хребта встречаются участки малой аккумуляции — до 50 см³/м²; высота границы питания соответственно занимает положение от 4,0 до 4,4 км. Распространены по большей части простые долинные ледники, фировые области которых находятся на высотах 4,3-4,6 км. Абсолютно преобладает инфилтрационный тип льдообразования.

IV. Внутренний район имеет наиболее резко выраженные черты континентальности. Юго-западные воздушные потоки достигают его, потеряв основной запас влаги. Ледники — в основном каровые и склоновые — существуют лишь благодаря большой абсолютной высоте гор. Они, как правило, расположены вдоль главных хребтов на высотах 4,8-5,4 км. Аккумуляция в областях питания ледников не превышает 100 см³/м². Маломощные фировые толщи летом целиком промачиваются талыми водами, а большой запас холода в толще сокращает цикл льдообразования до 1-3 лет. Льдообразование происходит в основном по инфилтрационному типу. Очень широко распространена здесь и зона ледяного питания. Границы зона на ледниках в отдельные годы могут спекаться на значительные расстояния.

Несмотря на указанные различия, территория Памира и Гиссар-Алая обладает гляциологическим единством, обусловленным одним источником влаги, приходящей с запада, и общей горной системой Памир-Алая, что позволяет говорить о единой нивально-гляциальной системе Памира и Гиссар-Алая.
ЛИТЕРАТУРА

Аксюк Г.А. Ледяники плоских вершин // Тр. Ин-та географии АН СССР. Вып. 45. 1950. С. 15-44.
Аксюк Г.А. Искусственное усиление таяния льда и снега горных ледников // Тр. Ин-та географии АН СССР. Вып. 56. 1953. С. 5-43.
Аганянц О.Е. Основные проблемы физической географии Памира. Душанбе: Изд-во АН ТаджССР. Ч. 1. 1965. 240 с.; Ч. 2. 196. 244 с.
Адаменко В.Н. Некоторые вопросы изучения теплового баланса ледников (на примере Полярного Урала) // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 7. 1963. С. 115-123.
Антропова У.И. Некоторые радиационные и температурные характеристики

Литература

Давыдович И.В. Влияние короткопериодических колебаний климата на тип льдообразования в центральных районах Новой Земли // Гляциол. исследования. № 9. 1963. С. 82-93.
Жуковский Л.А. Оценка расходной части вещественного баланса ледников Полярного Урала по методам водного и теплового баланса // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 9. 1964. С. 218-222.
Калмыкин Е.М. К вопросу об условиях и закономерностях таяния Малоалтайских ледников // Гляциол. исследования в период МГТ. Западный и Джуранский Алатау. Вып. 3. Алма-Ата, 1963. С. 79-89.
Козик С.М. О влиянии метелевого переноса снега на наклонной поверхности надувшего ветра // Тр. САНИГМИ. Вып. 8(23). 1963. С. 100-104.
Колонос Д.М. Развитие тихоокеанской арктической провинции СССР // Материалы по четвертичному периоду СССР. Вып. 3. 1952. С. 214-216.
Комаров В.Д. О расчете водоотдачи такого ледникового покрова // Тр. Центр. ин-та прогнозов. Вып. 44 (71). 1956. С. 89-94.
Часть 2. Снежный покров на ледниках

Котляков В.М., Пименов М.Я. Подсчет количества твердых осадков на горных ледниках и роль метелевого переноса в их перераспределении (по исследованиям на Эльбрусе) // Тепловой и водный режим снежно-ледниковых толщ. М., 1965. С. 87-117.

Кренке А.Н. К методике расчета теплового баланса поверхности ледника в период абляции // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 2. 1961. С. 63-65.

Кренке А.Н. Об условиях гляциологических исследований и о предмете ледниковой гляциологии // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 27. 1976. С. 27-36.

Кренке А.Н., Перевальский В.В., Рагуев Ю.Г. Накопление и преобразование снежного покрова на вершине ледникового купола Чугеньна (Земля Франца-Иосифа) // Исследования ледников и ледниковых районов. Вып. 2. 1962. С. 50-65.

Кузьмин П.П. Процессы теплообмена, абляции и стока ледников в бассейне р. Зеравшан // Тр. ГГИ. Вып. 3 (57). 1948. С. 91-160.

Литература

Лосев К.С. Роль лавин в бюджете массы ледников // Тр. ЗакНИИГМИ. Вып. 20. 1966 Б. С. 178-182.

Лосев Н.А. Значение ледяных снегопадов как фактора аккумуляции и абляции ледников Эльбруса // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 10. 1964. С. 74-79.

Любомиров К.С. Влияние экспозиции и крутизны склонов на таяние ледников Эльбруса за счет прямой солнечной радиации // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 10. 1964. С. 204-208.

Мельник Д.М. О законах переноса снега и их использовании в снегоборьбе // Техника железнодорож. 1952. № 11. С. 5-7.

Москалев Ю.Д. Возникновение и движение лавин. Л.: Гидрометеоиздат, 1966. 152 с.

Оледенение Эльбруса. М.: Изд-во МГУ, 1968. 343 с.

Пашенко Н.П. Сокращение ледников в зависимости от положения фирновой линии и обусловленное им закономерности (на примере Центрального Турукского ледника) // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 9. 1964. С. 73-78.

Пеев Х.Д. К вопросу об образовании современных форм оледенения в горах Пирин // География и метеорология, 1961. № 3 (бюл.)

Часть 2. Снежный покров на ледниках

Пирова Т.В. Преобразование снежно-фирменной толщи и типы льдообразования на Эльбрусе // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 10. 1964. С. 79-86.

Ревякин В.С. Численная характеристика влияния заторенности на агломерациона ледниковых М. Актур // Гляциология Алтая. Вып. 2. Томск, 1962. С. 211-216.

Ревякин В.С. О ледниках плоских в Северо-Чуйских Алтах // Гляциология Алтая. Вып. 3. Томск, 1964. С. 78-84.

Савчук Н.М. Особенности питания новоземельского ледникового покрова за последние 25-30 лет // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 5. 1962. С. 51-60.

Тропов М.В. Очерки оледенения Алтая. М.: География, 1949. 376 с.

Тропов М.В. Основные черты связей между климатом и оледенением на Алтас // Гляциология Алтая. Вып. 2. 1962. С. 59-77.

Тропов М.В. О роли летних снегопадов в колебаниях ледников // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 9. 1964. С. 145-149.

Холочанский. Т. 2. Климаты и почвы холмовых районов Средней Азии. Ташкент: Изд-во АН УзССР, 1957.

Ходаков В.Г. Некоторые особенности таяния небольших ледников и снежников // Тепловой и водный режим снежно-ледниковых толщин. М., 1965. С. 81-86.

Литература

Целинк В.И. Методика производства маршрутных снегосъемок и анализ материалов наблюдений // Тр. Тбилис. ГИМ. Вып. 3. 1958. С. 48-73.

Цыкин Е.Н. Приход вещества в фирировых зонах ледников (метод изучения с помощью термозондирования). М.: Издво АН СССР, 1962 б (Результаты исслед. по программе МГГ. Гляциология. № 8). 93 с.

Шерер Ц.А. Повторяемость количества осадков различного вида // Тр. Главной геофиз. обсерватории. Вып. 131. 1962. С. 37-44.

Шерер Ц.А. Повторяемость периода с твердыми и смешанными осадками на территории СССР // Тр. Главной геофиз. обсерватории. Вып. 149. 1963. С. 72-80.

Шулье В.-Л. Таяние снежников. Ташкент: Изд-во АН УзССР, 1952. 100 с.

Шумский П.А. Энергия оледенения. М. и жизнь ледников. М.: География, 1947. 60 с.

Часть 2. Снежный покров на ледниках

Литература

Часть третья
ГЛОБАЛЬНЫЕ ИЗМЕНЕНИЯ
И СУДЬБА ЛЕДНИКОВ

Часть 2. Снежный покров на ледниках

Глава 1
ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ КОСМИЧЕСКИХ МЕТОДОВ В ГЛЯЦИОЛОГИИ

Возможности космических методов

Особые свойства снега и льда, широкая распространенность и высокая контрастность этих объектов позволяют для наблюдений за ними с успехом использовать космическую информацию. В гляциологии в соответствии с размером снежно-ледовых объектов, скоростью протекания природных процессов и разрешающей способностью космических материалов стоят три главные задачи, решение которых уже немыслимо без использования космической информации: 1) исследование снегосложения земного шара, ледовитости морей и изменчивости этих явлений во времени; 2) исследование формирования и изменчивости снежно-ледовых явлений в горах; 3) наблюдения за режимом снега и льда на конкретных территориях.
Глава 1. Использование космических методов в гляциологии

применения космических снимков для расчета толщины ледяного покрова, а также изменений его низких значений (Бардин, 1978).

Космические снимки используются для определения площади снежного покрова, изменение который по сути же вопрос важный для прогнозирования изменения среднегодовой температуры воздуха. Снимки позволяют также учитывать влияние снежного покрова на гидрологические процессы, а также на климатические условия вблизи исследуемой территории.

Разработаны также методы анализа космических снимков, которые позволяют определить площади снежного покрова, а также его изменение в различные периоды времени. Эти методы позволяют также определить влияние снежного покрова на климатические условия вблизи исследуемой территории.
Часть 3. Глобальные изменения и судьба ледников

ней и величину таяния с помощью простой эмпирической формулы (Креке, Ходаков, 1966), анализ которой я дал во 2-й главе второй части этой книги. Так же на этой высоте равно аккумуляция снега.

Таким образом, на основе данных по многим ледникам и с помощью космических снимков можно определить поле аккумуляции для крупных горных систем. Подобный анализ сейчас уже проведен для нескольких горных систем, наиболее подробно — для Памира (Определение Памиро-Алая, 1993).

Полученные по космическим и другим материалам данные о высоте границы питания и аккумуляции на этом уровне говорят о различиях в этом параметре: интенсивности массообмена и скорости образования влаги в ледниковых системах, направлении потоков влаги, питаниях ледников. А если в этом районе были отдельные наземные наблюдения, то с помощью космических данных можно получить сведения о всех составляющих водно-ледевого баланса ледников.

Это огромный вклад космических методов в гляциологию, позволяющий говорить о новом, практически важном направлении науки — космической гляциологии, которая дает ростки в смежные науки, прежде всего в климатологии и гидрологии. Полученные с помощью космической информации величины аккумуляции на ледниках позволяют переходить к твердым осадкам, используя известный в гляциологии коэффициент концентрации осадков на ледниках.

В результате мы получаем информацию об осадках в инвенториальной, т.е. самой верхней зоне гор, где данные о них недостоверны в связи с малой сетью осадкомеров и большими ошибками непосредственного измерения осадков из-за господствующих здесь сильных ветров. Жидкие осадки в этой зоне малы и могут быть рассчитаны в виде, в результате чего мы получаем годовую сумму осадков.

Следующий шаг — к стоку. Для этого вспомним, что на уровне границы питания абляция равна известной нам аккумуляции и ледником сток составляет 80–85%. Итак, мы можем рассчитать сток в горах по космическим снимкам, используя минимальные наблюдаемые значения. Причем этот метод хорошо использовать и для малозначимых районов. В данном случае коэффициент стока со всей инвенториальной зоны можно принять за единицу, а среднюю аккумуляцию на всем леднике считать равной аккумуляции на его границе питания. Эти допущения подтверждены на ряде ледников.

Используя изложенную здесь методику, мы пришли к парадоксальному результату — теперь мы знаем осадки, снегозапасы и сток на высоте ледников лучше, чем ниже в горах. Поэтому пришлось работать над проблемой экстраполяции данных не вверх, как это делали раньше, а вниз. И здесь помогает космическая информация.
Глава 1. Использование космических методов в гляцологии

Рис. 3.1. Схема бассейна ледника Биационного, составленная на основе дешифрирования космических снимков 1973 г.
1 — заснеженная и свободная от морены поверхность ледников; 2 — моренные покровы ледников, отированные на космических снимках фотоном: а) темно-серым, б) серым, в) светло-серым; 3 — средние морены; 4 — крупные трещины; 5 — озеро; 6 — водоразделы; 7 — склоны, свободные от снега и льда; 8 — лавинные логи и конусы выноса; 9 — водотоки; 10 — номера ледников по Каталогу ледников СССР

осадков, температур, аккумуляции и абляции для ледников Памира, Кавказа, Алтая, Тань-Шаня, Алп. Со станций «Салют-6» получены данные по ледникам Азии и Южной Америки.

Опыт работы над Атласом снего-ледовых ресурсов мира показал, что в наших руках явно недостаточно данных прямых наблюдений за режимом снего-ледовых явлений и получить их необходимое количество можно, лишь используя космическую информацию. Большее научное и практическое значение материалов по снегу и льду ставит в качестве важной задачи необходимость организации наземно-воздушно-космической службы наблюдений за снегом и льдом, которая должна входить в систему мониторинга природной среды (рис. 3.2).

Наземная часть службы — это ряд постоянных станций, выполняющих гляциогидротермологические наблюдения по особой программе, периодические наблюдения на избранных ледниках, экспедиционные исследования.

Воздушная часть службы — это дистанционные fotografические и геофизические наблюдения с борта самолета или вертолета, оборудованных для летащей гляциологической лаборатории. Путем дистанционных наблюдений с воздуха могут решаться такие задачи: фотографирование территории, расчеты снегозапасов, оценка колебаний ледников и измерения их толщины, изучение физических свойств и структуры ледников, обнаружение жидкой воды внутри и под ледниками, оценка теплового баланса поверхности снега и льда, наблюдения за морскими льдами и айсбергами.

Космическая часть службы — это многоцелевая съемка определенных участков земной поверхности с искусственных спутников Земли и орбитальных станций, а также визуально-инструментальные наблюдения за снего-ледовыми явлениями, проводимые космонавтами с борта космического корабля или орбитальной станции. Первый опыт таких наблюдений выполнен в 1978 г. космонавтами Ю.В. Романенко и Г.М. Гребов, В.В. Коваленком и А.С. Иванченкоовым на орбитальной станции «Салют-6» по нашей программе.

Длительность эксплуатации станции «Салют-6» позволила выполнить два этапа гляциологических исследований: предварительный и основной. На первом этапе выяснялись возможности космо-
Глава 1. Использование космических методов в гляциологии

ж) описки ледовой обстановки на море и направления движения айсбергов разных размеров.

Со станции «Салют-6» проводились визуально-инструментальные наблюдения за снежным покровом и льдами с помощью 6- и 12-кратных биноклей, фотографирование земной поверхности двумя камерами с форматом кадра 6,0 x 6,0 см, снабженными комплектом сменных объективов с фокусным расстоянием 50, 80, 150 и 180 мм. Как правило, для фотографирования ледников использовались два последних объектива, а при съемке снежного покрова и морских льдов — керотокфокусная оптика.

Во время этого эксперимента преследовалась и другая цель — оценить реальные возможности наблюдения и съемки ледников с борта пилотируемого корабля. Вероятность успешного обследования из космоса разных горных районов Земли неодноконечна. Во-первых, зона наблюдения ограничена узлом наклона орбиты спутника к плоскости экватора, который для станции «Салют-6» составлял 51,6°. Это значит, что с помощью стационарных камер можно было фотографировать земную поверхность в пределах от 35° с.ш. до 55° с.ш., а визуальные наблюдения и фотографирование с помощью переносных камер возможны в пределах 60°. Во-вторых, успех наблюдений зависит от обнаженночности и светотеневой обстановки. Вероятность малой облакенной погоды над горами колеблется в среднем от 5 до 10 %, а также в течение 0–5 часов отбрасываются горами тени такой глубины, что дешифрирование снимка невозможно.

Ряд наблюдений за гляциологическими объектами и их фотосъемка выполнялись космонавтами в статическом режиме орбитальной ориентации, когда стационарные фотопары МКФ-6М и КАТ-140 были ориентированы строго перпендикулярно поверхности Земли. Снимки этими камерами отличают высокими измерительными свойствами. Полоса обзора поверхности Земли у МКФ-6М составляла около 250 км, у КАТ-140 — 440 км; масштаб снимка — соответственно 1:2 000 000 и 1:2 400 000, формат кадра — 80 x 55 и 180 x 180 км. Оба аппарата оснащались черно-белыми пленками. Камера МКФ-6М, имеющая шесть независимых каналов съемки, работающих синхронно, давала возможность получить изображения местности в узких интервалах спектрального диапазона от 0,4 до 0,84 мкм. Последующее дешифрирование изображений одного и того же участка поверхности позволяло точно различать отдельные элементы ландшафтов, например, мокры и сухой снег на поверхности ледников, снежники, ярко освещенные и находящиеся в тени склонов.

Важная особенность орбиты станции «Салют-6» заключалась в том, что за сутки она смещалась почти на половину межконтинентального расстояния. Это означает, что через каждые две сутки станция
Глава 1. Использование космических методов в гляциологии

Фортамбек на Памире) удается видеть в лучшем случае лишь 15–20 секунд.

С высоты космического полета в течение нескольких секунд можно вывидеть границу сезонного снега на леднике. В начале лета она проявляется пятнами белого снега и голубого льда, вытянутыми в линию, а в конце периода абляции на смену голубым оттенкам приходят серые и стальные тона. Часто прослеживаются особенности проективного покрытия ледников мореным чехлом и дифференцируются цветовые оттенки обломочного материала.

В летнее время, в период активного таяния ледников, космонавты уверенно обнаруживают контуры ледникового языка и крупнейшие береговые уступы. Исключение составляют только окраины ледников, покрытых мореным чехлом, маскирующим их на фоне окружающей местности. Как правило, в этих случаях у ледника отсутствует и хорошо выраженная объемная форма.

Наиболее интересные места для их обнаружения часто бывают у ледников местами с заметной гидрологической активностью формирования.

На фронтальных участках пульсующих ледников легко обнаруживаются линии надвигов и следы обвалов льда. При наличии крупных разломов ледяной борта ледника они видны как сочетание темных полос, и в области крупных трещин в зоне растяжения — как зоны концентрации светлосерой поверхности льда. В тех случаях, когда боковая площадка является относительно чистой, отражение от поверхности ледника проходит хорошо, и они ограждения появляются в виде вида ледников.

На первом этапе экспериментов при их обнаружении были получены положительные результаты. Во время второго, основного этапа, исследования предварительное внимание было уделено изучению динамики горных ледников и морфологии их поверхности. Определение динамики изменяется между понятиями и максимальной дополнительностью времени».

Индикация пульсующих ледников Памира по спутниковым данным

С орбитальной высоты при каждом прохождении космического корабля над горным районом фотографируется полоса шириной от нескольких десятков до нескольких сотен километров. Поскольку период обращения спутника вокруг Земли составляет около 90 минут,
Часть 3. Глобальные изменения и судьба ледников

за сутки он 16 раз огибает планету, сместившись от витка к витку на расстояние около 22-30°. Обычно орбиты космических кораблей, оснащенных фотоаппаратурой, выбираются таким образом, что в каждый последующий день обеспечивается возможность съемки маршрута с небольшим попечением перекрытием по отношению к полосе, сфотографированной на сутки раньше. Таким образом, даже в том случае, когда горная страна простирется на сотни километров в широтном направлении, требуется всего одно или несколько прохождений спутника над ней. При этом существует возможность один и тот же район сфотографировать дважды в день с интервалом в несколько часов: вначале на восходящей ветви траектории, когда корабль в Северном полушарии движется от экватора на север, а затем на нисходящем участке траектории, когда он совершает полет в южном направлении.

Как известно, ледниковые пульсации имеют периодический характер и обусловлены динамической неустойчивостью самих ледниковых систем. Периодические автоколебания ледников приводят к скачкообразному перераспределению вещества без изменения его общей массы. Резкое увеличение скорости движения льда в стадию подвижки деформирует тело ледника и существенно меняет его морфологический облик, что обнаруживается с помощью повторных космических фотосъемок, иногда в сочетании с аэро- и наземными.

Существуют ряд визуальных признаков пульсирующих ледников, заметных и из космоса, например, зигзагообразные грани морены, фотографирующие которые можно судить о возможных чертах поведения пульсирующего ледника.

Ледник Бивачный. На рис. 3.1 представлена схема дешифрования бассейна ледника Бивачного по космическому снимку 1973 г. На схеме отражены такие элементы морфологии поверхности ледника, как трещины, ледопады, морененный материал, озеро на леднике и т.п. Благодаря этому по повторным съемкам можно наблюдать движение составляющих потоков льда, определять скорость и направление движения. Зигзагообразные моренные гряды, при сущие ледникам пульсирующего типа, указывают на разницу динамику основного ствола ледника Бивачного и его левых притоков - ледников МГУ (№ 76), Ошанона (№ 77) и Калипина (№ 83) (номера по Каталогу ледников СССР. Т. 14. Вып. 3, часть 8. Л., 1968).

Глава 1. Использование космических методов в гляциологии

На рис. 3.3 показаны схемы дешифрования среднего течения ледника Бивачного по аэрофотоснимкам 1958 и 1972 гг. и космическим снимкам 1973, 1974 и 1976 гг. Сравнение положения моренных гряд и участков открытого льда и в месте впадения ледника МГУ в ледник Бивачный дает представление о развитии седла на первом из них и характере взаимодействия двух ледников. Для оценки величины перемещений фронтов ледяных потоков и петель морен на рис. 3.3 проведен условный створ. Точность такой оценки по космическим снимкам составляет около 5 м.

На снимке 1958 г. в среднем течении ледника Бивачного легко дешифруется поток ледяной гряды, за которым располагающимся в виде плоской «капли». Средняя морена ледника Бивачного была деформирована фронтальной частью этого потока. Указана полоса потока ледника МГУ, прошлающая на протяжении 1100 м ниже фронта потока вдоль левого борта долины. На аэрофотоснимке 3 сентября 1972 г. (рис. 3.3, б) вновь видна головная часть потока ледяной гряды, простирающееся из-под склонов пика Гармо, что позволяет установить, что поверхность этой части ледника на протяжении более 10 км представляют собой сочетание многих тысяч пирамид льда средней высотой около 15 м. При возникновении новой мощной подвижки в верховых
Часть 3. Глобальные изменения и судьба ледников

ледника такие «надолбы» препятствуют перемещению пульсирующей ветви, что приводит к распространению потока в направлении бортов долины и образованию петлевидных морен.

Космический снимок, полученный в сентябре 1973 г. (рис. 3.3, в), схема дешифрирования которого показана на рис. 3.1, позволила установить неподвижность фронта первой волны ледника МГУ и отсутствие продольных перемещений элементов поверхности ледника Бивачного ниже створа. За год фронт второй волны переместился вниз по долине на 250 м, обе петли срединной морены стали более выпуклыми по отношению к правому борту, а продольная ось потока развернулась на 12–15° влево по направлению движения.

Космический снимок второй декады июля 1974 г. (рис. 3.3, г) фиксирует продвижение фронта ледника МГУ еще на 150 м. Главная срединная морена ледника Бивачного в тех местах, где в нее упирается фронт первой волны, покрылась сетью трещин. На космическом снимке первой половины июля 1975 г. видны появление более густой сети трещин в устьевой ледяной линии МГУ и увеличение общей трещиноватости петель срединной морены.

Разительную картину изменения обстановки дал космический снимок 1976 г. (рис. 3.3, д): фронт неподвижной до этого времени в плане первой волны переместился на 800 м, фронт второй волны достиг створа, а срединная морена заняла свое место там, где она располагалась в 1958 г. (рис. 3.4). Вокруг продвигающегося фронта первой волны на петлях срединной морены образовались тангенциальные трещины длиной в несколько сотен метров. Петли продвинулись вместе с потоком ледника МГУ. Переместились и элементы поверхности главного ледника у его правого борта. Это обстоятельство заставляет предположить взаимовлияние движения ледника МГУ и подвижек ледника Бивачного.

За 18 лет на леднике Бивачном ниже места впадения ледника Ошапина в результате интенсивной эрозии усилились термокарстовые процессы, образовались дополнительные озера на всей площади ледника, особенно в краевых ложбинах. Снимки разных лет фиксируют периодическое их заполнение и осушение. Особенно существенна убыль льда при впадении ледника Бивачного в ледник Федченко. В дальнейшем на фоне периодической активизации верховых ледника Бивачного возможно его отчленение от ледника Федченко и образование здесь озера.

Глава 1. Использование космических методов в гляциологии

Сравнение приведенных схем выявило существенные изменения, которые претерпели большие и малые ледники бассейна. Бросается в глаза значительное сокращение площади основного ледника, конец языка которого за 25 лет отступил на 2,2 км. Очертания ледников левого борта также изменились; только два (№ 3 и № 5) из девяти ледников сохранили свои размеры. Ледник № 1 продвинулся более чем на 400 м, а ледник № 2 изменил свое положение на 1800 м, и его фирина область теперь заметно превышает площадь области абляции. В сочетании с интенсивным лавинным питанием это создает условия для накопления здесь избыточных запасов снега и льда. Ледник № 4 продвинулся на 150 м, а ледник № 5 разделился на две части. Левая часть отступила на 700 м, а правая выдвинулась на
200 м в сторону главной долины. Ледник № 7 отступал, распавшись на три небольших ледника. Язык среднего из них остался в том же месте, а два других сократились на 300 и 600 м. Концы обоих языков ледника № 8 отошли на 150 м; на 250 м сократился и ледник № 9.

Среди ледников Памира ледник Гандо выделяется хорошо развитыми поперечными моренными образованиями, что, как известно, служит ярким признаком пульсирующих ледников. Поперечные

Рис. 3.5. Схема определения долины р. Гандо: а — по наблюдениям Е.В. Тимашева в 1948 г., б — по результатам дешифрирования космических снимков 1973 г.

1 — водоразделы, 2 — моренный покров, 3 — волны поверхностных морен, 4 — ледниковые ручьи, 5 — фирновая граница, 6 — основные береговые, 7 — обозначения отдельных ветвей ледника Гандо и ледников его левого борта, 8 — склоны, свободные от снега и льда

Глава 1. Использование космических методов в гляциологии

моренные валы, располагающиеся на его поверхности в 1973 г. в 1,5 км выше и ниже устья ледника № 4, служат хорошими индикаторами фронтов наложенных потоков, принесенных сюда из фирновых областей главного ледника и ледника Дорофеева. Поперечный вал морены, находящийся в 1973 г. против устья ледника № 6 (см. рис. 3.5, б), соответствует валу, расположенному на схеме Е.В. Тимашева (см. рис. 3.5, а) против ледника № 3.

Поперечная моренная гряда, расположенная в 1 км вдоль и близлежащая распространение потока льда из цирков К.А. Б и В во время подвижки конца 50-х годов, позволяет оценить его скоростью в 150 м/год. Если предположить, что от устья ледника № 3 до ледника № 5 моренная гряда при пассивном движении перемещалась со скоростью 170 м/год (как это следует из расчета скорости движения нижнего поперечного вала, отсеченного в предыдущей абзаце), то активный перенос льда из фирновой области к леднику № 3 произошел всего за один год. Эта согласуется с данными, полученными при дешифрировании космических снимков 1974—1975 гг., показывавших зарождение кинематической волны в области аккумуляции ветви Б и последующее распространение фронта подвижки ниже устья ледника Дорофеева.

На летних снимках уверенно дешифруются области вспучивания поверхности ледника — участки, откуда начинаются подвижки. Например, на космическом снимке 1974 г. пограничные зоны от ледопада в верховьях ветви Б четко дешифруется ледовый купол, разорванный густой сетью трещин. Как было отмечено выше, именно отсюда начался подвиг ветви Б в 1974 г. К 1975 г. наложенный поток ледника достиг устья ледника Дорофеева, а в 1976 г. космические снимки показали распространение его вместе с активизировавшимися потоком ветви Б до конца ледника № 1.

Ко всему сказанному следует добавить, что недавний анализ памирских космических материалов (Оспилова, Цветков, 2001) уточнил трактовку событий, происходящих в этом месте определения до 1972 г.: вполне вероятно, что в конце 1950-х годов ледник Гандо испытал мощную подвижку, следы которой все еще заметны на снимке 1972 г.

Ледник Русского географического общества. В работе Л.Д. Долгушина и Г.Б. Оспиловой (1971) отмечалось, что в начале 70-х годов «ледник РГ вступил в активную фазу пульсации». Вместе с тем авторы этой работы говорили, что «дальнейшие исследования позволят... дать прогноз — вызовет ли эта пульсация продвижение конца ледника». Такое осторожное заявление оказалось оправданным — интерпретация космических снимков 1973—1976 гг. не дает основания прогнозировать скорость подвижки всего ледника, хотя следы активизации в прошлом отдельных его ветвей хорошо проявляются. Так, в 600 м от грута ледника у левого борта четко дешифрируется вал

274
Глава 1. Использование космических методов в гляциологии

выше устья водотока, стекающего с ледника Комсомольск. В последующие годы он пассивно перемещался вместе с ледником РГО со средней скоростью около 150 м/год (450 м за 3 года).

Очевидно, что оба основных истока ледника РГО подвержены подвижкам. Не следует сбрасывать со счетов также ледник Капалак и ледник, расположенный западнее. Синхронная активизация всех ветвей или нескольких из них может вызвать перемещение конца языка ледника РГО.

Верховья долины р. Сауксий. В этой долине на южном склоне Заалайского хребта расположены крупные сложные долинные ледники Вали (площадь 11,9 км²; длина 7,6 км), Дзерзинского (19 км²; 14,9 км) и Малый Саукдар (23,5 км²; 14,3 км).

Активное движение ледника Дзерзинского также началось в начале 1972 г. В это время наблюдалось обрушение глыб льда на его лобовой части и приближение к ней вдоль левого борта фронта активизации. К сентябрю 1973 г. языки ледников продвинулись на 500 м. На фоне активизации левой части ледника и смещения его нижней точки правая часть изменялась менее существенно: она покрывалась поперечными трещинами и подножалась. В июле 1975 г. языки выдвигались в долину и распластывались в виде характерной «плывущей львицы» на расстоянии более 100 м от скал противоположного борта долины р. Сауксий. Можно предположить, что подвижка ледника Дзерзинского прекратилась во второй половине лета 1975 г.

В отличие от первых двух ледников к ручьи подвижки на леднике Вали произошли на дне поймы. В 1972 г. активизировались два правых основных потока, поделивших всю ширину ледника и продвигавшихся синхронно из обоих фирновых бассейнов. В 1973 г. на фоне отступания языка ледника продвижение фронтов активизации этих потоков продолжалось, а в июле 1975 г. низкая точка языка ледника лишь на несколько метров не достигала главного русла р. Сауксий.

Активные стадии подвижек сауксийских ледников не были синхронными. В то время как ледник Вали наступал, ледники...
Глава 1. Использование космических методов в гляциологии

dолинного ледника Шокальского — левого притока ледника Гармо в бассейне р. Обхингу. В конце сезона абляции 1976 г. ниже границы питания на леднике отмечены нарушение поверхности полигональной системой трещин и значительное увеличение спектральной яркости этой зоны. Два небольших притока, впадающих в ледник Шокальского справа и слева, в 1975 г. упирались своими языками в его тело и формировали моренные валы. Космическая съемка 1976 г. фиксирует продвижение льда этих притоков на расстояние около 1300 м вместе с продвигающимся в главном стволе пульсирующего ледника.

Таким образом, в результате эксперимента с использованием аэрокосмической информации были получены новые данные о динамике ледников значительной территории Памира, на основе которых выработаны общие методические приемы индикации пульсирующих ледников. К числу общих признаков активизации ледников относятся: изменения скорости промежутков и поперечных профилей, косвенные формы языка или его растекание в виде конуса в верхней части («львинная лапа»), наличие в непосредственной близости от языка ледника оторванных масс льда, шлейфов обрушения льда по периметру языка ледника, краевых разломов и зон дробления льда на контакте со склонами долины, появление на ледниковом покрове большого количества трещин, наложенных потоков льда, надвижения языков ледников на другие ледники и склоны, образование ледниково-полурующего зеркала.

Один из предвестников назревающих подвижек ледника — изменение морфологии его поверхности. Наряду с изменением форм продольных и поперечных профилей главным признаком динамической неустойчивости ледника служит появление на его поверхности большого числа трещин и разрывов, возникающих в связи с увеличением скорости движения льда. При этом поперечные трещины захватывают всю толщину ледника, маркируя зоны растекания. По мере развития подвижек система трещин распространяется на всю прилежащую к движению часть ледника. Найбольшая деформация льда наблюдается в конечной части языка ледника, поверхность которой представляет собой обычно хаотическое нагромождение ледяных блоков.

В кумуляционную фазу подвижки, когда ледник целиком захватывает глябовым скольжением, в его краевых частях образуются крупные продольные разрывы и зоны дробления льда. Как показывают наблюдения, по характеру и распространению трещин могут быть выделены не только сами пульсирующие ледники, но и их активные зоны. Чаще всего в подвижке ледников на них языком участвуют лишь отдельные его составляющие. Одним из наиболее устойчивых на снимках признаков подвижки служит изменение вида поверхности морен — их смешение, изгибы, образование характерных петель.
Глава 1. Использование космических методов в гляциологии

При дешифрировании и анализе космических снимков мы использовали географические сведения из упомянутых работ Г. Виссмана и Г.И. Коноваловой, а также статьи К. Хьюга (Hewitt, 1969) и многочисленных публикаций участников научных и спортивных экспедиций. Особенности пеленгов оценивались по описаниям района определения швейцарского ученого и альпиниста Г.О. Дирерфурта (1970) и итальянского исследователя А. Дезио (1959).

Полученные по снимкам данные в основном подтверждают представления Г. Виссмана об общем характере определения Каракорума. Значительная степень определения этой территории определяется главным образом большой высотой гор, сильной заснеженностью территории и морфологией ледниковых долин. Для Каракорума типичны глубоко врезанные долины, в которых лежат ледниковые языки. Крупные ледники Каракорума относятся, как правило, к гималайскому и туркестанскому типам. Среди небольших ледников преобладают долинные, карово-долинные, каровые и висячие. Используя дешифрировочные признаки памятников, по космическим снимкам легко составить карту морфологических типов ледников длинее 500 м.

Большая часть ледников Каракорума имеет ледниковый коэффициент меньше единицы. Дешифрирование снимков дает возможность подсчитать этот показатель для каждого конкретного ледника, однако для выполнения таких расчетов приходится использовать данные 1978 г., полученные в августе или начале сентября, так как, по опыту съемки 1978 г., аккумуляция снежного снега на ледниках начинается с 20-х чисел сентября. Нам удалось получить данные о нижнем положении границы сезонного снега и сделать общие выводы о положении границы питания на ледниках.

С запада на восток граница питания ледников поднимается от 4800–5050 м в районе ледника Батура до 5700–5800 м на ледниках группы Сасир. С юга на север она повышается от 5000 м на ледниках южных периферийных хребтов до 5600–6000 м в районе перевала Пакамган. Самое низкое положение границы питания – 4400 м обнаружено на леднике Мипанга в массиве Ракашири, а самое высокое на леднике Римо – 6000 м.

Все исследователи Каракорума отмечают нестационарность и высокую динамику ледниковых ледников. Дешифрируя космические
Глава 1. Использование космических методов в гляциологии

Рис. 3.8. Современное определение Каракорума: а – морфологические типы ледников, б – пульсирующие ледники
1 – дендритовые, 2 – сложно-длининные, 3 – длининные, 4 – карово-длининные и каровые, 5 – высшие длининные; 6 – пульсировающие с установленными неоднократными подвижками; 7 – с явными морфологическими чертами неустойчивости, 8 – с отдельными признаками пульсаций, 9 – признаки пульсаций не выявлены

снимки, невозможно описать и датировать наступление ледников Каракорума, происходившее в XIX в. или в первой половине XX столетия; накопленных сведений пока недостаточно и для реконструкции пульсаций середины XX в. Одной из основ аналитий с Памиром мы провели оценку современного состояния пульсировающих ледников Каракорума и построили две карты, характеризующие морфологические типы ледников и возможные их подвижки (рис. 3.8).

На карте выделены те активные ледники, у которых признаки пульсаций обнаруживаются по зигзагообразным моренам грядам, характерной форме концов языков – «лычиной лапе», по совокупности других показателей. Отдельно показаны ледники, внешние признаки которых позволяют прогнозировать их быстрое наступление в ближайшие годы. Отметим также, что наши обнаружены, внутренний облик которых позволяет отнести их к числу пульсировающих. Например, мы не отнесем к числу ледников с признаками пульсаций ледники Мутулла и Чисар в Западном Каракоруме, хотя, по данным К. Мейсона, в 1892–1893 гг. они слиялись, образуя единый ледник Ханабад, который во время катастрофического наступления продвинулся на 10 км (см.: Кривонос, 1972). Австро-германская экспедиция в 1954 г. обнаружила здесь два самостоятельных, отсутствующих ледник. На космических снимках 70-х годов отчетливо видно, что они сливаются.

Последовательное изучение фотоснимков с орбитальной станции «Салют-6», сопоставление серии фотографий на ряд районов Каракорума и в особенности анализ снимков, сделанных во второй половине и в конце периода абляции, впервые позволили определить размеры и высотное положение 70 крупнейших керакорумских ледников и рассчитать наивысшее для 1978 г. положение на них границы сезонного снега, близкое к высоте границы питания ледников.

Используя метод аналогии с хорошо изученным Памиром, при дешифрировании космических снимков удалось получить общирную информацию о динамике ледников в 70-е годы. Выявлено широкое распространение в Каракоруме пульсировающих ледников. Ярким внешним признаком пульсаций здесь служат петли срединных моренных гряд, – особенно много таких ледников в Западном и Центральном Каракоруме. Подвижки боковых ледников часто выносятся в глубину долину и на ствол основного ледника, что приводит к формированию наклоненных и вложенных потоков льда. При этом
Наблюдения за Южным Патагонским ледниковым плato

Для выяснения возможностей визуальных исследований с борта орбитальной станции динамики крупной ледниковой системы было выбрано Южное Патагонское ледниковое плато (рис. 3.9). В качестве материалов для сравнения использована сводка И.А. Лосев (1968). С борта станции «Салют-6» было выполнено более 30 сеансов наблюдений над Южными Андами и получено около 40 снимков. Работы были начаты 22 декабря 1977 г. и продолжались более полутора лет. В летнее время наблюдениям сопровождались до нескольких суток, а в отдельные дни удавалось выполнить как дополнительные работ на 2-3 соседних витках. Таким образом были получены уникальные данные, некоторые из них приведены ниже.

Интересны результаты изучения ледника О’Хиттис, стекающего с Южного Патагонского ледникового плато на восток, в оз. Сан-Мартин. С 1935 по 1963 год этот ледник отступил на 8 км. Казалось, медленное отступление ледника необходимо сопровождаться образованием небольших айсбергов и обнаружением языка. Многочисленные небольшие отложений льда, продуцированные окрестными ледниками, отмечались всеми исследователями этого района.

22 декабря 1977 г. экипаж первой экспедиции на борту станции «Салют-6» обратил внимание на то, что нижняя часть ледникового языка отделена от основного ствола узкой полосой воды (рис. 3.10). В результате длительной аэрофотосъемки выявленная область льда была сверху, так и снизу, а также гидродинамического воздействия воды в ослабленном месте произошел откол обширного ледяного поля, площадь которого превышала 12 км². 30 декабря айсберг был отнесен ветром и значительно деформирован, а 1 января 1978 г. разрушился на сотни обломков разной величины. На рис. 3.10 показаны стадии разрушения этого отторженного ледяного поля. 10 марта на поверхности озера сохранился лишь несколько небольших айсбергов. Таким образом, космонавтам удалось зафиксировать рождение грандиозного айсберга от горного ледника и оценить его распад.

По данным И.А. Лосев (1968), в 1935 г. ледник О’Хиттис был далеко выдвинут в акваторию озера. С учетом наших измерений
Глава 1. Использование космических методов в гляциологии

Рис. 3.11. Положение фронта ледника Морено в 1899–1978 гг.
1 - акватория оз. Рио; границы ледника: 2 - в марте 1899 г., 3 - в марте 1900 г., 4 - в марте 1908 г., 5 - в марте 1914 г., 6 - в июле 1939 г., 7 - в октябре 1978 г.

1 сентября 1978 г. в конечной части южного языка ледника обнаружена большая трещина, отделяющая часть ледника треугольной формы, длина основания которого около 4 км. На снимках конца сентября начало октября 1978 г. зафиксирован отход от конца ледника.

Таким образом, вместе с медленной деградацией Южного Патагонского ледникового плато в XX в. его выводные ледники отличаются чрезвычайной динамичностью, выражающейся в частых резких наступлениях, обусловленных огромной энергией ослабления (за год здесь выпадает до 5000 мм осадков, а местами и больше) и соседством ледниковых языков с водосборами (фьорды на западной стороне и крупные озера - на восточной).

Периодическая съемка на соседних витках одного дня Патагонских ледниковых плато дала возможность установить, что в утренние часы почти спустя всю ледниковую область наблюдалось скопление внутриводного льда, который в виде шуги покрыв через значительную часть акватории, особенно у берегов и островов. Съемка в полдневные часы и во второй половине дня не фиксирует таких явлений.
Глава 2
КОЛЕБАНИЯ ЛЕДНИКОВ

Ледники постоянно испытывают колебания массы и размеров, что отражает прежде всего климатические изменения. Систематические наблюдения за колебаниями концов ледников были начаты в Швеции в 70-е годы XIX в. и затем постепенно распространялись на другие горно-ледниковые районы. В 1894 г. на Шестом международном геологическом конгрессе была создана ледниковая комиссия, которая должна была изучать колебания современных ледников. В 1960-е годы была сформулирована новая программа наблюдений за колебаниями ледников, а в 1967 г. создана Постоянная служба для обобщения результатов этих наблюдений во всемирном масштабе, впоследствии преобразованная во Всемирную службу мониторинга ледников. Традиционно она находится в Цюрихе (Швейцария).

История создания системы наблюдений за колебаниями ледников в нашей стране приведена в табл. 3.1. В России наблюдения за колебаниями отдельных ледников Кавказа, Алтая и гор Средней Азии проводились еще в XIX столетии. Как и в Альпах, они состояли в основном из наблюдений за специальными марками (реперами, камнями) у края ледника. В 1963 г. в СССР были введены постоянные наблюдения за колебаниями почти 200 ледников, а спустя 10 лет была принята новая программа (Основные..., 1973), в которую включены наблюдения трех классов. Первый класс — это детальные круглогодичные наблюдения на нескольких ледниках, позволяющие исследовать геодезию распределения по леднику многих его физических характеристик, что необходимо для функционального анализа изменений ледника как физической системы. Второй класс — это периодические (от двух раз в год до одного раза в пять лет) измерения на ледниках нескольких основных параметров, также дающих возможность изучать механизм колебаний ледников. Наиболее массовый — третий класс включает фиксацию положения концевой части ледника и получение нескольких других простейших данных, характеризующих его изменения. Пик подобных наблюдений пришелся на конец 70-х — начало 80-х годов, причем широко использовались аэро- и космические съемки.

Современная гляциология различает четыре вида колебаний ледников: 1) вынужденные колебания, обусловленные изменениями внешней нагрузки, т.е. скорости акумуляции—абляции льда; 2) высоко-
Глава 2. Колебания ледников

на которых время от времени резко ускоряется движение, лед
дробится и конец ледника быстро продвигается вперед или происходит
перераспределение массы лишь в пределах контура ледника (внутрен-
няя подвижка). Правда, пока не найдены критерии, позволяющие
определить граничные условия существования этих двух классов
ледников. Известны, например, ледяные потоки, стекающие с Грен-
ландского ледникового покрова. Они движутся очень быстро (до 10
м в сутки) и сильно раздроблены на всем протяжении. Но эти
ледники, за редкими исключениями, не относятся к пульсирующим.

Механизм вынужденных колебаний изучается путем наблюдений
за процессами внешнего (между ледником и атмосферой) и внутрен-
него массообмена ледников. Особенно детальные наблюдения, не
имеющие аналогов во всем мире, выполнялись в 60–70-е годы на
ледниках Обручева (Полярный Урал), Шумского (Джуранский
Алатау) и Центральной Тувой (Западный Алатау). Выяснилось,
что колебания этих ледников обусловлены изменениями аккуму-
ляции, абляции и скорости скольжения по ложу. Таким образом,
вынужденные колебания представляют собой реакцию ледников
на изменение внешних условий и проявляются как изменения баланса
массы.

Баланс массы и колебания ледников

Баланс массы ледников начали анализировать с начала XX столе-
тия, и первый вклад в решение этой проблемы внесл. X. Альман
(Altmann, 1948) и представители его школы. Уже в 30-х годах Альман
проводил расчеты баланса массы ледников побережья Северной
Атлантики, в 40-х годах были начаты ежегодные измерения баланса
на единиц, специально избранных ледниках, например, Стуг в
Швеции и Центральный Тувой в Западном Алатау, а в период
МГТ такие работы стали выполнять повсеместно.

Особое значение масс-балансовым наблюдениям было придано
в рамках Международного гидрологического десятилетия (1965–1974)
и продолжающей его Международной гидрологической программы.
В указанный десятилетний период основные наблюдения были
сосредоточены в избранных горно-ледниковых бассейнах, объединен-
ных в трех обширных цепях: двух широтных – в поясе 60–70° с.ш. от
Аляски через Канаду, Исландию и Скандинавию до Поллярного Урала
и в поясе 40–60° с.ш. от западного побережья Северной Америки
через Европу к Памиру и Тян-Шань и одной меридиональной – от
Аляски до Антарктического полуострова вдоль западных хребтов
Америки. В этих бассейнах накоплены сравнительно динамичные ряды
наблюдений (рис. 3.13).
Глава 2. Колебания ледников

Рис. 3.14. Основные термины и определения при измерении баланса массы на леднике:

- S_b и S_a — летняя поверхность начала и конца балансового года, P_t и P_c — поверхности начала и конца гидрологического года. Остальные обозначения см. в тексте.

Изменение массы ледника, определяемое процессами аккумуляции и аблиции, происходящими в основном на его поверхности, в гляциологии принято называть балансом массы. Его можно вычислять для любой точки ледника, отдельных его частей и для ледника в целом. Чаще всего он выражается удельным балансом массы — в точке или по площади — и имеет размерность миллиметры водного эквивалента, см³/м² или м³/м² (обозначение — b). Реже используется понятие полного баланса массы (единицы измерения — тонны или км³ воды, обозначение — B).

Существуют две системы определения баланса массы ледника: стратиграфическая и фиксированных дат. В первой из них предполагаются измерения аккумуляции и аблиции (в шурфах и по рейкам) относительно последней летней поверхности — физической поверхности ледника конца предыдущего балансового года. Система фиксированных дат не привязана к определенной маркирующей поверхности — измерения годового баланса массы производятся в одну и ту же дату, всегда через 365/366 дней — в начале и конце гидрологического года. В зависимости от избранный для каждого конкретного ледника системы измерений используются свои понятия и терминология, разработанные М. Майером (Mass-balance terms, 1969) и принятые в отечественной гляциологии (Novog в терминологии..., 1973; Котляков и др., 1992). Основные масс-балансовые соотношения и обозначения приводятся на рис. 3.14.

В стратиграфической системе основным элементом времени служит балансовый год — промежуток времени между двумя последовательными минимумами массы ледника. Итоговая величина за этот интервал называется чистым балансом массы ледника за год b. Она может быть получена (в зависимости от исходных данных) одним из трех путей — как алгебраическая сумма: 1) зимнего b_w и летнего b_c балансов массы, 2) общей аккумуляции c и общей аблиции a, (включающих зимние и летние составляющие, соответственно — c_w, c_l и a_w, a_l), 3) чистого прироста фирмы, определяемого для области аккумуляции, — «чистой аккумуляции» b_w, а также чистой убыли льда, определяемой для области аблиции, — «чистой аблиции» b_c.

292

293
Глава 2. Колебания ледников

Расчеты, проводимые в системе фиксированных дат, почти аналогичны описанным выше. Исключение составляет способ определения баланса массы через зимний и летний баланс массы, поскольку никакого деления на сезоны в этой системе не существует. Результирующей величиной в системе фиксированных дат служит годовой баланс массы b_a. Он определяется через алгебраическую сумму:

1) годовой аккумуляции c и годовой абляции a или 2) годового прироста фирины — «чистой годовой аккумуляции» b_a и годовой убыли льда — «чистой годовой абляции» c_a.

Приведенные выше масс-балансовые понятия учитывают лишь процессы, происходящие в текущем году. Это правильно для областей, где снежная и лиственная зоны полностью отсутствуют, и только в случае, если в зимнем отрицательной температуры зоны альпийская зона, где вода не проникает в нижний и кристаллический слой льда и не замерзает. В этих случаях применяется стационарный метод расчета, когда упомянутые выше суммы, называемые энергиями отложений, учитываемые в индексе активности ледника (по Майеру), вычисляются как разность между годовыми аккумуляцией и абляцией, учитываемых в индексе активности ледника (по Майеру).

В результате получается, что упомянутые выше суммы, называемые энергиями отложений, вычисляются как разность между годовыми аккумуляцией и абляцией, учитываемыми в индексе активности ледника (по Майеру).

Методика натурных масс-балансовых измерений по рейкам и шурфам была детально разработана Г. Эмстрем в 1969 г. и была представлена в специальном руководстве (Östrem, Brugman, 1991). В этом разделе определяются два главных составляющих баланса масс ледника: аккумуляцию и абляцию. При этом баланс массы может быть вычислен по любой из приведенных выше схем в зависимости от принятой на леднике системы работ. Так, на ледниках Полярного Урала в результате измерений в конце максимума снегонакопления и в конце зимнего периода получили массу баланса b_a, чистую аккумуляцию c_a и чистую абляцию c_a. При вычислении по двум последним составляющим баланса масс ледников b_a учитывались внутреннее и боковое питание, полученное расчетным путем (Определение Урала, 1966).

Для расчета баланса масса ледника, измеряемого по рейкам, нужно иметь точные данные по всей его площади. С этой целью X. Альмвейн (Ahlmann, 1948) вычислил баланс массы по высотным зонам, делая ледник на равновысотные промежутки. Г.Н. Голубцов (1976) предложил проводить расчет по четырех- и пятифазовым зонам, которые выделяются в равновысотных промежутках с учетом болотных особенностей ледника: наличие крупных ледопадов, полей снега, бассейнов, ледниковых уступов и пр.

Однако наиболее точно полный или средний удельный баланс массы ледника можно получить путем построения его поля, т.е. картографирования баланса массы на всей площади ледника на основе определения его снегонакопления и экстраполяции имеющихся речных данных. В случае их недостатка используются балансовые кривые, т.е. кривые баланса массы как функции абсолютной высоты. На больших масштабах динамика ледников средних широт они и не имеют, число кривых, форму параболы, что определяется характерной конфигурацией высотных аккумуляций и абляции (черная — слегка выукнутая, а вторая — сильно вогнутая).

Как было выяснено еще в период МГГ, форма балансовой кривой на конкретном леднике, а иногда и на группе близлежащих одно- типных ледников мало изменяется год от года. В зависимости от абсолютной величины баланс массы такая кривая лишь перемещается влево или вправо от кривой, соответствующей стационарному состоянию ледника. Это связано с устойчивым характером высотных градиентов аккумуляции-абляции на леднике и, следовательно, их распределением, названным энергиею отложений (по Шумкову) или индексом активности ледника (по Майеру). Высотным положением и климатическими особенностями конкретных ледников определяется место балансовых кривых на графике (рис. 3.15), причем высотный градиент баланса массы, как правило, в области абляции чернее, чем в области аккумуляции. Если мы знаем энергию отложения E_a и сравниваем с вышестоящей градиенты питания в данном году от ее среднего положения z_a, то отмеченная закономерность позволяет вычислить баланс массы $b = E_a$.

Для ледников с длительным периодом измерений баланс массы получен теоретически, и его связь с высотой градиента питания и ледниковой коэффициентом (или иной области питания). Эти связи действуют как для момента окончания абляции, когда упомянутые выше суммы, называемые энергиями отложений, учитываемые в индексе активности ледника (по Майеру), 1993). Учитывая, что положение границы питания или границы сезонного снеготаяния (для любого текущего момента) хорошо видна на аэрокосмических снимках, последние могут служить основой для расчета баланса массы ледников.

Исследованиями на избранных горноледниковых бассейнах МГГ выяснено, что средняя за год интенсивность аккумуляции и абляции на конкретных ледниках изменяется незначительно, но их суммарные величины, необходимые для подсчета баланса массы, оказываются
однажды изученном леднике можно восстановить не только среднее состояние баланса масс для данного года, но и поля этих составляющих. Таким образом, сейчас есть возможность анализировать баланс массы ледников и его составляющие путем использования дистанционной аэрокосмической информации при минимуме исходных наземных данных*.

Особое значение для ледников имеют годы с экстремальными условиями. В такие годы может наступить уменьшение общей заболеваемости ледников и даже выщелачивается свежий баланс массы ледника с влиянием летних или зимних условий. Так, после многолетней зимы в 3/4 случаев летнее таяние более слабое, и средний баланс ледника оказывается положительным. Это особенно ярко проявляется в районах морского климата — на ледниках Аляски, западных хребтах Северной Америки, в Альпах, где межгодовая изменчивость снегопадов и таяния меньше изменчивости таяния.

Наоборот, на ледниках, лежащих в глубине континента, — на Тань-Шане или Памире — годовой баланс массы определяется в первую очередь условиями теплого периода. Здесь в балансе массы главенствующую роль играет таяние, и его изменчивость существенно выше изменчивости аккумуляции. В «промежуточных» климатических условиях, в которых, например, находится ледник Полярного Урала, многолетние данные не подтверждают ведущей роли таяния или аккумуляции в годовом балансе массы ледников.

Реакция на изменения баланса массы различна для разных ледников и зависит от длительности периода с повторяющимися значениями баланса одного знака и амплитуды отклонений от нормы в годы экстремальных условий. Также если долгие годы баланс массы ледника незначительно отличается от равновесного, один год с очень малым снегопадом может отразиться на отрицательном балансе массы. Точно так же год с избыточным снегопадом, после которого обычно снижается таяние, приводит к резко положительному балансу. Такие годы могут быть критическими для состояния ледника, что лишний раз показывает, сколько необходимы долгосрочные наблюдения за балансом массы эталонных ледников.

Накопленные фактические сведения о балансе массы ледников могут быть дополнены расчетными данными. С этой целью используются корреляции основных составляющих баланса — аккумуляции и таяния.

* В сравнительно недавней публикации М. Б. Дюгерова и Д. И. Бах (Dyurgerov, Bahr, 1999) на большом статистическом материале показана достаточно слабая корреляция энергии определения и высоты границы питания с балансом массы ледников, однако, по мнению авторов, существует ряд параметров ледников, хорошо связанных с балансом массы, что позволяет вести мониторинг режима ледников дистанционными методами.
Часть 3. Глобальные изменения и судьба ледников

Глава 2. Колебания ледников

(внешняя область аблиции) – отрицательным годовым балансом массы. Эти области разделяются границей питания, где в целом за год аккумуляция равна аблиции. Вместе с тем на леднике выделяются кинематические области: питания, где линии тока льда направлены в глубь ледника, и аблиции, где они выходит наружу. Эти области разделяет кинематическая граница питания, где линии тока проходят параллельно поверхности ледника. В отличие от внешних, кинематические области формируются в результате многолетних процессов и характеризуются осредненным балансом массы за ряд лет.

Существующие данные прямых измерений баланса массы и колебаний копцов ледников вряд ли можно использовать для надежных суждений о современной эволюции горно-ледниковых систем. Однако ход балансовых характеристик шести ледников из разных районов весьма показателен (рис. 3.17). В большинстве случаев колебания баланса массы ледников в пределах одной и той же горной системы происходит в целом синхронно, но общие выводы из этих конкретных наблюдений пока делать рано.

На Полярном Урале (ледник Обручева) и в Евразийской Арктике (ледниковый купол Ванюкова на Северной Земле) состояние ледников во второй половине 60-х годов заметно улучшилось, но вновь ухудшилось в последующие годы. На Кабкай (ледник Джангаат) в 60-х и 70-х годах динамика тенденций отступания, но со второй половины 70-х годов баланс массы вновь стал улучшаться. Аналогична ситуация на Алтае: ледник Малый Акту на границе 80-х и 90-х годов стал увеличивать свою массу. Ситуация на Камчатке (ледник Козельский) сложнее, но и здесь отмечен период с преобладающим положительным балансом массы в начале 70-х годов и отрицательным балансом в начале 80-х годов и далее. Наконец, резкая деградация определения в современную эпоху отмечена в Средней Азии (ледник Центральный Тюкюкс).

Таким образом, современная эпоха характеризуется продолжающейся деградацией ледников, особенно резкой в низких широтах и в Тихоокеанском секторе Евразии.

Наряду с измерениями баланса массы продолжаются наблюдения за колебаниями ледниковых языков. Современными колебаниями ледников я называю их изменения за последние 20–25 лет. В целом за это время горные ледники во всех районах Северного полушария преимущественно отступали. Но в последние годы проявилась тенденция замедления темпа отступания и перехода к стабилизации ряда ледников, а некоторые из них даже активизировались. Эта тенденция особенно заметна в районах со значительным количеством осадков – в Альпах, на западных хребтах Северной Америки и др. В то же время ледники сухих внутриконтинentalных областей продолжают отступать (рис. 3.18). Большинство из них сокращается в длину на 1–10 м в год.
Глава 2. Колебания ледников

Рис. 3.17. Результаты синхронных наземных наблюдений за балансом массы и колебаниями концов на избранных ледниках в разных районах бывшего СССР
1 - зимний (b) и летний (b) баланс или общая аккумуляция (c) и общая абляция (α), а/см²; 2 - годовой баланс b, а/см²; 3 - нарастающий баланс массы, Δm, а/см²; 4 - нарастающие колебания конца ледника, ΔL, м

Исследования баланса массы ледников представляют значительные трудности в районах, где период аблации совпадает с периодом аккумуляции. К таким районам в первую очередь относятся горы Центральной Азии, на которых максимум аккумуляции приходится на июнь–август. Сравнивая результаты исследований в Непальских Гималаях с полученными в других районах мира, Ю. Агета и К. Хигучи (Agata, Higuchi, 1984) предложили классификацию типов годового хода значений баланса массы в зависимости от годовой изменчивости температуры воздуха и осадков (рис. 3.19).

Рис. 3.18. Нараставшие колебания ледниковых языков с конца прошлого века
1-4 - Западный Кавказ, 5-6 - Восточный Кавказ, 7 - Кунгей Алатау, 8 - Заилийский Алатау, 9 - Алтай, 10-13 - Альпы
Глава 2. Колебания ледников

выпадающих осадков и аккумуляций хорошо соответствуют друг другу при типе $T - WS$ и холодном типе $T - S$, когда летние осадки выпадают преимущественно в твердом виде. В то же время тип $C - W$ может получаться из всех вариантов хода осадков, даже при типе $X - S$, если ему соответствует теплый тип $T - S$, когда летние осадки выпадают в основном в жидком виде.

Сочетание трех типов аккумуляции и двух типов абляции дает шесть комбинаций, характеризующих ход формирования баланса массы. В этом числе три типа баланса массы могут быть выделены как основные (пунктирная стрелка на рис. 3.19): $B - W$, $B - WS$ и $B - S$. Из шести вариантов баланса три относятся к типу $B - W$, а тип $C - S$ определяет два типа баланса: $B - WS$ и $B - S$.

Ю. Агета и К. Хитучи исследовали баланс массы ледника с летним максимумом аккумуляции (тип $C - S$) и температуры воздуха (тип $A - S$). В этом случае баланс массы ледника не имеет явно выраженных максимума и минимума (тип $B - WS$). При таком типе кривой небольшое изменение температуры воздуха значительно влияет на ход баланса массы. Точность измерений аккумуляции и абляции в таких условиях низка, поэтому приходится искать какие-то косвенные методы их расчета.

Величину аккумуляции можно определить по общему количеству осадков, если мы знаем, какая их доля выпадает в твердом виде. На основе зависимостей между температурой воздуха и количеством твердых осадков по данным meteorологических станций в различных районах и данным полевых работ на леднике в Непале (рис. 3.20, а) авторы (Ageta, Higuchi, 1984) получили эмпирическую формулу зависимости доли твердых осадков в их годовой сумме p от средней (за полмесяца наблюдений) температуры воздуха t (рис. 3.20, б): $p = -24t + 85$.

На рис. 3.21 представлены стационарные кумулятивные кривые аккумуляции, абляции и баланса массы за балансовый год для исследованного ледника с летним максимумом аккумуляции. Хорошо видно, что амплитуда колебаний величины баланса очень мала, так как аккумуляция и абляция происходят в одно и то же время. В этом случае понятие лета и балансовый год (продолжительность и время наступления), которые определены классификацией ЮНЕСКО (Combined..., 1970), не стабильны и очень зависят от изменений температуры воздуха, что видно при сравнении сплошной и пунктирной линий на этом рисунке. Отсюда следует, что для ледников с летним максимумом аккумуляции требуется уточнение терминов баланса массы.

Заключая краткий обзор проблемы баланса массы ледников, перечисли несколько центральных вопросов, с ответами на которые связаны перспективы этих исследований: 1) нужно ли обновлять используемые сейчас методы стандартных измерений баланса массы
Глава 2. Колебания ледников

каком направлении следует развивать изучение взаимосвязей баланса массы и других параметров, характеризующих колебания ледников? 7) каким образом следует учитывать баланс масс ледников в расчетах водного баланса ледниковых бассейнов?

Мониторинг нестабильных ледников

Динамически ненадежные ледники отличаются от обычных тем, что скорость их движения может изменяться на порядок и более за сравнительно короткий период времени (от нескольких дней до нескольких лет). В результате в леднике возникает разрежение льда, сопровождающееся геометрическими и структурно-tektonическими изменениями. В некоторых случаях такая динамическая нестабильность может привести к существенному нарушению конца ледника. При подобном регулярном развитии событий мы имеем дело с пульсирующими ледниками.

В Советском Союзе детальные исследования пульсирующих ледников проводились начиная с середины 60-х годов в нескольких горных регионах: на Памире (льдник Медведь), Гиссаро-Алае (Абрамова), Тань-Шане (Богатырь), Кавказе (Колка), Камчатке (Бильченко); сравнительно недавно был опубликован Каталог пульсирующих ледников Памира (Осипова и др., 1998).

Для последующих обобщений и исследований в Институте географии РАН в 1992 г. была начата разработка ГИС «Ледни Медведь», которая может служить основой типовой ГИС для аналогичных ледников. В результате первого этапа работы создана база данных, содержание и структура которой обусловлены задачей разработки оптимальной методики оперативного прогноза времени.
Глава 2. Колебания ледников

Рис. 3.22. Продольный и поперечные профили ледника Медвежьего в различные годы: перед подвижкой в 1973 г. и после подвижки в 1988 г.

Рис. 3.23. Диапазон изменения площади (a), высоты поверхности (b) и скорости движения льда (c) пульсирующей части ледника Медвежьего по данным наземных наблюдений и аэрофотосъемки

В модели Я. Бада и Б. Макиниса (1978), кроме перечисленных выше, требуется данные о рельефе поверхности льда и ложа для определения характеристик поперечного сечения ледника как факторов формы, а также о скорости аккумуляции и абляции для определения профиля чистого притока льда. В расчетах участвует коэффициент средней объемной вязкости и фактор смахивания.

В рассмотренных моделях в качестве основной входной информации используются геометрические или гидрологические параметры (длина L, ширина B, площадь S, высота поверхности H, толщина льда Z, или подледный рельеф) и их изменения во времени, а также скорость движения поверхностного слоя льда, в основном ее горизонтальная составляющая V_x. Тестовые модели служат некоторыми идеальными схемами и не учитывают ряд реальных условий, которые могут играть важную роль в ускорении или замедлении наступления подвижки, в изменении ее характера и масштабов. Сюда, например,
Часть 3. Глобальные изменения и судьба ледников

относятся масштабы предыдущей подвижки, отраженные в местоположении и мощности мертвого льда, климатические факторы и пр.

Исходя из изложенного, общую структуру базы данных ГИС "Ледник Медвежий" можно представить четырьмя блоками информации: картографическим, реляционным, фотозображениями и базы знаний.

Картографический блок включает топопланы, введенные в базу данных путем цифрования на дигитайзере или в виде цифровых моделей рельефа, непосредственно полученных в процессе стереофотограмметрической обработки съемок. Кроме этого, здесь относится специальная картографическая информация, представляющая графическую часть анализа данных, например, совмещенные разновременные контуры ледников, горизонтали, ситуации (грешнина и т.п.).

Реляционный блок содержит в основном первичную табличную информацию (например, таблицы точек со скоростью движения льда, толщины ледника, аблиации-аккумуляции и баланс массы, температуры льда и пр.), которая используется в ГИС как отдельно для расчетов, построения графиков, так и совместно с информацией из картографического блока. Например, для анализа движения льда используется информация в виде изотах на топоплане с необходимой нагрузкой, извлеченной из картографического блока.

Блок фотозображений включает разновременные и разномасштабные фотозображения ледника, полученные с земли, вертолета, самолета или из космоса. Эта информация облегчает интерпретацию графического и табличного материала, особенно если предусмотрена возможность взаимного пространственно-временного совмещения в машинном виде данных о скорости движения в виде изотах или профиля с соответствующим аэрофотозображением. Для повышения точности машинного прогноза подвижки ледника необходимо некоторые дополнительные сведения, которые важно знать, но трудно формализовать. Такая информация и способы ее использования составляют базу знаний.

База знаний представляет собой совокупность правил, составленных специалистами-экспертами и выраженных в форме: "если, то" или "если это и/или это, то...". В данном случае такие правила могут быть, например, следующими. 1. Если на момент прогнозируемой подвижки масса (или объем, или длина) мертвого льда равна (или меньше) тому-то, то подвижка наступит позже на столько-то (или не менее чем на столько-то) месяцев. 2. Если на момент прогнозируемой подвижки (или за столько-то месяцев до этого момента) суммарное количество осадков не менее такой-то величины и средняя месячная температура выше такой-то величины, то подвижка наступит ранее на такой-то срок.

Подобных правил может быть установлено много, а наполнение их конкретными данными должны выполнить эксперты на основе

Глава 2. Колебания ледников

своих знаний и опыта изучения таких явлений. Компьютер после формального расчета времени и подвижки будет обращаться к базе знаний и данным о параметрах, входящих в правила базы знаний, и на основе этой информации корректировать свой прогноз.

С точки зрения актуальности всю информацию базы данных можно разделить на две группы. Первая — информация, которую мы уже знаем, потому что приобретается для решения поставленных конкретных задач, потому что это есть, как она связана с другими данными и как влияет на те или иные процессы. Вторая группа — это информация, которую мы вводим в базу данных как бы впоследствии, поскольку пока не знаем и не знаем точно, каким образом и для каких задач ее использовать. Она может понадобиться в будущих исследованиях.

На первом этапе база данных содержит информацию о подводном рельефе, топографии поверхности, движения льда и изменения последних двух параметров за годовые интервалы и в основном по продольному (осевому) профилю, что вполне достаточно для анализа колебаний пульсирующих ледников, имеющих длину уток языка (Осинов и др., 1990; Осинова, Твятков, 1991).

Информация о топографии ложа ледника, или о его толщине, необходимая для расчета различных динамических параметров в придонном слое, может быть использована для определения "критического" объема пульсирующей части ледника перед подвижкой, а также в базе знаний при экспертной оценке скорости активизации ледника для прогноза скорости продвижения фронта активизации и других целей. В нашем базу данных внесены значения высоты ложа ледника по тому же продольному профилю и в тех же точках, что и данные о высоте поверхности.

Информация о топографии поверхности ледника и ее изменениях во времени служит первоосновой изучения механизма и причин колебаний пульсирующих ледников и прогноза их подвижек. Она позволяет определить изменения толщины и объема ледника как результат суммарного взаимодействия внешнего и внутреннего массообмена. С учетом этой информации об объеме массы можно выделить составляющую внутреннего массообмена, что особенно важно для точного определения местоположения фронта активизации и других задач кинематики ледников. Основные методы получения данных об изменениях рельефа поверхности ледника — повторные стереофотограмметрические или (реже) геодезические съемки. Главное требование к съемкам — одновременный охват площади зоны активизации, и в первую очередь района фронта активизации.

последних аэрофотосъемок. Результатами обработки стали топографические планы (карты) и цифровые модели рельефа по площади или по постоянному профилю (см. рис. 3.23, а).

Особое внимание было обращено на пространственно-временные колебания скорости движения льда, прежде всего горизонтальной составляющей вектора скорости движения льда \(V_x \), которая служит исходной для рядов моделей, позволяет определить положение и скорость продвижения фронта активизации, дает информацию, характеризующую динамику ледника как независимо, так и в сочетании с другими его характеристиками – с топографией поверхности. Скорость движения пульсирующего ледника отличается большой изменчивостью (см. рис. 3.23, б). Так, на леднике Медвежьем в 1978 г. зафиксировано 20-кратное различие в абсолютном значении скорости движения в одном и том же месте в верховьях языка между весенним и осенним периодами (Цветков, Сорокин, 1981).

Исходная база данных служит основой оценки репрезентативности продольного профиля изменения высоты поверхности для всей площади ледника; поиска оптимальных участков (точек) наблюдений за изменениями высот и скоростей движения льда; формирования на дисплее и печати ряда карт и графиков на разные даты; наконец, прогноза очередной подвижки на основе расчетов различных критериев подвижки (объем массы льда на языке, напряжения деформации на дне, положение и скорость продвижения фронта активизации и т.д.) и экстраполяции этих данных до критических значений с экспертными коэффициентами вероятностей очередной подвижки для разных моментов времени.

Используя технологию ГИС, путем компьютерного анализа мы получили для ледника Медвежьего поля основных характеристик – высоты поверхности, скорости движения, абляции и производных – уклонов, сумм, расстояний, а также более сложных функций основных полей. В качестве примера на рис. 3.24 показаны поля высоты поверхности этого ледника до (б) и после (в) подвижки 1973 г., поля изменения высоты поверхности во время подвижки (г) и поле уклонов поверхности до (д) и после (е) подвижки. Интересной информацией
Глава 2. Колебания ледников

служит наличие на рис. 3.24, а двух особых зон нулевых изменений высот (светлые участки) — между поворотом ледника и притоком и перед ледопадом. Как будет видно в дальнейшем, с такими зонами может быть связан механизм подвижек ледника.

На рис. 3.25 представлен пространственно-временные поля динамики поверхности ледника Медвежьего за 1968–1991 гг. Исходными данными для построения этих полей послужили профили высоты поверхности по продольной оси за эти годы, которые для данного ледника хорошо коррелируют с изменениями такой характеристики во всем его пространстве. Горизонтальная ось на рисунке является пространственной и отражает изменения указанных характеристик по продольному профилю ледника, а вертикальная — временной и показывает их изменения во времени.

Рис. 3.25, а представляет собой характер пространственно-временной динамики высоты поверхности ледника. На нем выделяются два горизонтальных зоны, обозначающие подвижки 1973 и 1989 гг. Этот рисунок служит исходным для компьютерного построения трех других производных от него рисунков — б, в, г.

Рис. 3.25, б демонстрирует изменение высоты поверхности ледника год от года. Четко выражены зоны повышения и понижения поверхности во время подвижек, а также продвижение фронта активизации в процессе восстановления ледника в период между подвижками. Зона нулевых изменений высоты (обведена кружками) остается постоянной на продольном профиле во время обеих подвижек. Ранее (Долгушина, Осипова, 1978) это место определялось как «линия динамического равновесия» в конце подвижек. Возможно, причина и механизм подвижек связаны с некоторым стационарным фактором, действующим в этом месте.

На рис. 3.25, в показано пространственно-временное распределение уклона поверхности. Ясно выраженные вертикальные полосы говорят о стабильности во времени картины распределения уклона поверхности по продольному профилю. Эта стабильность нарушается только в момент прохождения фронта активизации (темная продольная полоса). На рис. 3.25, в видна картина изменения уклона поверхности год от года. Фактически рисунок показывает смещение зон схватки и растяжения во время подвижек и периода восстановления. Постоянство во времени и пространстве зон с большими и малыми уклонами поверхности обусловлено, по-видимому, статическим фактором, — это скорее всего ригели или уступы ложа.

Области фронта активизации находятся там, где в каждый последующий год поверхность ледника повышается относительно поверхности предыдущего года (с учетом абляции). Они всегда приурочены к одному из уступов. Таким образом, фронт активации смещается от одного уступа к другому, которые наверняка соответствуют переги-
Часть 3. Глобальные изменения и судьба ледников

бам дождя. Можно предположить, что каждая зона ледника между двумя уступами при прохождении через неё фронта активизации почти одновременно вся подвергается сжатию. При этом фронт активизации не катится по ней в виде волны, а сразу возникает около ее концевого уступа в виде растущего вала. Этим можно объяснить, почему расстояния, пройденные фронтом активизации в разные годы, и формально вычисляемые по ним скорости перемещения фронта могут различаться год от года на порядок.

В зависимости от величины градиента уклона на уступе переход фронта активизации через очередной уступ происходит одним из двух способов. Первый — это плавный переход фронта через уступ с увлажнением общей области сжатия на очередную зону между уступами. Он характеризуется тем, что высота поверхности по всей области сжатия повышается, а новая зона сжатия вовлекается в пластическое течение со скоростью, не превышающей 1 м/сут. Второй — это микроподвижка, т.е. локальное резкое перераспределение массы льда, происходящее в результате накопления критической величины напряжения на уступе с большим уклоном. Такой переход в отличие от первого характеризуется понижением поверхности в бывшей области сжатия, повышением поверхности в новой области сжатия, которая может захватить несколько последовательных зон между уступами, и глубоким скольжением льда со скоростью до 4 м/сут.

На рис. 3.26 (верхний снимок) хорошо виден выпуклый вал (система валов), расположенный ниже притока. Вверх этого вала

Глава 2. Колебания ледников

Наверху — съемка 21 июня 1988 г., масштаб оригинального снимка 1:50 000;
в середине — 12 мая 1989 г., 1:30 000; внизу — 22 июня 1989 г., 1:26 000
Глава 2. Колебания ледников

(от 2 до 5 м/сут) в апреле—мае, затем произошло стремительное нарастание скорости до 15 м/сут в конце мая и до 50 м/сут в июне (рис. 3.27, б). Столь высокая скорость на втором этапе подвижки может быть объяснена либо скоплением, либо наличием воды на ложе.

Продвижение языка сопровождалось повышением поверхности в нижней части ледника и понижением выше, по всей длине пульсирующей части. Понижение поверхности во время подвижки начинается от тыловой части зоны пульсации, и передовая волна понижения поверхности — фронт депрессии — по аналогии с фронтом активизации — в период подвижки смещается по леднику сверху вниз, как бы повторяя путь фронта активизации и при этом образуя четко выраженные носовые уступы в тех же местах, где они были после предыдущей подвижки. В следующем же году после подвижки с верховьев пульсирующей части ледника начинается наступление нового фронта активизации, и процесс восстановления повторяется.

Таким образом, уступы ложа с некоторым критическим градиентом уклона могут провоцировать резкие скачки скорости скольжения льда — микроподвижки в определенной области ледника. Микроподвижки, связанные с данным уступом, имеют свою периодичность, обусловленную как характеристиками уступа (от которых зависит количество перераспределенной массы льда), так и местоположением на продольном профиле (от которого зависит время восстановления исходного состояния). Очевидно, что чем дальше уступ от места поступления льда из фирновой области, тем больше период пульсаций.

Близкайший к концу ледника уступ при определенных условиях вызывает подвижку ледника. Ее непосредственной причиной служит достижение критической величины градиента напряжения сжатия, а механизм представляет собой глубинное скольжение по ложу или сколу, образующемуся в непосредственной близости от конца ледника вследствие достижения критической величины напряжения сжатия. Подвижка заканчивается в результате постепенного торможения при трении конца ледника по ложу и сопротивления мертвого льда, сохранившегося перед концом движущегося ледника.

Таким образом, подвижки пульсирующего ледника объясняют многие пока не совсем ясные факты пульсаций ледников. В частности, можно объяснить механизм такого интересного явления, как переход из категории пульсирующих в нормальные и обратно. Если, например, пульсирующий ледник имеет только один вызывающий пульсации уступ у конца ледника и в результате изменения климатических условий во время периода восстановления его конец раньше срока очередной подвижки оказался выше уступа, то при сохранении оставшихся условий ледник перестает быть пульсирующим. Обратное может произойти, если нормальный ледник в результате изменений климатических условий при своем аномальном наступании захватит
Глава 2. Колебания ледников

При всех этом ледников нередко осложняются рядом последствий, приобретающих катастрофический характер. В этом
отношении ярким пример дает ледник Колка, лежащий в Кабсфско-
Джимарейском горном массиве, — объект исследований Института
gеографии в 1970-х годах (Рототаев и др., 1983). Внимание к этому
леднику было снова приковано после разгравшихся здесь трагичес-
ких событий осенью 2002 г.

20 сентября 2002 г. в долине р. Генадон в Северной Осетии
произошла катастрофа. Из верховьев долины вырвался огромные
масштабы льда, смещенный водой и камне, материалом, стреми-
tельно пронеслись вниз по долине, уничтожая все на своем пути,
и образовала завал, расшифрованный на всей Кармадонской котловине
перед грядой Скалистого хребта. Виновником катастрофы стал пуль-
сирующий ледник Колка, подвижки которого неоднократно проис-
ходили в прошлом. Погибли более сотни человек. Уничтожен поселок
Нижний Кармадон, построенный сравнительно недавно на дне доли-
ны, а также несколько баз отдыха на берегах р. Генадон ниже ущелья.

Колка — это карово-долинный ледник с асимметричным птицем.
Правый скалистый склон его круто и полируется над ледником на
1200—1500 м. В верхней части склона, с треугольниками на высотах 4000—
4700 м, спускаются разноименные трещины участки фильтровых полей
и висячие ледники (рис. 3.28, а). Снежные лавины, обвалы, фиры и
льда, происходящие в течение всего года, служат источником его
питания.

В спокойные периоды между подвижками ледник имеет длину
2600 м и площадь 2,47 км², а вместе с висячими ледниками 3,74 км².
Конец ледника в такое время лежит на высоте около 3000 м (так было
при стабильном его положении в конце 1920-х годов). Тыловая часть
ледника под круглыми стенами ширина поднимается до 3450 м. Положи
и довольно ровная поверхность ледника защищена сплошным
моренным чехлом, источником которого служит обломочный мате-
риал, обильно поступающий на ледник с окрестных скальных скло-
нов. Более двух третей поверхности в области аблиции ледника
полностью защищены от таяния слоем морены толщиной до 1 м.
Вдоль всего левого края ледника тянется высокий вал береговой
морены, который играет в жизни ледника важную роль, затрудняя
отток льда, поступающего с правого берега, вниз по долине.

Таким образом, само строение ледника — малые уклоны и переу-
лубление в ложе, упор стекающего льда в сопровождающий левый борт
и последующий круг разворот линии тока, широкая лобовая ширина от
отсюда узким выходом, массовый пологи залегающий язык
пассивного льда с нарастающим во время моренным чехлом, резко
снижающим таяние, — все это вызывает постоянное подтаяивание
льда, накопление избыточных масс и нарастающее напряжение сви-
гующих сил, в итоге приводящих к подвижке. Авторы монографии
(Рототаев и др., 1983) рассчитали, что в 1950—60-х годах, т.е. до подвиж-
ки 1969 г., постоянный положительный баланс массы ледника Колка
обеспечатил ежегодное увеличение его массы на 1—1,3 млн м³.
Глава 2. Колебания ледников

Рис. 3.30. Каменно-ледовый завал перед грядой Скалистого хребта

уже был виден в узком ущелье слева от ледника Майли, и часть его обвалилась, запрудив на время р. Геналдон, а 3 июля, превратившись в пульву из льда, воды и морен, ледяной выброс преобразовался в сокрушительный сель, промчавшийся в считанные минуты по долине до створа аула Тынекуана, расположенного высоко на склоне. Ледяная плотина перекрыла сток реки, затем прорвавшейся селем.

В это время в верховьях ледник продолжал наступать, заполняя ущелье и набирай воду. Вторая волна ледяного села прошла 6 июля, а ночь произошел новый выброс скользившейся в завале воды. В результате дно долины оказалось под массой льда и камней на протяжении 9 км. Толщина завала достигала 50 м, а на склонах долины в районе Верхнекармадонских источников были отмечены следы «волны» прошедшего села на высоте до 100 м. Нижняя граница ледникового выброса была отмечена на пойме несколькими крупными валунами, каждый сантиметр с небольшой дом.

Таким образом, в обоих случаях подвижка развивалась постепенно в несколько этапов, и лишь финиш ее был различным. Суммарный объем льда, выброшенного в долину и застрашущего выше в узком ущелье Колка в 1902 г., оценили в 100–110 млн м³, а в 1969 г. перемещенный подвижкой объем льда не превышал 80 млн м³. Обе цифры
Глава 2. Колосания ледников

В упомянутой монографии К.П. Рототаев написал: «Сеть турбулентно-жидкого типа при еще больших скоростях движения способен достигать Скалистого хребта и даже проникать в ущелье с образованием крупных затворов. Такой сеть обеспечивает значительное взаимодействие волн на склонах при поворотах долины, интенсивно обогащается обломочным материалом склонов и поймы, превращается в высокопродуктивный сменящийся сель. Он должен сильно разрушать в пределах Камчатской котловины, частично Скалистого хребта и особенно на Гизельском уступе» (Рототаев и др., 1985). Катастрофы именно такого масштаба и по такому сценарию разразилась в долине р. Гизель в 2002 г. Вниз по ущелью на 12 км проросла густо-грязевой сеть с глыбами льда, причинив серьезные разрушения.

Здесь в тыловой части завал нагромождился на левый склон долины не менее 50 м. У стен Скалистого хребта (рис. 3.30, 3.31), высота завала достигала 100 м. Вдоль всей долины Генадия, начиная с самых ее верховьев, рыхлые отложения в нижней части склонов были сорваны. Масса села шла по долине волнами (рис. 3.32), закрытая на склоны, оставляя на высоте более 100-140 м над рекой глыбы льда и каменного материала.

Самая неожиданная картина открылась в цирке ледника Колка. Оказалось, что ледник «ушел» из своего вместилища полностью,
Глава 2. Колебания ледников

и особенно в рыхлых толщах, накопилось необычно много воды. Такое обилье воды на окружающих склонах и в толще самого ледника подготовило ледник к дальнейшему катастрофическому развитию событий.

Однако, судя по прошлым событиям, резкие подвижки ледника Колка происходили раньше через 60–70 лет, а в этом случае после предыдущей подвижки пролетело лишь немногим более 30 лет. Однако период в 70 лет между подвижками нельзя считать абсолютно достоверным, потому что в 30–40-е годы наблюдений за ледником не было, и что происходило в это время, как и во второй половине XIX в., неизвестно.

В качестве причин катастрофы в долине р. Кармадон многие посчитали обвал льда в верховьях ледника Колка, зафиксированный при первом же облете после его подвижки. Однако альпинисты, побывавшие здесь в конце июня и в конце августа, были поражены не прекращающимися обвалами горной породы и висячего льда. Стоял непрерывный грохот, и склон менялся буквально на глазах. Так что обвали начались задолго до подвижки, и обрыв льда, замеченный на треве, сформировался не за один раз.

На космическом снимке, сделанном 13 августа 2002 г. командиром Международной космической станции В. Корзухин, видна серия из 4–5 лугообразных валов, следующих друг за другом на протяжении 0,5 км. Возможно, этим уже отмечался активизировавшийся фронт ледника. Очевидно, побывавшие на леднике Колка в августе и сентябре, отметили появление новых озер близ конца ледника и свежий сход нескольких больших селей, в том числе идущих со льдом из ущелья Колки. Все это подтверждает мысль о большом количестве воды, скопившейся под ледником и сыгравшей решающую роль в срыве ледника.

Время и продолжительность катастрофы известны достаточно точно. 20 сентября в 20 ч 08 мин на всех сейсмостанциях Северной Осетии отмечены колебания, не характерные для землетрясений; они продолжались около 3,5 мин, а в 20 ч 13 мин зафиксировано разрушение ЛОЛ, проходящей через долину р. Генадон. Таким образом, ледовые массы прошли 12 км за 4–6 мин, т.е. скорость взято-турбулентного потока, составляющего изо льда, камней и воды, существенно превысила 100 км/ч.

Мы не знаем, насколько к 2002 г. была подготовлена подвижка по сравнению с предыдущим периодом, но прошло уже более 30 лет. Пультсующий ледник по прошествии такого времени, безусловно, находился в неустойчивом динамическом состоянии. Периодичность его подвижек сохраняется в неизменных условиях, тогда как под влиянием силовых внешних факторов, в экстремальных ситуациях, объем критической массы, при которой сдвигующие силы преодолевают тормозящие, может быть иным. В данном случае в леднике накопилось огромное количество воды, ставшей спусковым механизмом подвижки. Очевидно, вода «оторвала» ледник от ложа, и он
ГЛАВА 3
ГЛЯЦИОЛОГИЧЕСКИЙ ПРОГНОЗ

Будущие изменения климата и ледников

Исследования рядов климатологов и геологов приводят к выводу о вероятности глобального потепления климата в ближайшие 50 лет в результате естественного температурного тренда и парникового эффекта газов, накапливавшихся в атмосфере вследствие сжигания минерального топлива. Заключение о предстоящем потеплении климата базируется на представлениях о высокой чувствительности термического режима Земли к изменениям концентрации парниковых газов в атмосфере, а также на допущении, что нынешняя тенденция роста потребления минерального топлива сохранится в ближайшие десятилетия.

За концентрацией углекислого газа в атмосфере уже на протяжении многих веков ведутся специальные наблюдения. По данным обсерваторий на Мауна-Лоа (Гавайские острова) и на Южном полюсе, а также по косвенным свидетельствам, она постоянно увеличивается, причем темп ее нарастания тоже растет (рис. 3.34). За 100 лет, предшествовавших 1958 г., эта концентрация выросла на 12%, а за последующие 20 лет повысилась еще на 6%. Средняя атмосферная концентрация в конце XX в. составляла около 355 ppmv (миллионных частей, по объему) для CO₂, 1770 ppbv (миллиардных частей, по объему) для CH₄, 310 ppbv для N₂O, тогда как непосредственно перед началом значительных антропогенных эмиссий содержание газов было близко к 280 ppmv для CO₂ и к 700 ppbv для CH₄.

Таким образом, за последние 200 лет концентрация парниковых газов выросла: по CO₂ — на 70 ppmv, или на 25%, по CH₄ — на 0,75–0,80 ppmv, или на 100%, по N₂O — на 0,30–0,35 ppmv, или на 8–10%. Последние значения — это прямые указания на увеличение концентрации двукиси азота за исторический период, который хорошо согласуются с данными о масштабах сжигания минерального топлива.

Графики концентрации парниковых газов хорошо согласуются с ростом населения Земли, которое, как известно, за 200 лет увеличилось в 5 раз, с 1 до 5 млрд, а в начале XXI в. приближается к 6 млрд. Такая согласованность, конечно же, наводит на невеселые
Глава 3. Гляциологический прогноз

Рис. 3.35. Многолетний ход годовых величин в 1900–1980 гг.
1 - аномалии температуры воздуха ΔT в широтной зоне 87,5–72,5° с.ш.; 2 - отношение продолжительности зональных процессов к меридиональным, $3/M$; 3 - доля наступающих и стационарных ледников Швейцарии от их общего количества, %

Потоки атмосферных выбросов в эпоху индустриального развития стран, особенно в последние десятилетия, привели к росту концентраций диоксида углерода и метана в атмосфере. Эти изменения могут оказывать влияние на климатическую систему Земли. Глобальные изменения климата и их последствия для ледников в трансформации их структуры и величины.

Рис. 3.34. Увеличение концентрации CO_2 и CH_4 в атмосфере с доиндустриального времени по данным ледяных кернов (точки) и прямым измерениям в атмосфере (линии)

Видно, как в течение последних столетий концентрация CO_2 и CH_4 в атмосфере растет. Это является одной из причин глобального потепления.

Ученые предупреждают о том, что рост населения и промышленное развитие приводят к увеличению выбросов парниковых газов и других загрязнителей. Это может привести к еще более значительным изменениям климата и глобальному потеплению.

Инструментальные измерения метеорологических элементов дают детальную картину колебаний климатических, в том числе температурных, условий Северного полушария за последние 100 лет. Они свидетельствуют о том, что конец XIX в. был относительно холодным, а начало XX столетия характеризовалось потеплением, достигшим своего максимума в 1930–40-е годы. После этого возобладала тенденция к похолоданию, которая сохранялась на протяжении 60–70-х годов. Подобный ход аномалий температуры воздуха связан со сменой продолжительности зональных и меридиональных процессов в атмосфере, - относительный рост зональных процессов приводит к существенному потеплению (рис. 3.35).

Глобальным изменениям температуры соответствовали и колебания насилия ледников. Первая половина XX в. была периодом сокращения ледников, пик которого пришелся на 1930–40-е годы. В последующий период начало ледников стало улучшаться, появилась тенденция к их стабилизации и постепенному уменьшению в ряде горных стран увеличение массы стало характерной чертой большинства ледников. Так, в хорошо изученных Австрийских Альпах в 1965 г. наблюдалось 30% ледников, а в 1975 г. число наступающих ледников возросло до 58%, тогда как на предшествовавшем климатическом этапе там резко преобладали отступающие ледники, доля которых в 1920 г. составляла 30%, а в 1952 г. приблизилась к 100%.
Глава 3. Гляциологический прогноз

Рами воздуха, при которых выпадает снег, и относительным содержанием тяжелых (\(^{18}\)O) и легких (\(^{16}\)O) изотопов кислорода в снежных кристаллах. Степень обогащения последних тяжелыми изотопами пропорциональна температуре, в связи с чем соотношение \(^{18}\)O/\(^{16}\)O в пропорциональном пересчете в градусы может служить своеобразным палеотермометром. Этот метод дает объективную картину естественных флуктуаций глобальных температур за многие тысячелетия.*

Детальная информация о палеотemperatureах получена по керну из скважины со станции Кемп-Сенчеру, расположенной на северо-западе Гренландского ледникового щита (Dansgaard et al., 1971). В верхней части колонки этого керна, охватывающей период последних 800 лет, четко выражено 10 циклов изменений изотопного состава фирина и льда, причем длительность каждого из указанных циклов варьируется от 50 до 100 лет, составляя в среднем 80 лет (рис. 3.36, A). Судя по этим данным, средний размер флуктуаций температур воздуха 75–80° C. составлял 1,7°.

Гармонический анализ, проведенный В. Данrowse с сотрудниками, показал, что ход указанных флуктуаций удовлетворительно аппроксимируется кривой, которая получается сложением синусоид с периодами 80 и 100 лет (рис. 3.36, B). Полученная по гренландским данным кривая позволяет прогнозировать естественный ход изменений глобальных температур в будущем путем экстраполяции ее по крайней мере до конца первой четверти XXI в. Последним, вслед за походом и керна 60–70-х годов начался 40-летний период климатических потеплений. При переводе палеотemperatureй северо-западной Гренландии в средние глобальные (кривая 1 на рис. 3.37), величины первых должны быть уменьшены в 4 раза (Broecker, 1975), что соответствует коэффициенту «поверхностного усложнения» для широты 75–80°, полученному по материалам метеонаблюдений и данным моделирования.

Кривая 2 на рис. 3.37 отражает эффект воздействия антропогенных факторов, среди которых, по единодушному мнению климатологов и геологов, существенную роль может играть увеличение концентрации пыли и CO₂ в атмосфере. Эта кривая рассчитана на основе следующих допущений: 1) 50% всей углекислоты, выделяющейся при сжигании минерального топлива, остается и будет в ближайшем будущем оставаться в атмосфере; 2) рост интенсивности сжигания топлива в 1960–1975 гг. составлял 4,5% в год, а после 1975 г. будет держаться на уровне 3% в год; 3) к каждому 10%-ному приросту содержания CO₂ в атмосфере соответствует повышение средней глобальной температуры на 0,3°. Как следует из рис. 3.37, эта кривая имеет параболическую форму.

Фактический рост средних температур воздуха демонстрируется кривой 3, полученной из сложения кривых 1 и 2. Эта кривая показы-

*Подробнее см. в третьей части первой книги этого шеститомника.
Глава 3. Глобиологический прогноз

ном влагообороте, заключена в Мировом океане (1,34·109 км³) и в ледниковых покровах (около 30·109 км³). Массовое перемещение между этими резервуарами и относительное изменение их объемов контролируются в первую очередь тепловым состоянием атмосферы. В доледниковое время с характерными для него высокими температурами объем вод Мирового океана был на (20–25)·10⁹ км³ больше современного, а объем ледников – примерно на такую же величину меньше. При умеренных межледниковых потеплениях, когда часть ледников исчезла, а часть, включая ледниковые щиты Антарктиды и Гренландии, сохранялись, объем Мирового океана возрастил на (2,5–3)·10⁹ км³ и его уровень поднимался на 5–7 м. Наконец, при низких глубоких похолоданиях, многократно повторявшихся в конце кайнозойского периода, различия – порядка (70–80)·10⁹ км³ – объемы воды переходили из океана в ледники и океанский уровень снижался на 120–150 м.

Предстоящее глобальное потепление повлечет за собой убывание оледенения и рост объема и уровня Мирового океана. М.И. Будько с соавторами (1978) предположили, что в 20-х годах XXI в. количество осадков на Кавказе и в Средней Азии возрастет соответственно на 75 и 100–150 мм, средняя температура января в обеих областях увеличится на 7–8°, а температуры июля останутся без изменений. При этом в нивальном поясе гор рост осадков приведет к значительному сильнее и вызывает влажной в 450–600 мм, что будет способствовать улучшению питания ледников. В то же время повышение зимних температур приведет к некоторому сокращению периода аккумуляции уплотнения и увеличению периода таяния, что ожидается отрицательное влияние на баланс массы оледенения. В целом воздействие этих двух факторов – роста осадков и потепления зим, возможно, и уравновесит друг друга. Поэтому глобальное повышение температур ближайших 50 лет приведет к не очень существенным изменениям ледников Кавказа и Средней Азии. Так что в этих областях, как, по-видимому, и в других горных странах умеренных широт Евразии, на первом этапе предстоящего потепления потеря ледников не будет слишком велика.

В высоких широтах, в частности в Европейской Арктике, будущие изменения климата проявятся чрезвычайно резко, в чем свидетельствует уже упоминавшиеся «полюсное угление», и эффект уничтожения льдов Северного Ледовитого океана, предсказываемого М.И. Будько с соавторами. Согласно тем же расчетным картам, годовые суммы осадков здесь увеличиваются более чем на 600 мм, средняя температура января повышается на 10–14°, средняя температура июля – на 12–15°. Это значит, что островные ледниковые покровы будут ежегодно получать от 1000 (Земля Франца-Иосифа) до 1300 мм (Новая Земля) осадков, а средние июльские температуры воздуха над ними составят

*Наблюдения за ледниками в Средней Азии в конце XX столетия зафиксировали их существенную деградацию, которая в 70–90-х годах шла с постоянной скоростью.
Глобальные изменения и судьба ледников

8—9 и 6—8С соответственно. Значительная доля осадков при столь большом потеплении будет выпадать в жидком виде, а рост температуры зимы и лета так сильно ускорит период абляции и повысит интенсивность таяния, что быстрая деградация оледенения станет неизбежной. В результате на Земле Франца-Иосифа за год будет ставаться около 7 м льда, а на Новой Земле — около 5 м. Учитывая современную толщину ледниковых покровов арктических островов (150—200 м), можно заключить, что под влиянием предстоящего потепления эти покровы исчезнут за несколько десятилетий. Сходная судьба, видимо, ожидает и другие ледники Арктики (кроме Гренландского).

Глобальный рост температуры проявится и в Гренландии, хотя там он будет слажен мощным охлаждающим влиянием ледникового щита. Если в современных условиях это влияние приводит к снижению «фоновых» температур на 5° летом и 15° зимой (Чижов, 1976), то при будущем потеплении оно усилиется, однако даже увеличение температуры в 4—5° на севере и в 2—3° на юге острова повлечет за собой повышение температуры на 5—10° и 250—400 м соответственно, что почти удвоит площадь области абляции. Если современный баланс массы Гренландского ледникового щита еще не далек от равновесного, то за 30—40 лет он станет явно отрицательным, причем его расходные статьи — таяние и откавливание айсбергов, по грубы оценке, будут превышать приходные на величину порядка 1000 км². Это означает, что скорость снижения поверхности щита составит 0,5—0,7 м в год.

Потепление охватит и Южное полушарие, достигнув на широтах, соответствующих крупным частям Антарктиды, 7—10° (Будько и др., 1978; Mercer, 1978). Однако в Восточной Антарктиде, ледниковый щит которой обладает больной термической инерцией, это потепление не вызовет существенного усиления таяния. Даже в узкой береговой полосе щита современные температуры самого теплого месяца близки к —4, —8°С, откуда следует, что в результате предстоящих изменений климата они снизятся лишь приблизительно к температуре таяния. И если в современных условиях баланс массы Восточно-антарктического ледникового щита примерно равновесный и приход вещества, связанный с выведением снега, почти уравновешивается расходом на откавливание айсбергов, а жидкий сток составляет всего 10—15 км² в год, то через несколько десятков лет последняя статья расхода вряд ли превысит 100 км². Отсюда следует, что в первой четверти XXI в. баланс массы рассматриваемого щита не испытает заметных изменений. Серьезное сокращение оледенения Восточной Антарктиды требует как достаточно большого повышения температуры в краевой зоне материка, близкого к 12—15°С, так и достаточно длительного действия этого потепления, измеряемого не десятками, а как минимум сотнями лет.

Глава 3. Глациологический прогноз

Исключение составляют шельфовые ледники, которые дальше всего выдвинуты к северу и имеют низкие плоские поверхности, доступные для вторжений теплого воздуха с моря. Именно над этими ледниками летние температуры воздуха относительно скоро могут привести положительные значения, а температура водных масс, омывающих их днища, вырастает до критических величин, близких к 0°С. И хотя в настоящее время сказать, через сколько десятилетий они разрушатся, их предстоящий распад представляет как неизбежным. В первой четверти XXI в. эти ледники либо исчезнут, либо будут находиться в стадии далеко зашедшей деградации.

Особенно серьезные изменения оледенения последуют за потеплением климата в Западной Антарктиде. Ледниковый щит здесь имеет площадь 2,3 млн км² и объем, равный 3,3 млн км³. Его ложе погружено ниже уровня моря и на больших площадях имеет глубины порядка 1000 м, а местами даже 2000 м и более. Именно здесь, Западноантарктический ледниковый щит налагает не такую, как обычно называемые ледниковые покровы, а на морское дно, в связи с чем его приходится относить к классу «морских» покровных ледников. И здесь решающую роль принадлежит океану, о чем повествует следующий раздел этой главы.

Взаимодействие оледенения с океаном

Исследования последних лет глубоко поменяли привычное представление о связях между оледенением и океаном, от которых зависит характеристика климата и их изменения. Выяснилось, что эти связи имеют прямые и обратные влияния — массообмен, теплообмен и динамические взаимодействия, и они сильно меняют свою интенсивность как от места к месту, так и во времени. В частности, анализы пространственных вариаций взаимодействия в системе «оледенение — океан» позволят говорить о ведущей роли процессов, развивающихся в энергетических областях океана, внику в и разрастании оледенений, а также объяснять механизмы переходов климата от межледникового к ледниковому модусу и от ледникового — назад к межледниковому (Взаимодействие..., 1987).

Важную роль океаны играли в образовании и развитии древних оледенений, что прямо отразилось на размещении ледниковых покровов прошлого, в частности, в плейстоцене. Судьба современных реконструкций, крупнейших покровов, объединяющих наземные и «морские» ледниковые шельфы с плавучими шельфовыми ледниками, были приурочены к полярным и субполярным окраинам Атлантического, Тихого и Южного океанов (Гросвальд, 1983; Denton, Hughes, 1981).
Вопрос об интенсивности питаия плеистоценовых ледниковых покровов относится к числу сложнейших. Некоторые палеогеографы считают ее низкой, в связи с чем высказывается немало сомнений в совместимости упомянутых выше реконструкций с палеоклиматом ледниковых эпох. Этот климат рисуется как сухой, неблагоприятный для определения. Однако подобная точка зрения не может приниматься без принципиальных корректив, так как она базируется только на данных о снижении влажности воздуха при походке и не учитывает изменений в интенсивности атмосферной циркуляции. Меж тем ясно, что в ледниковых эпохах эта интенсивность возрастала вследствие углубления температурных контрастов между сушей и океаном, между полярными и субполярными областями (которые охлаждались в среднем на 10°, с одной стороны, и низкими широтами, с другой (они оставались почти столь же теплыми, как и в современную эпоху). Рост этих контрастов повышал энергию всех океанических и атмосферных процессов, что подтверждено конкретными исследованиями океанологов и палеоклиматологов. Установлено, что в эпохи глобальных походов возрастали скорости океанических течений, включая Гольфстрим и Куроось, усилились температурные градиенты на гидрологических фронталах и циркуляция в субполярных широтах, активизировались процессы в зонах апвеллинга у западных берегов материков. Одновременно усиливаются ветры, включая пассаты; возрастала энергия кругополихарных барических депрессий, приуроченных к стыкам океана с ледниками покровами, в частности Исландской и субарктической; мощной и кругополихарной становилась Алеутская депрессия, которая в современных условиях проявляется лишь зимой.

Температуры перепады в зонах контакта сравнительно теплых океанических течений с ледяными морями или ледяными берегами вместе с большими скоростями ветра и бурностью океана делали эти зоны центрами ускоренного поступления воды в океан в атмосфере. Такие центры в нашей литературе получили название энергетически активных зон океана, или ЭАЗО. Исследование процессов взаимодействия ЭАЗО Гольфстрима и Куроось с атмосферой позволило сделать вывод о их ведущей роли в формировании климата и его изменениях; эта концепция легла в основу теории климата и долгосрочного прогноза погоды, разработанной Г.И. Марчуком (1983).

Не приходится сомневаться, что ЭАЗО существовали и в эпохи древних определений. Более того, в силу отмеченного выше усиления межширотных температурных контрастов ЭАЗО ледниковых эпох должны были отличаться особенной мощностью и высокой повторяемостью. Есть данные, что в периоды активизации палео-ЭАЗО перенос влаги с океана на континент стал исключительно большим и в районах развития определена интенсивность снеготаяния заметно превосходила современную. Об этом, в частности, говорят исследования Раддимена и Макинтайра (Ruddiman, McIntyre, 1979), которые изучив видовой и изотопно-кислородный состав микрофлоры из колонок глубоководных грунтов Северной Атлантики, доказали, что на этапах быстрого роста определения ледяных морских и кубических километров льда нарастили за интервалы в 5–10 тыс. лет. Причем поверхность океана, омывавшего уже океанические побережья Лабрадора и Гренландии, в то время была теплой. Это значит, что в зоне Гольфстрима тогда должны были возникать палео-ЭАЗО с очень высокими температурами, градиентами. Аналогичные условия существовали, по-видимому, и в других зонах стоянки теплых течений – Куроось, Бразильского и друг., с ледовитыми водами субполярных круговоротов. Эти зоны были главными центрами, в которых атмосфера получала влагу, идущую на питание растущих ледников.

Большое влияние на ледники оказывают колебания уровня океана. Позднеплейстоценовые повышения уровня океана, имеющиеся в геоэкзистинтную природу, служили как мощным фактором ускорения дегляцияции, так и инструментом глобальной синхронизации крупных этапов спуска льда в океан. Этот вывод вытекает из признания большей роли «мировых» (так называемых на континентальных субполярных) ледников в древних ледниковых эпохах, а также из понимания решающей роли подъема уровня в нарушениях устойчивости таких ледников, в скачкообразных отступаниях линий наслаждения и среждёв их ледяных потоков.

Основная причина выхода полярных ледниковых покровов в океан — неустойчивость наземных ледниковых покровов (Мазо, 1989), которые либо колапсируют, либо, разрастаясь, перешедшие в новые условия существования с дополнительными стабилизирующим механизмом разрушением. Когда наземные ледниковые покровы распространяются по низко расположенным высокотемпературным равнинам, их стабилизация происходит не ранее того, как они достигают уровня, вступая в непосредственный контакт с гидрологическими процессами. Один из элементов такого взаимодействия — стабилизировать сброс ледниковых покровов в океан.

По мере того как ледниковый покров достигает океана и продвигается в глубь него, последовательно возникает несколько уровней включения морских механизмов аблации. Если очередной механизм не компенсирует возрастающую аккумуляцию, то ледниковый покров продолжает свое наступление до следующего уровня, т.е. до включения нового механизма аблации. На максимальной стадии продвижения в океан краевые зоны покрова проникают на глубину, образуя шельфовые ледники, а линия наслаждения, служащая границей между внутренними частями покрова и плавучими шельфовыми ледниками, достигает края континентального шельфа (рис. 3.38).

В настоящее время объем крупнейшего «мирового» ледникового покрова — Западноантарктического — составляет 15% современного
Часть 3. Глобальные изменения и судьба ледников

Рис. 3.38. Продольный профиль «морского» ледникового покрова
1 - область питания ледникового щита, 2 - ледяной поток, 3 - шельфовый ледник, 4 - коренное ложе ледника, 5 - линия наледания; 1 - касательное напряжение, 2 - продольное напряжение; остальные обозначения см. в тексте

Сложные ледниковые комплексы с антарктидического типа представляет собой динамические системы, составные части которых - наледения и льдинки, а также переходные зоны между ними - обладают существенно разными динамическими свойствами, что, в частности, отражается на их морфологии. Специфическим элементом «морских» ледниковых покровов служит линия наледания: ее быстрое отступание приводит к катастрофическим изменениям, включая спуск в океан значительных масс льда из внутренних частей ледникового покрова.

«Морские» ледниковые покровы - самый неустойчивый элемент оледенения, причем индикатором его состояния, а часто и причиной неустойчивости служит положение линии наледания, определяемое условием всплывания льда, т.е. условием перехода от наледающего на грунт ледникового щита к плавучему шельфовому леднику.

Пусть ось х горизонтальна, а ось z - вертикальна вверх с произвольным началом координат. Пусть z = f(x) - уравнение свободной поверхности ледникового щита и шельфового ледника, z = b(x) - уравнение ледникового ложа, учитываемого в частности, изостатическое погружение земной коры, и h(x) - толщина льда, для щита равная f(x) - b(x) (см. рис. 3.38). Если z - уровень моря, то z = z_0 - b(x) - глубина ложа относительно уровня моря. Тогда условие перехода от наледающего на грунт ледникового щита к плавучему шельфовому леднику примет вид

\[\rho h(x_c) = \rho b(x_c), \]

где \(\rho \) и \(\rho_w \) - плотность льда и воды, \(x_c \) - горизонтальная координата линии наледания.

Следуя Вертману (Weertman, 1974), рассмотрим простейшую модель, когда ложе предполагается плоским (рис. 3.39):

\[b(x) = b_0 - \beta x, \]

где \(b_0 \) - высота ложа при \(x = 0 \) и \(\beta \) - наклон ложа, который считается положительным, если он обращен наружу, или

\[b(x) = z_0 - b_0 + \beta x. \]

В качестве реологической модели льда принимается жесткоупругое приближение. В этом случае толщина шельфового ледника будет постоянной (Weertman, 1957):

\[h(x) = h_0 = 4\delta(\rho/\Delta\rho), \]

где \(\delta \) - пространственный масштаб, определяемый пределом текучести льда, и \(\Delta\rho = \rho_w - \rho \) - разность плотности воды и льда.

Тогда из условия всплывания следует, что

\[x_c = [(\rho/\rho_w)h_0 + b_0 - z_0]/\beta. \]

Из этого уравнения вытекает, что такие изменения внешних условий, как утолщение льда (увеличение \(h_0 \)), подъем земной коры (увеличение \(b_0 \)) и снижение уровня моря (уменьшение \(z_0 \)), приводят к увеличению \(x_c \), т.е. к наступанию линии наледания. При этом дальность миграции линии наледания обратно пропорциональна наклону ложа \(\beta \).
Глава 3. Гляциологический прогноз

Рис. 3.40. Катастрофическое отступание морского ледникового покрова
1 — поверхность отступающего щита, 2 — растягивающее напряжение, 3 — уровень моря, 4 — коренное ложе

наступление или отступание. Но в то же время ослабление влияния островов и отмелей приводит к значительному, хотя и не катастрофическому, спуску льда в океан и тем самым к повышению уровня моря (MacAyeal, 1989).

Катастрофические перестройки морских ледниковых покровов не обязательно происходят быстро. Их скорость определяется двумя группами обстоятельств. Во-первых, миграция линии наледения может происходить только одновременно с изменениями состояния морского ледникового покрова в целом, в частности с изменениями его профиля. Быстрая же изменений состояния покрова зависит от многих факторов, в том числе от температуры льда, дренирующей способности ледяных потоков и степени неравномерности морского покрова. Последний фактор определяет не только скорость перераспределения масс льда, но и его количество, подлежащее перераспределение между наледяющимися и плавающими частями покрова и сбросу в океан.

Во-вторых, скорость и амплитуда катастрофических перестроек морских ледниковых покровов существенно зависят от того, сопровождается ли миграция линии наледения развитием бухт отеля. Если последние сразу же следуют за отступающей линией наледения, то перестройка морского покрова произойдет быстро и с большой амплитудой. Если же переброс линии наледения сопровождается ростом шельфовых ледников, то перестройка окажется медленной и новое равновесное состояние покрова не будет слишком сильно отличаться от исходного.

Итак, важнейшая черта динамики морских ледников — их неустойчивость, в заметной степени определяемая положением линии наледения на ледниковом ложе. Именно от него зависит реакция
Часть 3. Глобальные изменения и судьба ледников

«морского» ледника на изменение внешних условий, таких как уровень моря, баланс массы и др., причем при определенных - критических - положениях надежд и малейших изменениях внешних условий вызывают катастрофические изменения в состоянии «морского» ледника. Быстрое отступление линии надежд и спуск в океан значительных масс льда приводит к относительно быстрому падению уровня океана.

Сказанное позволяет сделать следующие выводы. Сокращение ледников, вызываемое климатическим потеплением, в силу структурной неустойчивости к «морскому» размыванию может быть нелинейным, катастрофическим. Поэтому все сценарии изменений уровня океана, исходные из допущения о линейности связей убывания океана с температурами, чреваты принципиальными ошибками. Так и «мезофильт» сценарий, используемый многими авторами прогнозов и предсказаний, что уровень океана будет повышаться с той же скоростью, что и в настоящее время. Он, как известно, предсказывает, что к середине XXI столетия данное повышение составит лишь десятка сантиметров (по «максимальной» модели - 117 см, по минимальной - 5-24 см) (Оганесян, 1989). В противоположность этим, в общем благополучным цифрам, реализация неустойчивости «морских» часёп Антарктического ледникового покрова вследствие потепления угрожает повышением уровня океана на 5-7 м к середине XXI в. или даже раньше этого срока (Hughes, 1973; Mercer, 1978).

Решаемая здесь задача заключается в расчете не всего ледникового стока, а лишь той его части, которая составляет добавление в сравнимом со стационарным балансом воды. Это означает, что в условиях потепления и деградации океана речь идет об объеме стока деградации Rd, который численно равен текущему (как правило, отрицательному) балансу воды. Максимальная Rd влияет на изменение уровня океана и изменение увлажненности территории. Расчет стока деградации состоит в использовании данных наблюдений за изменениями массы ледников, которая имеет тенденцию к уменьшению при потеплении.

В соответствии с наблюдениями на Тянь-Шане, в районах дисперсного снега площадь ледников в 1980-х годах сократилась на 0.5% (Уваров, 1990), а в районах компактного снега - на 0.1% (Кузьмин, 1989). Исходя из этих цифр, для всей Центральной Азии сокращение площади ледников можно принять равным 0.5% в год, а для остального, «малого» ледников Земли, имеющего связь с океаном, сокращение площади принимается за 0.3% в год, хотя из-за острового положения ледников в Арктике и их куполообразной формы понижение высоты поверхности ледников может протекать крайне нелинейно.

Для оценки Тянь-Шань и гор Центральной Азии использованы измерения баланса воды за 1959-1989 гг. на ледниках Центральный и Заалайский на Алтае и № 1 в Китайском Тянь-Шане для районов дисперсного снега и на ледниках Сары-Тор во внутреннем Тянь-Шане - для районов компактного снега (данные сопоставляются). Большая скорость деградации в момент океана принята из того соображения, что при потеплении скорость деградации возрастает по мере роста среднего континентального климата, так как увеличивается вклад летнего баланса воды в изменение ее годового баланса и стока деградации. Такое явление связано с небольшим, но постоянным ростом длины зимних осадков в годовую сумму при потеплении и усилении циклонической активности в период зимнего антициклон. Кроме того, ледники долинных районов испытывают тенденцию к уменьшению питания атмосферными осадками, как это видно на рис. 3.41. Уменьшение аккумуляции снега и потепление технологично для условий долинных районов Центральной Азии. Это наиболее благоприятное сочетание объясняется аномально большими скоростями деградации океана и величины стока Rd, как это следует из рис. 3.42.
Часть 3. Глобальные изменения и судьба ледников

Глava 3. Гляциологический прогноз

Рис. 3.41. Уменьшение годовой аккумуляции снега, Сн, на ледниках Центральный Тюкоку в Заилийском Алатау (а), Сары-Тор во Внутреннем Тян-Шанье (б) и № 1 в Китайском Тян-Шане (в)

Для оценки стока деградации Rd и его тенденции у всего остального «малого» оледенения Земли взяты данные измерений увлажнения массы на ледниках Норвегии, поскольку эти продолжительные, наиболее точные измерения отражают средние условия возможной реакции оледенения на глобальное потепление. Оледенение прибрежных районов Скандинавии с типично морским климатом (Garseg, 1965) имеет сходство с режимом оледенения Берегового архипелага США и Канады, прибрежных районов Аляски, Исландии, Шпицбергена и др. На рис. 3.43 показана тенденция увеличения стока деградации, рассчитанная по результатам измерений на шести ледниках. Сравнение этой осредненной тенденции принято для прогноза изменений всего «малого» оледенения общей площадью 500 тыс. км².

Исходя из тенденции изменения температуры воздуха по данным метеостанций Тян-Шаня (рис. 3.44) и предполагая в последующем

Рис. 3.42. Современные тенденции стока деградации, Rd, и его прогнозируемые величины согласно этой тенденции, вычисленные по результатам измерений на ледниках Центральный Тюкоку (а), Сары-Тор (б) и № 1 (в)
Часть 3. Глобальные изменения и судьба ледников

Рис. 3.43. Изменение стока деградации, Rd, за 1960–1990 гг. по данным расчета баланса массы шести норвежских ледников

tот же линейный тренд (линейная экстраполяция здесь, к сожалению, пока небезбедна), можно заключить, что в Центральной Азии средняя годовая температура к 2100 г. может повыситься на 1,5°, а к 2350 г. — на 4,5°.

С использованием этих грубо ориентировочных цифр в таблицах 3.2 и 3.3 приводятся для Центральной Азии и всего «малого» оледенения Земли сокращение площади оледенения ΔS, изменение удельного стока деградации Rd и объема этого стока Q Rd, а также суммарный подъем уровня моря ΔSSL.

Данные табл. 3.3 показывают, что на Тянь-Шане и в области внутреннего стока Центральной Азии очень быстро, а в более поздние периоды катастрофически быстро сокращается площадь оледенения, увеличивается интенсивность стока вследствие сокращения площади и быстро нарастает объем стока деградации. Максимальная величина приращения (по отношению к 1975 г.) произойдет к рубежу 2100 г., когда объем стока деградации увеличится в 3,3 раза. При продолжающемся потеплении объем стока деградации будет сокращаться.

Впечатляют масштабы сокращения площади оледенения. Оно сохраняется только в наиболее высоких частях Центральной Азии, в массивах компактного оледенения. Возможно, темпы деградации будут еще быстрыми из-за эффекта континентального усилением, т.е. уменьшения количества осадков и смещения его пика на весеннее-летнее время при ожидаемом потеплении.

При дальнейшем потеплении или сохранении климата вся территория, особенно ее высоко- и среднегорные части, начнет превращаться в тип высокогорной пустыни, где при крайней засушливости будут

Глава 3. Гляциологический прогноз

Рис. 3.44. Тенденции изменения средней зимней (а) и средней годовой (б) температуры воздуха, °С, в высокогорье Внутреннего Тянь-Шаня за 1930–1990 гг.

1 — тенденция, 2 — средняя годовая

наблюдаться периодические неинтенсивные дожди и снегопады в весенне-летнее время.

Надо учитывать также крайне неблагоприятные условия для формирования талого снегового стока. Он резко уменьшится, и пик снеготаяния сместится на ранневесенние месяцы. В результате активизируются руслообразные процессы и фильтрация тальных вод. Реальное
Глава 3. Гляциологический прогноз

Таблица 3.2
Изменение оледенения на Тянь-Шане и в Центральной Азии при глобальном потеплении*

<table>
<thead>
<tr>
<th>Год</th>
<th>Тянь-Шань</th>
<th>Центральная Азия</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DS, тыс.км²</td>
<td>Rd, м</td>
</tr>
<tr>
<td>1975</td>
<td>19</td>
<td>0,35</td>
</tr>
<tr>
<td>2050</td>
<td>13,7</td>
<td>1,6</td>
</tr>
<tr>
<td>2100</td>
<td>11</td>
<td>2,4</td>
</tr>
<tr>
<td>2150</td>
<td>9,1</td>
<td>3</td>
</tr>
<tr>
<td>2200</td>
<td>7,5</td>
<td>3,6</td>
</tr>
<tr>
<td>2250</td>
<td>6,2</td>
<td>4,3</td>
</tr>
<tr>
<td>2300</td>
<td>4,5</td>
<td>5</td>
</tr>
</tbody>
</table>

*Обозначения даны в тексте.

прирывает стока горных рек будет меньше. Только благодаря малым потерям запасов ледников положение с водообеспеченением не станет критическим.

Влияние деградации «малого» оледенения Земли начинает сказываться на повышении уровня океана уже к 2050 г., а дальше скорость приретения уровня океана за счет деградации начинает заметно возрастать (см. табл. 3.3). Этот период охватит 200–300 лет. «Малое» оледенение Земли будет быстро, практически катастрофически распадаться, и к 2350 г. эта площадь сократится на 500 до 100 тыс. км². К этому времени ледники сохранятся лишь в горах Внутренней Азии, на некоторых арктических архипелагах, в некоторых частях Паганской, Понедельской, на Тибете и в самых высоких вершинах в горах умеренных широт.

Приведенный расчет скорости подъема уровня океана дает более высокие цифры по сравнению, например, с расчетами Г. Робина (Robin, 1986). По-видимому, это связано с достаточно грубыми допущениям при расчетах, в частности с допущением о линейном изменении площади оледенения при росте удельного стока деградации.

Судя по результатам приведенного анализа, изменения оледенения, связанные с «парниковым» потеплением климата, могут иметь в основном негативные геоэкологические последствия. Изменения структуры неустойчивых ледниковых покровов «морского» типа могут привести к их распаду, возможно, к катастрофическому, следствием чего будет сравнительно быстрое повышение уровня океана (на 5–7 м за десятки лет), тогда как горное оледенение умеренных и субтропических широт перейдет в условия экстремального режима с резко отрицательным (до -3, -5 м/год) балансом массы и почти полным исчезнет. Объем стока горных рек сильно сократится (из-за потери ледниковых ресурсов), что приведет к негативным для сельскохозяйственного производства последствиям.

Основы гляциологического прогноза

В 70-х годах я высказал мысль о том, что уже через 15–20 лет все большие все будут приобретать те знания о Земле, которые станут стимулировать развитие научной мысли, подобно тому, как это случилось в начале столетия с физикой, направлявшей быструю эволюцию ряда фундаментальных дисциплин. Значение науки о Земле резко возрастает сейчас вследствие того, что именно они должны помочь найти решение одной из самых жгучих современных проблем, касаю-

348

349
Часть 3. Глобальные изменения и судьба ледников

...взаимоотношений природной среды и общества. В этой связи большое значение приобретает гляциологический прогноз. По существу, о таком прогнозе шла речь в предыдущем разделе.

Гляциологические прогнозы, как и другие виды географических прогнозов, подразделяются по загробовременности прогнозируемых элементов нивально-глациальных систем, пространственным масштабам, степени детерминированности.

По загробовременности гляциологические прогнозы можно подразделить на краткосрочные, среднесрочные и долгосрочные.

Краткосрочные прогнозы охватывают один цикл режима гляциального объекта. Для ледников это балансовый год — цикл сезонного накопления и расхода льда, для лавин — период накопления снега на склоне и его быстрая разгрузка, для ледяного покрова рек и водоемов — время от его зарождения до разрушения. Краткосрочные прогнозы базируются на большом эмпирическом материале и, как правило, локальных.

Среднесрочные прогнозы охватывают период времени, превышающий основной режимный цикл, но не выходят за рамки характерного времени обозрения массы в гляциальном объекте. К таким прогнозам можно отнести прогноз колебаний фронта ледников, частоту схода лавин в данном регионе и т.п.

Долгосрочные прогнозы охватывают период времени, превышающий характерное время обозрения массы в объекте или системе. Такие прогнозы чаще всего бывают глобальными или региональными и базируются преимущественно на косвенной информации об общих физико-географических закономерностях. Примером служит предположение о катастрофическом разрушении Западноаантарктического ледникового покрова.

В пространственном отношении прогнозы могут быть разделены на глобальные, региональные и локальные.

Глобальные прогнозы охватывают предвидения состояния океанов, их атмосфер, климатических кастроф, и в том числе ядерной войны, нарастающих глобальных антропогенных воздействий (обогащение атмосферы двуокисью углерода или пылью).

Региональные прогнозы охватывают предвидения состояния нивально-глациальных систем в крупных регионах. В качестве примера можно назвать анализ связи колебаний океанов, отдельных секторов Арктики со сменой макроклиматических эпох и соответствующий прогноз в связи с предлагаемой метеорологами последовательностью их смены.

Локальные прогнозы охватывают местных нивально-глациальных систем и их элементов. В качестве примера укажу на прогноз усиления лавинной опасности на конкретном горнольжном

Глава 3. Гляциологический прогноз

склоне в результате уничтожения растительности под лыжными трассами или прогноз возможности срывов резких подвижек пульсирующих ледников.

Методы реализации гляциологических прогнозов делятся на детерминированные и вероятностные. При детерминированном прогнозе в качестве аргументов используются гляциологический или климатический параметр либо их набор, прогнозная модель строится на базе уравнений математической физики, механики, гидро- и термодинамики. К такому прогнозу относится прогноз срока появления ледника, появление первой ледникового покрова на известном гидрографа ледникового стока.

При вероятностном прогнозе модель строится на теоретико-вероятностной основе. Результат заключается в количественно-обоснованном значении прогнозируемого явления или процесса, который определен в пределах времени его превышения либо определен только в одной из этих категорий. Результат может быть детерминирован в пространстве, но не во времени, когда прогнозируется диапазон колебаний массы или толщины ледника, либо он детерминирован во времени, но не в пространстве, когда прогнозируются дата вспышки реки без указания места вспышки, а также лавинная опасность в горах без указания конкретного лавиносбора или даже долины.

Учет инверсий процессов внешнего массопереноса в гляциологическом прогнозе рассматривал на примере горно-долинного ледникового бассейна Джанкут на Центральном Кавказе, где на долю ледников приходится почти половина площади. В качестве метода изучения инверсионности ледникового процесса (это преобладающий тип для массопереноса ледников) воспользуемся атмосферным автокорреляционным анализом. Все данные, по которым построены автокорреляционные функции, представлены на рис. 3.4.5, получены в результате проведенных исследований в течение трех лет (1974, 1976 и 1977) детальных и достаточно точных измерений (Дюкеров и др., 1981). Здесь даны нормированные функции, а их достаточное большое осреднение по времени не оставляет сомнений в надежности результатов.

Для корректного баланса таких ледниковской поверхности корреляционная связь выражена слабо, мал инверсивность; через сутки коэффициент корреляции снижается до 0,4. Для температуры воздуха характерна несколько большая инверсивность, что связано с продолжительностью прохождения воздушных масс над ледником. Значение коэффициента корреляции, равное 0,5, достигается при сдвиге по времени на 2 суток. Близок по инверсивности к ходу температуры воздуха процесс снятия ледниковой поверхности в точке, так же величина коэффициента корреляции 0,5 достигается при сдвиге по времени 2,5 суток.
Глава 3. Гляциологический прогноз

Рис. 3.46. Изменение ледникового стока в связи с деградацией ледника Джаккуат
Зачернены конечные морены

Анализ изменений ледниковых покровов служит элементом глобального гляциологического прогноза, тогда как в локальном прогнозе мы имеем дело с отдельными ледниками или небольшими ледниковыми системами. Пример такого прогноза приведен на рис. 3.46. Здесь реконструирован баланс массы горного ледника, который рассчитывался по данным о температуре воздуха летних месяцев и количестве атмосферных осадков за зиму, измеренных на метеорологической станции. Схема демонстрирует, как будет изменяться сток воды с ледника в стадии его преимущественного наступления или сокращения. В стадию отступания ледниковый сток уменьшается из-за сокращения площади ледников. Но в каждый период временного стационарирования фронта ледника, который фиксирует волны конечных морен, относительная величина стока возрастает. Возможно, к таким всплескам ледникового стока приурочены периоды наиболее активной и рельефообразующей деятельности ледников. При наступании ледников эта кривая «пронизывается» назад и служит основой прогноза ледникового стока.
Глава 3. Гляциологический прогноз

Рис. 3.47. Балансовые кривые, полученные по результатам измерений в течение одного года, показывают весь вероятностный диапазон изменений годовых величин баланса массы ледников B. Кривые отражают зависимость от абсолютной высоты и положения границы сезонного снега H_{m} и границы питья H_{n}.

B и B_{n} — соответственно зимний и летний баланс массы. Скользящая линия показывает перемещение границы сезонного снега районы. Кроме того, корреляция метеорологических параметров, особенно атмосферных осадков, с балансовыми показателями не всегда удовлетворительна. С учетом этих обстоятельств был разработан метод вероятностного расчета и прогноза (Дюргеров, 1984).

Такой подход заключается в возможности использовать собственные гляциологические показатели, в которых интегрированы фоновые значения и изменчивость метеорологических параметров. Выяснено, что граница сезонного снега на ледниках отражает текущее состояние баланса массы и ледникового стока. Для многих ледников установлены надежные связи между высотой границы питья ледников H_{n}, соответствующей наивысшему положению границы сезонного снега H_{m} в конце лета, и годовым балансом массы ледника B_{n}. Для получения таких соотношений нужны 20–50-летние наблюдения.

На рис. 3.47 схематически показан, как за один цикл экспедиционных работ можно получить соотношения, соответствующие многолетним. Аналогично тому, как граница питья H_{n} фиксирует годовой баланс массы ледника B_{n} в течение одного сезона, азаблений, граница сезонного снега H_{m} фиксирует текущее состояние баланса

Часть 3. Глобальные изменения и судьба ледников

Основной почти всех детерминированных расчетов и прогнозов внешнего массообмена ледников служит схема расчета абляции ледников с последующим переходом к аккумуляции на основе их равновесия между собой на высоте границы питья ледников (Кренке, 1982; Ходаков, 1965, 1978). Между таянием снега и пада ледников и средней годовой температурой воздуха существует связь, описывающая приближенно кубической формулой (см. вторую часть этой книги). Огромный эмпирический материал, как правило, подтверждает эту зависимость, хотя на локальном и региональном уровнях приходится оптимизировать коэффициенты формулы, а иногда переходить к расчету по линейным уравнениям. Тем не менее о многом говорит тот факт, что эмпирический и локальный по своей природе источник информации при его объединении показывает в общем глобальную картину изменений абляции ледников.

К настоящему времени разработана система методов расчета всех составляющих баланса массы ледников на основе метеорологических характеристик — средних многолетних или за данный год. С использованием этих подходов получен способ оценки полей норм составляющих баланса массы ледников для крупных ледниковых систем. При этом достаточно знать прогноз метеорологических факторов только одной из составляющих баланса массы. Другая (обычно аккумуляция) может быть рассчитана из сопоставления одной из составляющих (обычно абляции) с данными о топографии (высотном положении и форме) ледников. Переход к полям, характеризующим целые ледниковые системы, основан на концепции непрерывных полей характеристик этих, вообще говоря, дискретных систем, которые определяются факторами, имеющими непрерывные поля.

Карты полей характеристики ледниковых систем построены на все горные районы земного шара и приведены в Атлансе снежно-ледовых ресурсов мира. Подобные поля позволяют не только определить особенности изменения норм аккумуляции в пределах ледниковых систем, но и построить поля осадков, заснеженности и стоки в высокогорье, где прежде они строились крайне неточно на основе высотных зависимостей. Рассчетные поля аккумуляции показывают направления влагопереноса, границы областей с разным генезисом осадков, структурный характер вторжения воздуха в горные страны и др.

И в заключение посоветов о методе вероятностного расчета и прогноза баланса массы ледников. Ряд сложных проблем внешнего массообмена ледников не может быть решен стандартными методами. Чтобы накопить достаточный ряд данных, который можно положить в основу расчета и прогноза по каждому исследованному региону или отдельному леднику, необходим длительный ряд наблюдений. Такие длительные ряды наблюдений за составляющими внешнего массообмена ледников и сопутствующих метеорологических и гидрологических измерений имеются только для немногих ледников и ледниковых районов. Кроме того, корреляция метеорологических параметров, особенно атмосферных осадков, с балансовыми показателями не всегда удовлетворительна. С учетом этих обстоятельств был разработан метод вероятностного расчета и прогноза (Дюргеров, 1984).

Такой подход заключается в возможности использовать собственные гляциологические показатели, в которых интегрированы фоновые значения и изменчивость метеорологических параметров. Выяснено, что граница сезонного снега на ледниках отражает текущее состояние баланса массы и ледникового стока. Для многих ледников установлены надежные связи между высотой границы питья ледников H_{n}, соответствующей наивысшему положению границы сезонного снега H_{m} в конце лета, и годовым балансом массы ледника B_{n}. Для получения таких соотношений нужны 20–50-летние наблюдения.

На рис. 3.47 схематически показан, как за один цикл экспедиционных работ можно получить соотношения, соответствующие многолетним. Аналогично тому, как граница питья H_{n} фиксирует годовой баланс массы ледника B_{n} в течение одного сезона, азаблений, граница сезонного снега H_{m} фиксирует текущее состояние баланса
часть 3. глобальные изменения и судьба ледников

массы b, от весны, когда масса ледника максимально, к осени, когда баланс массы приближается к конечному в данном балансовом году. Практически можно измерить, например раз в несколько дней, баланс массы ледника и фиксировать границу сезонного снега. Пара этих текущих значений могут быть представлены как их конечные реализации.

Балансовые кривые на рис. 3.47 моделируют весь диапазон изменений баланса массы ледника в зависимости от абсолютной высоты. Представленная на рисунке кривая $H_{bm} = f(b)$ при определенных ее ограничениях в нижней и верхней частях может рассматриваться в качестве годовых значений, т.е. $H_{bm} = f(B)$. В конечном итоге мы можем кривую, полученную за ограниченный интервал времени, считать основой для последующего расчета и прогноза годового баланса массы ледника.

Этот вероятностный прогноз выполняют следующим образом. Предполагается нормальное распределение высот границы питания на леднике за многолетний период. Именно таким оказалась распределение этих высот на леднике Центрального Тууксуйском — единственном леднике с продолжительным рядом данных: 40 лет прямых наблюдений и 50 лет косвенных расчетов. Тогда для определения нужной кривой достаточно знать норму и среднее квадратическое отклонение. Норму можно рассчитать для любого ледника или снять с карт, а квадратное отклонение достаточно постоянно для ледников определенных градаций интенсивности внешнего массообмена (морского, континентального, переходного климата) (Кренке, Шматкова, 1978). Назначив величину отклонения, мы получаем обеспеченность определенных высот границы питания, а следовательно, через связи (типа показанных на рис. 3.47) и баланс массы ледника.

Такой подход можно применить к расчету и прогнозу изменчивости баланса массы целой ледниковой системы, если использовать гипсографические кривые. Предложенный метод также легко реализовать с помощью аэрокосмического мониторинга крупных ледниковых систем.

Литература

Бадо У.Ф., Макиннес Б. Дж. Периодические подвижки ледника Медвежий и модель течения льда // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 32. 1978. С. 143—161.

Войтовский К.Ф. Продольные напряжения сжатия в пульсирующем леднике // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 32. 1978. С. 117—123.

Глазырин Г.Е., Рассел Н.В., Щетинин К.С. Изменение ледникового стока рск Средней Азии в связи с возможными изменениями климата // Тр. САНИИ. Вып. 117 (198). 1986. С. 59—70.

Делер М.С. Космические методы изучения снежного покрова Земли. Л.: Гидрометеоиздат, 1980. 77 с.

Диких А.Н., Диких Л.Л. Водно-ледовые ресурсы Исыккульско-Чуйского региона, их современное и будущее состояние // Водные ресурсы. 1990. № 4. С. 74—81.

Часть 3. Глобальные изменения и судьба ледников

Дюров М.Б. Задачи вероятностного прогноза баланса массы ледника и ледникового системы // Материалы гляциол. исслед. Вып. 50. 1984. С. 133–144.

Кромен А.Н. Массообмен в ледниковых системах на территории СССР. Л.: Гидрометеоиздат, 1982. 288 с.

Кремен А.Н., Шаматкова Л.Н. Использование высоты гранулирования ледников в гидрометеорологических расчетах // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 34. 1978. С. 167–178.

Литература

Осинова Г.Б., Цветков Д.Г., Бондарева О.Л., Морозов В.Ю. Возможности аэрогеохимического мониторинга пульсирующих ледников (на примере ледника Медвежьего, Западный Памир) // Материалы гляциол. исслед. Вып. 68. 1990. С. 149–156.

Часть 3. Глобальные изменения и судьба ледников

Уваров В.Н. Пространственно-временная изменчивость и расчет баланса массы ледников Западного Аляска. Автореф. канд дисс. М., 1990. 20 с.

Ходаков В.Г. О зависимости суммарной аблиции поверхности ледников от температуры воздуха // Метеорология и гидрология. 1965. № 7. С. 48—50.

Литература

Robin G. de Q. Changing the sea level // The impact of an increasing atmospheric concentration of carbon dioxide on the environment. WMO/ICSU/UNEP, 1986.

Глава 1
РАЗВИТИЕ ГЛЯЦИОЛОГИЧЕСКИХ ИДЕЙ
В СССР И РОССИИ

Современное представление о гляциологии как науки о всех видах природных льдов смягчило прежнее, более узкое понимание гляциологии лишь как науки о ледниках. Расширение круга изучаемых ею объектов было обусловлено тем, что все главные проблемы оледенения, практического использования и преобразования льдов на Земле затрагивают не только ледники, но также снежный покров, морские, речные и подземные льды, наледи и т.п. В гляциологии сформировался ряд отраслей, каждая из которых занимается отдельными видами природных льдов (рис. 4.1).

Во все времена главное внимание гляциологии сосредотачивалось на ледниках — самых крупных снего-ледовых образованиях. К середине XX в. окончательно оформилась динамическая гляциология. Корни ее уходят в середину XIX в., когда течение льда в ледниках рассматривалось поочередно как проявление вязкости, пластичности и ползучести. В 50-е годы был предложен степенной закон течения льда — закон Гlena, который лежит в основе расчетов течения льда в ледниках.
На рис. 4.2 представлено древо гляциологии. Главными стволами служат геология и физика, производные от них — климатология, геоморфология и гидрология. Сплетения различных ветвей образуют современную сложную структуру науки о природных льдах — сочетание отдельных ее отраслей и основных направлений исследований.

Особенно быстро гляциология развивалась в XX столетии. С каждым десятилетием наряду с прежними возникали новые задачи и внедрялись методы, приводящие к формированию отраслей и направлений исследований. В 20-е годы благодаря усилиям немецких и швейцарских ученых значительное развитие получила гляциоэкология. В 30-е годы в скандинавских странах зародилась гляциохимия. В 40-е годы в ряде европейских стран был дан толчок к развитию гляциогеологии. 50-е годы стали эпохой рождения структурной гляциологии, главный вклад в которую внесли советские и американские ученые. В 60-е годы усилия в основном советских и английских исследователей привели к рождению динамической гляциологии, а работы американских инженеров принесли первые успехи в глубоком бурении льда. 70-е годы отмечены бурным развитием изотопно-геохимической гляциологии, и здесь следует отметить пионерные исследования датских и французских ученых. 80-е и 90-е годы – это время развития космической гляциологии, о которой говорится в третьей части этой книги.

Главные достижения XX века

Проблемы снега и льда попали в сферу интересов российской науки более 200 лет назад, во времена М.В. Ломоносова. Россия стала родиной науки о снежном покрове, основы которой были заложены в 1880-х годах А.И. Воскресенским. С 1891 г. в России проводятся снегомерные съемки. Тогда же стала разрабатываться проблема снежных заносов, создается теория метелей (И.Е. Жуковский). Еще в прошлом столетии систематизированы сведения о замерзании и вскрытии рек (К.С. Бессовский, М.А. Рычков). В начале XX в. разработаны теоретические основы образования речных затоплений, формирования внутреннего льда и других особенностей режима рек. Начало изучения морских льдов в России связано с именами С.О. Михайлова, А.Н. Крылова, Н.И. Зубова.

В XVIII в., после находок на севере Сибири во льду остатков мамонтов, начаты наблюдения за погребенными пчелами, а с исследо-
Глава 1. Развитие гляциологических идей в СССР и России

В этом разделе я кратко изложу некоторые идеи в области изучения ледников, снежного покрова и палеогляциологии, впервые выдвинутые или детально разработанные в нашей стране во второй половине XX в.

Хионосфера, энергия оледенения и зоны льдообразования на ледниках. Введение еще в 30-х годах С.В. Калесником (1939) понятия «хионосфера» стало объектом широкой дискуссии в СССР в начале 60-х годов. Ныне хионосфера понимается как область пространства, в пределах которой на поверхности суши при благоприятных условиях рельефа возможно зарождение и существование ледников. Некоторая отдельность понятия «хионосфера» и огромная роль местных особенностей рельефа в существовании ледников дали основание Г.К. Тушинскому (1963) предложить понятие «суровый» или, как он уточнял, «сурового» уровня 365, т.е. такого уровня в геолого-географических стационарах, где нет лёгких и головных особенностей рельефа.

В 1961 г. формируется Советская секция гляциологии, которая заняла в три года, а затем каждые четыре года проводит всесоюзные гляциологические симпозиумы: 1-й симпозиум состоялся в 1961 г. в Москве; 2-й — в 1962 г. в Алма-Ате; 3-й — в 1963 г. в Челябинске (Киришина); 4-й — в 1968 г., в Ташкенте; 5-й — в 1972 г. в Ташкенте; 6-й — в 1976 г. в Алма-Ате; 7-й — в 1980 г. в Ташкенте; 8-й — в 1984 г. в Тбилиси. После распада СССР Секция гляциологии преобразуется в Гляциологическую ассоциацию, в которую на добровольной основе входят все бывшие республики Советского Союза. Традиция гляциологических симпозиумов сохраняется: 10-й прошел в 1993 г. в Обнинске; 11-й — в 1996 г. в Пущино; 12-й — в 2000 г. в Дубне.
Глава 1. Развитие гляциологических идей в СССР и России

dанным метеорологических наблюдений на сети. Он исследовал скорость оседания (уплотнения) и водоудерживающую способность снега (Кузьмин, 1961). П.П. Кузьмин (1947) рассматривал также метод теплового баланса как универсальный при изучении процессов снеготаяния и предложил способы расчета каждой из составляющих по сетевым метеорологическим показателям.

Велик вклад России в изучение метелей. В 50-70-х годах важнейшие результаты получил А.К. Дюнин. Он провел серию полевых экспериментов, создавал искусственную метель в аэродинамических трубах, исследовал форму и размеры метелевых частичек, их механическую прочность и способность к возгонке. Применение единых динамических уравнений с учетом межфазовых переходов и негравитационных массовых сил позволило А.К. Дюнину (1959) выделить исчерпывающий набор критериев подобия и судить о малости влияния этих факторов на транспортирующую способность метелей. Основной безразмерный критерий, связывающий транспортирующую способность с его кинематикой, оказался общим для метелей, пыльных бурь и движения речных наносов.

В 70-х годах А.К. Дюнин обратился к так называемым сверхъярким метелым. Он обобщил результаты экспериментов с искусственными метелевыми массами в масштабе 1:1 в специальных аэродинамических каналах при очень больших скоростях ветра (Дюнин, 1974). Эти эксперименты подтвердили правоту лимитной и диффузионной теории, согласно которой общий твердый расход метелей при возрастиании их скорости либо стремится к некоторому пределу, либо, наоборот, растет в геометрической прогрессии за счет диффузии снега снизу вверх до высоты сотен метров, что предполагалось австрийскими исследователями. А.К. Дюнин доказал приземный перенос снега при достижении метелей какой-то эффективной метелей, что позволяет легко определить эффективную скорость метелей от эффекта метелей при снегопаде и тем самым облегчает сложную задачу исследований метелей в резко пересеченном рельефе.

В 60-х годах стали ясны особенности метелевого переноса и снегонакопления в горах. В.Г. Ходаков (1967) на основе своих работ на Полярном Урале проанализировал распределение максимальных снегозапасов в горах и на прилегающих равнинах, доказывая, что величины снегонакопления здесь в 2-3 раза больше, чем полагали ранее. Тогда же было доказано, что благодаря метелевому переносу снега и сходу лавин на горных ледниках обычно накапливается снега больше, чем на окружающих равнинах, т.е. происходит концентрация снега на ледниках.

60-е годы стали и временем интенсивных исследований снежных лавин. На Эльбрусе, в Хибинах и на Сахалине были построены специальные установки для исследования сильных ударов и воздушной волны лавин, обсуждались многие модели устойчивости снега на склонах.

Особый интерес вызывает разрушительная воздушная волна
Глава 1. Развитие гляциологических идей в СССР и России

программы в Советском Союзе проведены обширные работы по гидрологии ледников. Концепция этого направления сформулирована Г.Н. Голубевым (1976), рассматриваемым вопросы накопления и режима воды в леднике в целом и в отдельных его частях (снежно-фирновой толще, поверхности льда, толще ледника, пространстве у ложа). Г.Н. Голубев ввел понятие динамических и квазистатических запасов воды в леднике, изучил общие закономерности накопления воды и развития системы дренирования ледника в течение гидрологического года.

В связи со все более глубоким пониманием процессов льдообразования в ледниках советские гляциологии еще в начале 60-х годов подошли к проблеме внутреннего питания ледников, под которым понимается повторное замерзание талой воды в толще и льда, что с гидрологической точки зрения представляет собой талой воды, не участвующих в ледниковом стоке данного года.

Понятие о внутреннем питании ледников ввел П.А. Шумский (1964), предложив для его расчета повторно измерять плотность снежно-фирновой толщи, скорость ее оседания, поверхностные деформации, растяжения—скатия. Спустя некоторое время А.В. Жаровским (1973) была разработана схема приближенного расчета внутреннего питания ледников по двумочным наблюдениям в контрольном шурфе — в начале и конце периода таяния или даже однократно с последующим досчитом.

Динамический и тепловой режим ледников. Еще в 40-х годах Н.Н. Зубов показал, что существует некоторая критическая мощность ледяной толщи, при которой на границе лед — льд — установливается температура плавления льда. В начале 60-х годов Н.А. Зотовик (1963) опираясь на работы Н.Н. Зубова и Г. Робин, теоретически установил, что в Центральной Антарктиде идет непрерывное дозное таяние ледникового покрова. Позже он охватывал область такого таяния и говорил о возможном существовании подповерхностных озер. Ныне наличие таких озер установлено дистанционными радиозондированием, а контуры крупнейшего подповерхностного озера в районе станции Восток получены радарными наблюдениями со спутника.

В 60-70-х годах интересы П.А. Шумского сместились в область динамической гляциологии. В одной из статей (Шумский, 1962) он изложил основы теории внутреннего массоэнергобмена в леднике на основе четырех исходных уравнений термодинамики и механики сплошной среды: термодинамического уравнения состояния, уравнения непрерывности, уравнения движения и уравнения энергии. Позже в монографии «Динамическая гляциология» (1969) он привел наиболее полную систему уравнений, описывающих напряжения и деформации во льду, и нашел решения для расчета полей деформации и скорости движения льда в широком диапазоне условий и форм ледников.

часть 4. Снег и лед в жизни людей

лавины. По поводу природы предложены две гипотезы. Ю.А. Якимов и И.Е. Шурова (1968) рассмотрели схему потока, сопровождающего снежный вихрь над телом лавины. Они экспериментально подтвердили наличие мощного спутного потока и вертикальной струи на фронт лавины, способствующей образованию этого вихря. Взаимодействие конусов вихря со скоплением на основе автомодельных решений показало возможность резкой концентрации энергии и как результат — образования снеговой структуры в этой области. Предложенная схема течения в воздушной волне позволяет объяснить локальный характер и масштабы разрушений.

В исследованиях С.С. Григоряна и Н.А. Урумбаева (1975) воздушная волна снеговой лавины представляет собой снеговоздушный поток, образующийся в процессе движения и резкого торможения лавины. Его разрушительный характер проявляется только в пределах снеговоздушной волны, имеющей прямолинейное движение и может не совпадать с направлением движения лавины.

Резерв ледников и ледниковый сток. Задача массовых расчетов внешнего режима ледников (аккумуляции, абляции, баланса массы) по стандартной гидрологической информации была решена в 60-х годах А.Н. Кренке и В.Г. Ходаковым (1966). На базе обширного эмпирического материала они получили кубическое уравнение таяния ледников с температурой воздуха (см. 2-ю главу второй части этой книги), которая лучше всего проявляется как связь суммарного таяния за весь сезон абляции со средней летней температурой воздуха.

В 70-х годах в советскую литературу входит понятие полей гляциологических характеристик, выраженных числами, векторами или тензорами. Систематическое появление поля в гляциологии впервые вел П.А. Шумский в своей книге «Динамическая гляциология» (1969) для представления состояния отдельных ледников, трактуемых как совокупности полей. Спустя несколько лет была сформулирована концепция о ледниковых системах и полях их характеристик, использованная при разработке методов расчета сходов и стока в горах и построении ряда карт в Атласе снежно-ледовых ресурсов мира.

Гляциологический метод расчета снегонакопления и сходов в горах, а также ледникового стока изложен в статье А.Н. Кренке и Л.Н. Штаньковой (1978), а проблема расчета средних годовых сумм твердых осадков на границе питания ледников получила развитие в работах И.В. Северского (1978). Он ввел понятие приведенной фирновой линии как синхронной климатической снеговой линии на ледниках, рассмотрел методы расчета этого показателя и новые подходы к определению репрезентативности ледников — проблемы, обсуждаемой в советской гляциологической литературе со времен МГТ.

В 60-х и 70-х годах, в связи с работами на репрезентативных горно-ледниковых бассейнах по программе Международного гидрологического десятилетия, а затем Международной гидрологической
Глава 1. Развитие гляциологических идей в СССР и России

Исследования в области гляциологии, начавшиеся в 1960-х годах, были проведены под руководством П.А. Шумского, К.Ф. Войтовского и др. (1972). Они раскрыли причины и механизм колебаний «нормальных» ледников, введенных в ряд новых понятий: изохонные поверхности, генетическая граница. Это обогатило наши представления о движении льда в ледниках.

Работы Дж. Глона и других экспериментаторов послужили толчком для развития исследований по механической льда в Советском Союзе. Обширные эксперименты по деформированию полярного льда выполнены К.Ф. Войтовским (1959). Он установил влияние структуры льда и его температуры в диапазоне от 0 до -40 °С на скорость пластической деформации. Он определил параметры, характеризующие скорость деформирования льда при простом и сложном напряжении на гранях. Спустя 20 лет эти результаты стали основой объяснения К.Ф. Войтовском механизма ледниковых подвижек.

Впервые с пульсациями ледников советские гляциологии столкнулись в начале 60-х годов, когда в литературе о них еще почти ничего не было известно. В 1963 г. прошли подвижки ледника Медведьего на Памире, и с тех пор Л.Г. Долгушин возглавил многочисленные исследования толщины пульсирующего ледника на протяжении 1963–1973 гг. Сформировав визуальную модель пульсации пульсирующего ледника в стадии подвижек, он показал, что течение воды в ней определяется гравитацией массы льда на стадии подвижек. Основанный на этих принципах прогноз подвижек ледника Медведьего в 1973 г. оправдался с точностью до одного года.

Происхождение Земли. В.Г. Ходаков (1968) разработал оригинальный метод расчета развития наземных четвертичных ледниковых покровов, используя эмпирические связи между геологическими и гляциоклиматическими показателями современных ледниковых покровов и датированных границ дна моря. Свой метод он успешно применил для расчета складчатого ледникового покрова в позднем плейстоцене.

Значительное место в палеогляциологической литературе занимает творчество М.Г. Гросавльда. Так, в начале 60-х годов он начал цикл исследований в Советской Арктике, и уже на первом этапе этих работ проработал идея покровного оледенения всего Баренцево-Карского шельфа (Гросавльд, 1977). В последующем, с появлением новых данных позиций М.Г. Гросавльда, он ввел новое понятие о расширении масштабов оледенения Северной Евразии. Гипотетический плейстоценовый ледниковый покров сверххрупких размеров, который многократно возникал в атлантическом секторе Северного

Перспективы гляциологии в XXI веке

Результаты экспериментальных исследований в природе должны стать базой для разработки математических моделей, позволяющих правильно понимать физические закономерности их изменений и на этой основе выполнить необходимые расчеты. Из многообразия гляциологических задач выделим главные, которые определяют развитие науки на ближайшие годы и дадут, по нашему мнению, реальный выход в географию, геофизику и в решение прикладных задач.
Глава 1. Развитие гляциологических идей в СССР и России

Важные данные об их прошлом. При этом выясняется, что для интерпретации получаемых данных мы недостаточно знаем фундаментальные законы формирования и течения льда.

Поскольку возникновение, рост и метаморфизм ледниковых тел определяются сложным комплексом факторов, надо разобраться теорию формирования структуры ледяных образований при разных термофазических условиях. В настоящее время при палеоклиматических реконструкциях обычно используются представления о зависимости скорости рекристаллизации от термических условий. Вместе с тем существуют, а иногда и ведущий фактор этого процесса — направление градиента температуры, способное вызвать как ускоренный рост, так и дробление льда. Поэтому возникает задача — установить закономерности рекристаллизации в зависимости от термического режима и направления градиента температуры.

Остаётся актуальной задача изучения реологических свойств и механизмов течения льда в зависимости от масштаба динамических процессов в леднике. Но прежде всего не известна роль льда на больших глубинах. До сих пор не решена проблема механических и физических свойств льда, находящегося под большим напряжением в течение десятков и сотен тысяч лет в основании ледниковых покровов, в том числе в галотном состоянии. Лишь при изучении керна из нескольких глубоких скважин и инклинометрировании некоторых из них обнаружены противоположное направленное сокращение льда на разных глубинах, а также мало размер ледяных плен и высокая антинорвостная плотностная пленка, делающая его по крайней мере на порядок более способным к деформациям, чем рекристаллизационный лед с хаотической структурой.

Возникает важная задача построения новых реологических моделей течения льда с учетом перестройки его структуры, разрывов сплошности и антинорвости. Эта задача не может быть решена при исследовании лишь в единичных глубоких скважинах, которые сейчас бурят на ледниковых покровах с целью исследовать возможно более древний лёд. С точки зрения реологических задач важнее проработать несколько достаточно глубоких скважин вдоль одной линии так, чтобы легче сделать на небольших арктических ледниковых куполах. В этих скважинах следует организовать систематические измерения напряжений во льду и изучить его петрографию.

К этой группе вопросов примыкает проблема изучения механизма взаимодействия ледника с подстилающими породами. В последние годы гляциология подошла к объяснению неоднородностей строения ледниковых покровов и возникновения их структуры. Такой подход ещё остается ставить проблему взаимоотношений ледника с ложем. Необходимо исследовать зависимость подобного взаимодействия от масштаба явления, выявить связь с сезонной и общей экспозицией сети подледниковых древних каналов и общей площадью
Глава 1. Развитие гляциологических идей в СССР и России

ческих свойств, определяющих инженерные мероприятия по преобразованию снежного покрова.

Коренной перестройки требует подход к изучению лавин. Следует не просто усовершенствовать, а создать на новой основе автоматизированную систему наблюдений и обработки данных о снежном покрове в зоне зарождения снежных лавин. Методика прогноза снежных лавин, основанная на положениях теории вероятностей и математической статистики, на обработке и анализе полученных данных, «сработывает» далеко не всегда. Нужно внедрить физические принципы прогноза лавин, опирающиеся на оперативные данные о состоянии снега; для этого надо применять современные средства автоматики и телемеханики с обработкой на ЭВМ. Наряду с совершенствованием фонового прогноза лавин необходимо перейти к их прогнозу в конкретном лавиноносёре как на базе методов опознания, так и на основе дешеирования полезных сигналов - предвестников электромагнитного излучения, возникающего в сложногонапряженном снежном покрове зоны зарождения лавин.

Следует искать новые конструктивные решения, материалы и аппараты воздействия для традиционных методов защиты от лавин. Наряду с этим надо вести дальнейшие поиски методов физического и химического воздействия на метаморфоз снежного покрова, чтобы научиться подавлять и полностью предотвращать процессы, приводящие к сходу лавин. Требуется активно развивать теорию и практику управления лавинным процессом, а для этого нужны новые методы физических и химических воздействий, базирующиеся на теоретических и экспериментальных исследованиях физики и термодинамики снега.

4. Создание геоинформационной системы «Гляциология».
Будущие задачи гляциологии невозможно решить без создания автоматизированной системы сбора, хранения, обработки и распространения гляциологической информации. Создать широкую геоинформационную систему можно лишь на основе организации и последующего объединения региональных автоматизированных систем, базирующихся на трехуровневой системе наблюдений: наземной (полигонов, контрольные площадки), авиационной (съемки с борта вертолета, специальные подсолнечниковые наблюдения с самолетов-лабораторий) и, главное, космической, которая в основном будет представлена многоязычной оперативной съемкой высокого и среднего пространственного разрешения.

Внедрение в практику подобных возможностей приведет к быстрому развитию количественных методов нивально-глиациальной индикации происходящих в геосфере изменений, в том числе и антропогенно обусловленных. Тогда гляциологические объекты станут важным звеном мониторинга других природных систем, например климатической.
Глава 2
ИНЖЕНЕРНАЯ ГЛЯЦИОЛОГИЯ И
ХОЗЯЙСТВЕННАЯ ДЕЯТЕЛЬНОСТЬ ЛЮДЕЙ

Как и всякая отрасль науки о природе, гляциология имеет инженерные проблемы, свои корнями уходящие в глубокую древность. Строительство из снега и льда издавна практиковалось народами Севера и Сибири, а в альпийских странах еще в средние века возводили сооружения для защиты от снежных завин.
В СССР инженерные задачи, связанные со снегом и льдом, пришлось решать уже в 30-е годы, когда началось освоение полезных ископаемых, лесных богатств, гидро- и ветроэнергетических ресурсов на севере нашей страны.

Во второй половине XX в. самостоятельное значение приобрела инженерная гляциология. Название этому направлению дал Г.К. Тушинский (Инженерная..., 1971). Прогноз и польза — вот что, по мнению Тушинского, должно быть свойственно любой инженерно-научной дисциплине, именно этого мы добиваемся в исследованиях по инженерной гляциологии.

Инженерная гляциология — это связующее звено между общей гляциологией, с одной стороны, комплексом технических наук и хозяйственной деятельности людей — с другой. Ее главные задачи — находить новые пути и способы целенаправленного воздействия на гляциальную среду, изучать воздействие этой среды на хозяйственные объекты, устанавливать географические закономерности подобных воздействий.

Объектами инженерной гляциологии служат существенно преобразованные или целиком искусственно созданные системы, в которых доминирует реализм и полезность. Инженерная гляциология разрабатывает эффективные и рациональные средства воздействия на снег и лед, учитывающие специфику природных процессов, выбор средств и объем воздействия. При этом особая задача заключается в сохранении сложившихся связей в природе, обеспечивающих ее гармоническое развитие.

До сих пор чаще всего людям приходилось сталкиваться с негативными эффектами снегно-ледовых явлений — заносами, лавинами, весенними паводками на реках и пр., противодействие которым
Часть 4. Снег и лед в жизни людей

требует значительных расходов. Поэтому к ним выработалось отрицательное отношение, однако в эпоху научно-технической революции снег и лед в жизни людей стали использовать в различных сферах деятельности.

Снежные покровы и ледяные луги в Антарктике — это часть географической системы, в которой стремится постоянно поддерживать оптимальные значения температур и концентраций воды. Надвигание и уменьшение снегозапасов ведет к изменению климата и ведет к изменению биосферы.

Уже сейчас масштабы снегозаносных мелиораций, особенно в нашей стране, приведя к значительным изменениям. Снегозапасы сельскохозяйственных угодий — это часть агротехнической системы, в которой стремится поддерживать оптимальные значения температур и концентраций воды. Надвигание и уменьшение снегозапасов ведет к изменению климата и ведет к изменению биосферы.

Важность снегозаносов для усвоения зерновых культур в этих условиях особенно велика. Снегозаносы сельскохозяйственных угодий — это часть агротехнической системы, в которой стремится поддерживать оптимальные значения температур и концентраций воды. Надвигание и уменьшение снегозапасов ведет к изменению климата и ведет к изменению биосферы.

В холодных областях, где зима длится несколько месяцев в году, а морозы достигают большой силы, снег ледяной плотиной и в дальнейшем использованием в различных сферах жизнедеятельности. Опыт строительства из снега и льда накоплен народами Севера и Сибири. Среди инженерных сооружений из льда все более широко используются ледяные дамбы и плотины, т.е. ледяные массивы в форме усеченной пирамиды, а также ледяные дамбы.

Водопады, реки, ледяные и ледяные машины в форме усеченной пирамиды для защиты от высоких волн и острова, ледяной ледяной плотиной и в дальнейшем использованием в различных сферах жизнедеятельности. Опыт строительства из снега и льда накоплен народами Севера и Сибири. Среди инженерных сооружений из льда все более широко используются ледяные дамбы и плотины, т.е. ледяные массивы в форме усеченной пирамиды, а также ледяные дамбы.
Таблица 4.1 Принципы и методы инженерно-гидрологических мероприятий

<table>
<thead>
<tr>
<th>Объект</th>
<th>Цель</th>
<th>Методы</th>
<th>Результаты</th>
</tr>
</thead>
<tbody>
<tr>
<td>Механический принцип</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Снежный покров</td>
<td>Снегомелиорации сельхозугодий</td>
<td>Агротехнические (засыпка, копыто, беззольная пахота); снегопрахание, прикатка</td>
<td>Положительные с переменным успехом</td>
</tr>
<tr>
<td></td>
<td>Снегозадержание у дорог</td>
<td>Лесополосы, штольи, траншеи</td>
<td>Положительные при умеренных запасах</td>
</tr>
<tr>
<td></td>
<td>Снегобурка на дорогах, строительных площадках</td>
<td>Снегобурочные машины</td>
<td>Положительные при умеренных запасах</td>
</tr>
<tr>
<td></td>
<td>Сброс снежных лавин и стабилизация снега на склонах</td>
<td>Взрывы, подрезка, ударные волны от самолета</td>
<td>С переменным успехом</td>
</tr>
<tr>
<td></td>
<td>Строительство автозимников, ВПП и других сооружений</td>
<td>Рыхление снега с последующей трамбовкой и смещиванием</td>
<td>Устойчиво положительные</td>
</tr>
<tr>
<td>Ледники</td>
<td>Горнотранспортные работы</td>
<td>Механическое бурение, со взрывами</td>
<td>Устойчиво положительные</td>
</tr>
<tr>
<td>Водные льды</td>
<td>Продление навигации</td>
<td>Ледокольные суда, ледорезы и ледоходы самоходные</td>
<td>Положительные при умеренной толщине</td>
</tr>
<tr>
<td></td>
<td>Борьба с заторами и зажорами</td>
<td>Взрывы, попуски из водохранилищ</td>
<td>С переменным успехом</td>
</tr>
<tr>
<td></td>
<td>Борьба с воздействиями льда на гидротехнические сооружения</td>
<td>Ледоколы, синтетические покрытия</td>
<td>С переменным успехом</td>
</tr>
<tr>
<td></td>
<td>Повышение несущей способности льда</td>
<td>Снегобурка</td>
<td>Устойчиво положительные</td>
</tr>
<tr>
<td>Наледи</td>
<td>Борьба с обледенением дорог, судов, гидротехнических сооружений</td>
<td>Ручное и механизированное снятие льда и м. д.</td>
<td>С переменным успехом</td>
</tr>
<tr>
<td></td>
<td>Сознание наледей и мелиоративных и строительных целей</td>
<td>Низконапорные плотины на водотоках</td>
<td>Устойчиво положительные</td>
</tr>
</tbody>
</table>

Теплофизический принцип

<table>
<thead>
<tr>
<th>Объект</th>
<th>Цель</th>
<th>Методы</th>
<th>Результаты</th>
</tr>
</thead>
<tbody>
<tr>
<td>Снежный покров</td>
<td>Снегомелиорации сельхозугодий</td>
<td>Ускорение станияания зачернения поверхности</td>
<td>С переменным успехом</td>
</tr>
<tr>
<td></td>
<td>Снегобурка на дорогах, промышленных объектах, ВПП</td>
<td>Пламенные снеготаяли, обогрев</td>
<td>Устойчиво положительные</td>
</tr>
<tr>
<td>Ледники</td>
<td>Увеличение стока воды</td>
<td>Ускорение таяния зачернения поверхности</td>
<td>Эксперименты</td>
</tr>
<tr>
<td>Водные льды</td>
<td>Продление навигации</td>
<td>Увеличение теплоотдачи от воды конвекцией с пузьряками воздуха от перфорированных труб</td>
<td>Положительное при умеренных морозах</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Увеличение теплоотдачи солнечной радиации зачернением поверхности</td>
<td>С переменным успехом</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Попуск горячей воды от ТЭЦ в портах</td>
<td>Устойчиво положительные</td>
</tr>
<tr>
<td>Наледи</td>
<td>Создание искусственных наледей многоцелевого назначения (для строительства, охлаждения, опреснения)</td>
<td>Тонкослойный налив</td>
<td>Устойчиво положительные</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Распыление воды</td>
<td>Устойчиво положительные</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Дождевание</td>
<td>Эксперимент</td>
</tr>
</tbody>
</table>

Химический принцип

<table>
<thead>
<tr>
<th>Объект</th>
<th>Цель</th>
<th>Методы</th>
<th>Результаты</th>
</tr>
</thead>
<tbody>
<tr>
<td>Снег и лед</td>
<td>Растворение снега и льда на дорогах, ВПП, строительных площадках</td>
<td>Добавка хлоридов, нитрилов, в основных органических</td>
<td>Положительные, но вызывающие коррозию металла</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Борьба с лавинами</td>
<td>Химическое замедление роста кристаллов глубинной изморози</td>
<td>Эксперимент</td>
<td></td>
</tr>
</tbody>
</table>

Комплексный принцип

<table>
<thead>
<tr>
<th>Объект</th>
<th>Цель</th>
<th>Методы</th>
<th>Результаты</th>
</tr>
</thead>
<tbody>
<tr>
<td>Снег и лед</td>
<td>Снегобурка на дорогах, ВПП, строительных площадках</td>
<td>Газотурбинные снегоочистители для сдувания и возгонки снега и льда</td>
<td>Устойчиво положительные</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Транспортировка айсбергов</td>
<td>Просвет, малые эксперименты</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Буксировка, транспорт</td>
<td></td>
</tr>
</tbody>
</table>
Глава 2. Инженерная гидрология и хозяйство людей

при промораживания грунта на 10–15 см, чтобы облегчить проход летних бульдозеров по марям и заболоченным местам. Снежные навали рассеиваются из предварительно разрыхленного слоя, который затем уплотняют катками или виброуплотнителями до плотности 50–55 кг/м\(^2\) и выше. Такие дороги служат до многомесчек.

На обычных автомобильных дорогах зимой образуются обширные виды техногенного снега – снегообразный несмывающийся снег, а также снеголед, исключительно прочный с накопленной дождями покрытой. Для их уборки применяют снегоочистители – плуговые, роторные, шеточные и снегоочистители. Снег может съехать с дороги, благодаря вспашке снегоуборочного механизма, как делается при очистке снега на железных дорогах.

В горах по-прежнему актуальной проблемой является лавина. Лавинное воздействие с целью спуска лавины в основном как превентивная мера, проводилось с давних пор, сначала противоположной строительной технологии. С 1680-х годов все шире применяют эффективный зимний метод (Аккуратов, 1976; Пейари, 1978). Его модификация весьма разнообразна: обстреливание склонов с помощью молотов, артиллерийскими снарядами, ракетами, специальными взрывчатыми веществами, работающими на взрывчатых газах; подрыв взрывчатых масс взрывчатой смеси, подаваемых в установленные на лавиноопасных склонах специальные замки; накопление взрывчатых веществ взрывчатых ввещений (La Chapelle et al., 1978; Mellor, 1988). Наиболее распространено применение этого метода, так как только последний метод можно считать абсолютно надежным, способом сбросить лавину при любой степени замерзости снежного покрова. Все остальные способы хороши, когда снежное соединение снега может быть абсолютно надежным, способом сбросить лавину при любой степени замерзости снежного покрова. Все остальные способы хороши, когда снежное соединение снега может быть абсолютно надежным, способом сбросить лавину при любой степени замерзости снежного покрова.

Для защиты и предотвращения лавин широко применяются различные инженерные сооружения: снегоудерживающие штобы, сетки, решетки, искусственные террасы, выемки, дамбы, галереи. Особенно большое внимание необходимо уделять сохранению и разведению леса на склонах. Борьба с уже сошедшим снегом трудна и пока малоэффективна. Плотный лавинный снег на горных дорогах с трудом преодолевает самые мощные снегоочистители. При обычной толщине завалов 5–10 м они могут работать только вместе с бульдозером, подающим снег с верха завалов к ротору.

Теплофизический принцип активных гидрологических воздействий гораздо более энергоемкий, чем механический, поэтому он применяется либо локально, либо с использованием тепла, поступающего от Солнца или запасенного природными объектами. Этот принцип используется и для исключения опасного воздействия лавин — применяются такие называемые мерзлотные пояса, автоматические обходящие устройства и пр. (Алексеев, Савко, 1975).
Глава 2. Инженерная гидрология и хозяйство людей

сейской губе и на Камском водохранилище и дал обнадеживающие результаты. Позднее он был модифицирован – струя на снегу прикреплен к форштевню карабиля – и успешно применен на водосборных водосборниках.

Влияние накомбинации загрязнений снега можно наблюдать в Воркутском промышленном районе. На снимке с высоток спусковых Земли заметно округлое серое пятно диаметром более 50 км к западу от Урала; его существование объясняется постоянным поступлением на поверхность снежного покрова каменноугольной пыли и золы. Весной площадь снега волной, отложившейся на суходоле, быстро возрастает, благодаря растущему его самозаполнению вытаптывающими частицами. В результате полный сход снега здесь происходит от незадачи до месяца раньше, чем на окружающей Воркуту тундере.

Важное прикладное значение имеет проблема искусственного наносаживания льда. При непрерывной подаче воды тонкой пленкой даже в сильные морозы удается наносить слой ледяной пленки в несколько десятков см за один раз. Скорость такого наносаживания равна в среднем 1 млн/сут на 1 °C отрицательной средней суточной температуры воздуха. Это так называемое потенциальное наносаживание. Оно позволяет, сколько возможно наносить лед на существующих пастбищах и пригодных местах. Возможность наносаживания весьма велика как на территории Евразии, так и в Северной Америке (рис. 4,3).

Противоположный показатель – потенциальная абляция – представляет собой общий поток массы льда, который может стать и испытать за год при данном климате. Сравнение обоих показателей дает потенциальный ледяной баланс территории, т.е. массу льда, которую можно ежегодно парашютировать без тепломассы. Линии нулевого баланса льда проходят через Высоцеро, Пермь, Барнаул, Улан-Батор, к северу от них лежит территория, где наносаживание льда совсем не трудно.

Однако часто требуется интенсивность наносаживания на порядок выше, чем при льдоосаждении методом тонкослойного прорыва воды. Такие скорости льдоосаждения можно получить с помощью дождевания, когда основной теплообмен перемещается с плоскости наносаживания в объем капельного фона. Исследования, выполненные в Институте географии АН СССР (Сосновый, Ходаков, 1995), позволили с помощью дождевателя ДДН-70 при умеренном морозе -18 °C за 19 часов создать массив плотного льда объемом 3000 м³. Подобная интенсивность искусственного наносаживания в естественных условиях достигнута впервые.

Получаемый таким образом искусственный лед при полном замерзании превращается в сухой гранулированный лед плотностью 450–600 кг/м³, который внешне напоминает снежный покров. В процессе метаморфизма отдельные гранулы льда скапливаются и плотность его по весу увеличивается. Когда частично промерзающие
Глава 2. Инженерная гидрология и хозяйство людей

kapli воды осаждаются на твердое основание и там полностью кристаллизуются, что сопровождается раскалыванием ледяных сфер и изливанием из них незамерзающей воды, образуется кляйный гранулированный лед. Плотность его 500–800 кг/м³, а после пропитки и промораживания он превращается в монолит плотностью 850–900 кг/м³.

Оба вида гранулированного льда находят широкое применение: первый – при сооружении ложных трасс и водо-тепловой мелиорации почв, а второй – при наведении ледяных переправ, строительстве ледяных платформ, причалов и плотин.

Метод факельного морожения используют для опрессования морских и соленых подземных вод. На морозе их пропускают через дождевальную установку, рядом с которой формируется масса искусственного фирина. Поскольку он хорошо фильтрует воду, соленая вода из него стекает и ее можно отвести по каналу или естественному руслу. Оставшийся фирин окажется практически прозрачным. Применение современной водометной техники позволяет улучшить резко континентальный климат в местах морожения льда, так как там зимой выделяется высокая теплота влажносборования, а летом она поглощается. Есть и другой путь приложения рассматриваемого морожения в подачу воды-фириевой пульпы в систему охлаждения тепловой или атомной электростанции для повышения ее КПД и уменьшения износа оборудования.

Для наращивания ледяных массивов необходимые специальные виды льда (ледокомпозиты): дереволед – замороженная вода с добавлением древесно-стружечной массы, хвороста или опилок; льдокамень – замороженная смесь воды, песчано-галечного, шебенчатого или гравийного материала, отличающегося высокой прочностью; льдопад – замороженная вода-воздушная пена очень низкой плотности, всего 40–80 кг/м³. В строительстве в суровых районах широко применяются ледяные конструкции, которые возводятся подо льдом или снегом, ледяных блоков, послойным морожением воды на горизонтальных или наклонных основаниях, брызговым морожением на жестких решетках или мягких воздухопорных поверхностях.

В настоящее время создается несколько ледяных массивов для самых разных целей: проведения почвенных и климатических мелиораций, наполнения хладагента в теплотехнических системах, строительства снежно-ледяных дорог и платформ многолетнего действия в заболоченных районах, создания искусственной суши в мелких водоемах, временных гидротехнических и других сооружений в районах с суровой зимой, для спортивных и оздоровительных целей.

Не всегда еще при использовании снега и льда или борьбе с их вредным влиянием получаются желаемые результаты. Это происходит от того, что инженерные и естественнонаучные идеи в большей степени развиваются параллельно, а необходимо их тесное взаимодействие.
Глава 3. Использование ледников как источников пресной воды

Искусственное усиление таяния горных ледников

Наибольшие запасы пресных вод заключены в ледниках. Во второй половине XX столетия на территории бывшего СССР в горных ледниках содержалось около 2650 км³ льда, в которых было аккумулировано 2277 км³ воды (табл. 4.2). Подавляющая часть этих запасов (86%) приходится на Тянь-Шань, Алтай и Памир, расположенных в Средней Азии и юго-восточной части Казахстана, где вопрос об источниках дополнительной воды стоит очень остро.

Современное оледенение на территории Средней Азии и юго-восточного Казахстана целесообразно рассматривать не в ледниках основным речным бассейнам, в которых ледники различаются своими размерами, конфигурацией, запасами воды, а также высотным положением. Немалым менее 80% площади оленения дается на орошение или перспективные для орошения земли. Но эта площадь крайне неравномерно распределена между отдельными бассейнами и по отношению к орошаемым районам (рис. 4.4). Основными, такие неравномерности сохраняются и в будущем.

В решении проблемы регулирования стока Средней Азии и Казахстана важное место могут занять искусственные воздействия на нивально-глациальные процессы, но они обязательно должны быть комплексными. К ним относятся искусственное усиление таяния ледников, увеличение таяния сезонного снежного покрова в нужное время, перераспределение снегоzapасов путем искусственного спуска лавин и создания снежников, а также использование вод ледниково-подледниковых и поселений горных озер, а также внутривединых водных емкостей, устройство водохранилищ в горах, увлажнение лесов в холодный период и их таение в теплый, искусственное увеличение количества твердых атмосферных осадков в областях питания ледников и др. (Аксюк, Котляков, 1976; Котляков, Долгушин, 1973).

Таблица 4.2

<table>
<thead>
<tr>
<th>Область исследования</th>
<th>Площадь ледников, км²</th>
<th>Средняя толщина льда, м</th>
<th>Запасы льда, км³</th>
<th>Запасы воды, км³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кавказ</td>
<td>1428</td>
<td>70</td>
<td>1506</td>
<td>1784</td>
</tr>
<tr>
<td>Памир и Айаи</td>
<td>9809</td>
<td>150</td>
<td>1470</td>
<td>1264</td>
</tr>
<tr>
<td>Тянь-Шань</td>
<td>7326</td>
<td>110</td>
<td>806</td>
<td>693</td>
</tr>
<tr>
<td>Джунгарский Алтай</td>
<td>1000</td>
<td>80</td>
<td>806</td>
<td>693</td>
</tr>
<tr>
<td>Алтай и Саяны</td>
<td>937</td>
<td>85</td>
<td>806</td>
<td>693</td>
</tr>
<tr>
<td>Горы Сийри</td>
<td>480</td>
<td>60</td>
<td>29</td>
<td>25</td>
</tr>
<tr>
<td>Камчатка и Коряки</td>
<td>1114</td>
<td>75</td>
<td>83</td>
<td>71</td>
</tr>
<tr>
<td>Всего</td>
<td>22 094</td>
<td>2 648</td>
<td>2 277</td>
<td></td>
</tr>
</tbody>
</table>

*Методика подсчета запасов льда в ледниках изложена в работе (Котляков, 1966).

Первая очередь искусственное усиление их таяния путем зачернения поверхности. Дополнительное поселение солнечной энергии ледниками в этом случае неизбежно приведет к усилению таяния, что вызовет увеличение ледникового стока и в конечном счете водные ресурсы, необходимых для орошения полей в предгорьях.

Искусственное усиление интенсивности таяния снега и льда в весенне-летний период методом зачернения поверхности использовалось с давних пор (Кароль, 1949). С помощью этого метода ускоряют сход снега, что особенно важно в овощеводстве, увеличивая в нужное время сток тальных снеговых и ледниковых вод, поступающих на нужды орошения, водоснабжения и гидроэнергетики, а также ослабляют льды водоемов для облегчения прохода ледоколов. Однако широкого распространения метод зачернения снега и льда пока не получил. Это связано с трудностями экономического, технического и собственно гляциологического характера.

Опыты по искусственному таянию ледников и снежников в разных частях Средней Азии приводили к самым противоположным выводам. Например, В.Л. Шульц (1963) считал этот метод увеличения стока рек малоэффективным и для практического использования совершенно непригодным. Эта позиция нашла своих последователей. В то же время Г.А. Аксюк (1953), который первым начал проводить такие опыты в горах Тянь-Шаня, пришел к выводу о больших возможностях метода.
Глава 3. Использование ледников как источников воды

Рис. 4.4. Современное оледенение Средней Азии и юго-восточного Казахстана

Границы бассейнов: 1 - первого порядка, 2 - второго порядка. Каждая точка (3) соответствует площади оледенения в 100 км²

настях метода, что стимулировало постановку подобных экспериментов в нашей стране. Успешные опыты усиления таяния ледников были проведены в 50-х годах в Китае (Долгушип, 1959) и в конце 60-х годов в Чили (Science..., 1969).

Полевые и лабораторные эксперименты, выполненные в СССР в 1950-1952 и 1962-1965 гг., позволили сформулировать основные требования к частице зачернивающего материала. Она должна иметь мало албедо, легко тонуть в воде, хорошо смачиваться и обладать такими размерами, которые позволили бы этой частице погрузиться под поверхность таящего снега или льда, но в то же время долго оставаться в пределах их верхнего горизонта. Максимально усилить таяние можно, применяя каменноугольную пыль с диаметром частиц 0,2 мкм или каменноугольный шлак фракции 0,2-0,5 мкм, особенно если предварительно их обескислородить, чтобы улучшить смачиваемость.

Опыты по усилению таяния были поставлены Институтом географии АН СССР в 80-х годах на ледниках Эльбруса, Джунгарского Алатау, Терского Алатау, Алайского хребта, на сыртах Центрального Тянь-Шаня и на Памире (Долгушип и др., 1965). Опыты на небольших площадках показали, что во всех случаях зачерниение ледниковых языков угольной пылью из расчета 50-100 г/м² приводит к усилению таяния льда на 20-45% (в июле-августе), несмотря на очень большую загруженность его поверхности (от 150 до 500 г/м²). По сравнению с чистым льдом таяние на площадках, зачерненных указанными количествами угольной пыли, увеличивается более чем вдвое.

Рис. 4.5. Влияние зачернения ледников на дополнительное таяние льда

а - зависимость интенсивности дополнительного таяния I, получаемого от каждого грамма зачерничающего материала при разных нормах зачернения, от температуры воздуха f; б - зависимость дополнительного количества талой воды t на 1 г шлака от нормы запланированного таяния т; результаты на первый (1), второй (2) и третий (3) дни после начала опыта

Механизм уменьшения албедо состоит не только в поглощении радиационного тепла пылью. Таяние снега или льда вокруг частиц также уменьшает албедо. Зачернение становится эффективнее при росте температуры воздуха до 2 °C. В дальнейшем эффективность снижается из-за появления естественной водяной пленки (рис. 4.5). Найболее выгодна норма зачернения в 6 г/м². При дальнейшем ее возрастании увеличивается объем дополнительной воды, но эффективность каждого грамма пыли падает из-за перекрытия частиц пленкой и другим, связанным с агрегатами и слияние водяных капель.

Искусственное запланирование льда дает наибольший эффект в течение первых нескольких дней, а затем происходит постепенное выщелачивание интенсивности таяния на зачерненных и контрольных площадках. Это связано с тем, что малая угольная пыль с площадок постепенно смывается потоками талых вод. Однако на крупных ледниковых объектах свыше зачерничающих материалов, вероятно, будет иметь меньшее значение, чем на небольших площадках.

На ледниковых языках, покрытых радиационной корой таяния, зачернение льда существенно изменяет режим таяния. В первые дни албедо запланированного льда резко понижается, а затем зачерничающие частицы таятся в лед и сначала образуется светлая кора таяния. Однако через несколько дней она разрушается, и на поверхность вновь выходит зачерничающий слой, албедо которого чуть выше (порядка 20%) из-за того, что часть материала уже унесена поверхностным стоком. Подобный цикл еще не раз повторяется, т. е. искусственное запланирование в подобных условиях действует в течение довольно продолжительного времени.
Часть 4. Снег и лед в жизни людей

При запылении ледников в весенние месяцы по сезонному снежному покрову, когда эффективность искусственного захоронения при меньших нормах запыленния весьма велика, можно существенно улучшить период абляции ледников в воду. По сравнению со льдом на снежной и фронтальной поверхности, резко уменьшается скорость таяния льда. Поэтому для уменьшения таяния снежной и фронтовой поверхности в течение зимнего сезона, возможно, достаточно разового запылления. При запылении же ледниковых языков для получения дополнительного стока нужно проводить запыление неоднократно в течение одного сезона, причем большими нормами, чем при запылении снега или фрина.

По непосредственным наблюдениям в фронтовом бассейне ледника Медведьего на Памире, при нормах запыления от 12,5 до 50 г/м², таяние в среднем увеличивалось в 7–11 раз, что объясняется уменьшением увлажнения и альбедо из-за запыления, и благоприятным изменением структуры запыленной поверхности ледника в процессе таяния. Самая эффективная норма запыления, при которой каждый грамм каменноугольного шлака давал наибольшее количество дополнительной воды, оказывался равной 5 г/м². При такой норме создается наиболее рациональное распределение части шлака на поверхности ледника. Увеличение или уменьшение нормы запыления приводит к сокращению количества дополнительной талой воды, приходящейся на единицу веса запылителя. При запылении всего фронтового бассейна ледника Медведьего (Баже, 1973a) нормой 50 г/м² дополнительный сток ледником реки может составить 21,5 млн м³ воды, или 50% естественного стока за июль–август. При запылении фронтовой области ледника нормой 5 г/м² сток возрастет примерно на 6 млн м³, т.е. будет в 3,5 раза меньше, чем в первом случае, однако расход шлака на запыление сократится в 10 раз (90 против 900 м³).

Величина дополнительного стока из фронтовых областей ледников существенно зависит от характера льдообразования. Наиболее выгоден «теплый» режим льдообразования, при котором большая часть талых вод из фронтовой области поступает в сток. При холодном режиме значительная доля дополнительных талых вод вновь замерзает в фронтовой толще, что приводит к увеличению внутреннего питания ледника. Но и при искусственном запылении областей питания ледников с холодным режимом эффект может быть положительным, так как он вызывает перестройку характера льдообразования. Вначале часть дополнительной воды повторно замерзает в фронтовой толще, но в результате выделения тепла при замерзании толша постепенно прогревается и дополнительная вода начинает стекать. Если же запас холодной невелик, что характерно для многих среднеземельских ледников, то путем искусственного усиления таяния («холодный») режим ледника можно довести до «теплого», благоприятного для формирования стока из фронтовых областей.

Глава 3. Использование ледников как источников воды

Вообще искусственное запыление в фронтовых областях ледников может дать до половины и более дополнительного стока по сравнению с естественным стоком из ледников. В результате воздействия на фронт границы зон льдообразования изменяются вверх, что приводит к дополнительному увеличению таяния. Обратное восстановление условий после прекращения воздействия может занять до 10–20 лет, которые уходят на перестройку трансформации ледообразования. Увеличение несоответствия типа льдообразования и климата приведет к еще большему, чем сейчас, развитию снежно-франтовой зоны, что весьма благоприятно для стока из областей питания ледников.

В результате стабилизации под влиянием запыления годового остатка снега из него выделяется и остается на поверхности ледника до следующего сезона аккумулирование дополнительное количество морен, что, с одной стороны, позволяет скорректировать запыление, а с другой — может создать управляемый процесс в случае обнаружения начатого и обогащенного мореной слоя на следующий год. Такие преобразования в фронтовой области ледников при искусственных воздействиях обнаруживают в отношении получения дополнительного стока из фрина, но усиливают угрозу необратимой деградации ледников.

Очень сильно эффект от искусственного усиления таяния снижает летние снегопады. В областях альпийских среднеземельских ледников за июль—август бывает до 20 дней с снегопадами, а в фронтовых бассейнах — до 30–40 дней. Однако уменьшение интенсивности таяния за возрастанием альбедо в результате снегопадов невелико, потому что снегопады обычно сопровождаются походлением и пасмурной погодой, и тем, что так приводит к сокращению таяния. Обычно в течение лета свежевыпавший снег лежит в общей сложности на языках ледников 20–40 дней, а в фронтовых бассейнах — до 50 дней. Но следует заметить, что выпавший снег с запыленных участков сходит значительно быстрее, нежели с естественной поверхности ледника, при этом чем сильнее запылена поверхность, тем быстрее она освобождается от свежевыпавшего снега.

Выполненные в 60-х годах эксперименты по увеличению таяния ледников и проведенные в период Международной гидрологической десятилетия наблюдения за внешним массоэнергобменом рядя среднеземельских ледников позволяют дать оценку всех ледниковых районов Средней Азии с точки зрения искусственных воздействий на ледники и провести ориентировочный расчет эффективности такого воздействия.

Главной составляющей радиационного и теплового балансов, заключающейся в себе ресурсы энергии, которые можно реализовать для увеличения таяния, служит суммарная солнечная радиация. Какая часть энергосодержания будет использована на процесс таяния ледника, зависит от отражающей способности ледника, — его альбедо.
Часть 4. Снег и лед в жизни людей

На любом леднике, от его нижнего края до ледораздела, и суммарная радиация, отражающая способность поверхности возрастает. Следовательно, в этом же направлении увеличиваются возможности искусственного уплотнения ледника. Но абсолютная и относительная величина таких различий в разных районах Средней Азии, существуют две главные причины этих различий, обусловливающие структуру теплового баланса ледников. Первой причиной служит более высокая облачность территории, расположенной в северных и западных районах Тянь-Шаня и Памиро-Алата и на их периферийных хребтах, по сравнению с южными районами, которые вызывают обширную циркуляцию атмосферы в этом регионе. Вторая причина состоит в том, что ледники Средней Азии располагаются в поясах от 37 до 45° с.ш. и, следовательно, находятся в самых различных температурных условиях. Обе причины приводят к тому, что высота нивальная-кладовая зоны в общей увеличивается с севера-юга на юго-восток и с севера на юг от 3500-3600 до 4800-5100 м над ур. моря.

В диапазоне этих высох прямая радиация, которая увеличивается с подъемом в горы из за увеличения прозрачности атмосферы, при безоблачном небе изменяется от 600 до 800 кал/(см²•сут) за июль-август. В действительности ее различия в горах Средней Азии значительно больше. В среднем за два указанных месяца прямая радиация на языках ледников Джунгарского Алатау, Западного Алатау и других хребтов составляет около 250 кал/(см²•сут), а на ледниках Восточного Памира доходит до 600 кал/(см²•сут).

На ледниках прямую радиацию существенно дополняет рассеянная. До высоты примерно 4000 м она уменьшается с увеличением облачности, достигая 250 кал/(см²•сут) при облачности 5 баллов. Дальнейшее увеличение количества облаков приводит к незначительному росту рассеянной радиации до 100-150 кал/см². Выше 4000 м с увеличением облачности рассеянная радиация неуклонно растет и при полном пасмурном небе имеет наибольшую величину – 300 кал/см².

Для оценки природных энергетических возможностей искусственного уплотнения таяние ледников важно знать величину суммарной радиации во время походов без снегопадов. На высотах до 4000 м они составляют 600-700 кал/(см²•сут) при ясном небе, а при полупасмурном – 550-650 кал/см². Выше 4000 м суммарная радиация при ясном небе составляет 750-850 кал/см² при полном пасмурном – около 750 кал/см².

Альбёдо незамеренной поверхности ледников связано со структурой теплового баланса поверхности ледника, в котором различаются два главных составляющих – радиационная и турбулентная. В высоких широтных зонах ледников турбулентный поток тепла близок к нулю, здесь за счет солнечной радиации происходит не только таяние, но и испарение. На низко расположенных ледниках, напротив, турбулентный теплообмен велик, и в таких условиях таяние достигает 60-70 мм/сут в среднем за июль-август. При подобной структуре теплового баланса поверхность ледника гладкая, сильно углекислая, с минеральной пылью на поверхности. Ее альбёдо составляет 20-22%, осадки, выпадающие летом преимущественно в жидкости, также способствуют небольшой отражательной способности поверхности.

При уменьшении роли турбулентных потоков в процессе таяния начинает формироваться пористая, белая радиационная кора таяния. Она более сухая и чистая, чем гладкая поверхность льда, потому что талые воды фильтруются, и минеральные частицы протекают с поверхности иней. Альбёдо ледников возрастает, доходя на их языках до 30-40%, а в фирновых областях – до 50-60%.

Существенное влияние на таяние ледников оказывает летние снегопады и временные ледяные покровы. В северных и западных районах гор Средней Азии, где летние осадки связаны с прохождением атмосферных фронтов, толщина периодически возникающего снежного покрова на языках ледников может достигать 20 см. Во внутренних районах средиземноморских гор значительная доля твердых летних осадков обнаружена своим происхождением конвенционной облачности, толщина летнего снежного покрова составляет около 5 см. В областях питания ледников, примыкающих к фирновой линии, летних снежных покровов обычно в 2-3 раза толще, чем на ледниковых языках. Вследствие влияния летних снежных покровов суммарное за июль-август поверхности таяние вблизи фирновой линии ледников составляет лишь часть возможного таяния, обусловливаемого всей суммарной поступающей теплоты, причем это часть температура в различных районах Средней Азии. Она составляет около 60% в бассейнах р. Иртыш и Сырдария, 60-70% в бассейнах рек северных склонов Джунгарского Алатау, Киргизского хребта и Терской Алатау, 80-85% в бассейнах рек Западного Памира, 85-90% в бассейне р. Кызыл-Суу, 90-95% в бассейнах рек Талас, Ассис, Арык и Чирчик, 95-100% в бассейне р. Зеравшан и на Восточном Памире.

Расчетные закономерности распределения суммарной радиации, альбёдо поверхности и летних снегопадов в нивально-кладовой зоне Средней Азии выделены в основные статьи с использованием таяния на средневзвешенной высоте языков ледников с фирменной линией при уменьшении альбёдо естественной поверхности путем ее заполнения до 20%. В расчете учитывались также турбулентные потоки и эффективное излучение. Результаты расчета представлены в табл. 4.3.

В основу таблицы положены материалы наблюдений И.М. Лебедевой (1970, 1971, 1975) и некоторых других авторов в 50 пунктах на горных ледниках Средней Азии. В результате изучения этих данных были установлены связи суммарной солнечной радиации с высотой местности, облачностью, распределением температуры воздуха и влажности в глинистой зоне Средней Азии, закономерности в распределении таяния, связь турбулентного потока тепла и эффективности таяния ледников.
Глава 3. Использование ледников как источников воды

| № п/п | Волособые бассейны | Участок | Дост. высота, м | Слон стока с ледника | D₁ | Приращ. стока
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Река Муксу</td>
<td>а</td>
<td>4520</td>
<td>61</td>
<td>0.97</td>
<td>59 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>б</td>
<td>4660</td>
<td>11 54</td>
<td>0.95</td>
<td>51 360</td>
</tr>
<tr>
<td>13</td>
<td>Ледник Федченко</td>
<td>а</td>
<td>4195</td>
<td>65</td>
<td>0.95</td>
<td>62 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>б</td>
<td>4660</td>
<td>11 55</td>
<td>0.95</td>
<td>43 400</td>
</tr>
<tr>
<td>16</td>
<td>Река Вач, Ягулек,</td>
<td>а</td>
<td>4150</td>
<td>50 50</td>
<td>0.85</td>
<td>42 20</td>
</tr>
<tr>
<td></td>
<td>Пандж</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Река Танык, Мургаб,</td>
<td>а</td>
<td>4700</td>
<td>41 60</td>
<td>0.97</td>
<td>58 41</td>
</tr>
<tr>
<td></td>
<td>Гунт, Шахдара</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Озеро Каракуль</td>
<td>а</td>
<td>4805</td>
<td>70</td>
<td>0.97</td>
<td>68 126</td>
</tr>
<tr>
<td></td>
<td></td>
<td>б</td>
<td>5140</td>
<td>4 55</td>
<td>0.95</td>
<td>52 1200</td>
</tr>
<tr>
<td>19</td>
<td>Река Марканды</td>
<td>а</td>
<td>4345</td>
<td>35 58</td>
<td>0.95</td>
<td>55 57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>б</td>
<td>4790</td>
<td>7 45</td>
<td>0.95</td>
<td>43 510</td>
</tr>
<tr>
<td>20</td>
<td>Правые притоки реки</td>
<td>а</td>
<td>4060</td>
<td>23 48</td>
<td>0.60</td>
<td>29 26</td>
</tr>
<tr>
<td></td>
<td>Сары-Джаз</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>б</td>
<td>4250</td>
<td>4 41</td>
<td>0.60</td>
<td>25 520</td>
</tr>
</tbody>
</table>

1 — участок ледника на средневзвешенной высоте ледникового языка; 2 — участок ледника на высоте фирновой линии.

1 — при естественном таянии, м³/сут; 2 — при искусственном воздействии, м³/сут.

D₁ — коэффициент, учитывающий сокращение таяния льда и фирны из-за образования летних снежных покровов.

Таблица 4.3

Влияние на ледниковый сток в июле-августе искусственного уменьшения альбедо поверхности ледника до 20%

| № п/п | Волособые бассейны | Участок | Дост. высота, м | Слон стока с ледника | D₁ | Приращ. стока
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Северный склон</td>
<td>а</td>
<td>3460</td>
<td>23 38</td>
<td>0.70</td>
<td>28 22</td>
</tr>
<tr>
<td></td>
<td>Джунгарского Алтая</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>б</td>
<td>3570</td>
<td>10 36</td>
<td>0.70</td>
<td>25 150</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Северный склон</td>
<td>а</td>
<td>3750</td>
<td>26 43</td>
<td>0.70</td>
<td>30 15</td>
</tr>
<tr>
<td></td>
<td>Заилийского Алтая</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>б</td>
<td>3880</td>
<td>13 39</td>
<td>0.60</td>
<td>22 70</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Северный склон</td>
<td>а</td>
<td>3760</td>
<td>22 50</td>
<td>0.70</td>
<td>35 9</td>
</tr>
<tr>
<td></td>
<td>Киргизского хребта</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>б</td>
<td>3900</td>
<td>13 40</td>
<td>0.60</td>
<td>24 92</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Северный склон</td>
<td>а</td>
<td>3650</td>
<td>36 52</td>
<td>0.80</td>
<td>42 16</td>
</tr>
<tr>
<td></td>
<td>Терской Алтая</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>б</td>
<td>3850</td>
<td>14 44</td>
<td>0.60</td>
<td>33 130</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Реки Талас и Асса</td>
<td>а</td>
<td>3650</td>
<td>37 51</td>
<td>0.95</td>
<td>48 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Реки Арысь и Чирчик</td>
<td>а</td>
<td>3530</td>
<td>45 51</td>
<td>0.95</td>
<td>48 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Реки горного</td>
<td>а</td>
<td>3975</td>
<td>37 48</td>
<td>0.90</td>
<td>43 13</td>
</tr>
<tr>
<td></td>
<td>обрамления Ферганы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>б</td>
<td>4175</td>
<td>17 53</td>
<td>0.85</td>
<td>40 140</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Река Сок</td>
<td>а</td>
<td>3530</td>
<td>54 64</td>
<td>1.0</td>
<td>64 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Река Нарын выше</td>
<td>а</td>
<td>4040</td>
<td>19 42</td>
<td>0.60</td>
<td>25 32</td>
</tr>
<tr>
<td></td>
<td>Токtogульской ГЭС</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>б</td>
<td>4050</td>
<td>8 42</td>
<td>0.60</td>
<td>25 210</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Река Зарахань</td>
<td>а</td>
<td>3850</td>
<td>49 59</td>
<td>1.0</td>
<td>59 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Река Кызыл-Су</td>
<td>а</td>
<td>4220</td>
<td>32 48</td>
<td>0.90</td>
<td>43 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>б</td>
<td>4380</td>
<td>12 40</td>
<td>0.85</td>
<td>34 180</td>
<td></td>
</tr>
</tbody>
</table>

* — при естественном таянии, м³/сут; 2 — при искусственном воздействии, м³/сут.

Данные табл. 4.3 говорят о весьма ограниченных возможностях дополнительного увеличения таяния на ледниковых языках и, наоборот, больших потенциальных возможностях уменьшения таяния в фирновых областях среднезначительных ледников. Согласно этой табли-
Глава 3. Использование ледников как источников воды

соответствуют средним для Средней Азии условиям — облачности 4,5 балла и сумме летних осадков (за июнь—сентябрь) 200 мм. Каждому дополнительному баллу облачности соответствуют изменения температуры на 10°: при большей облачности — увеличение, при меньшей — уменьшение. Каждые 100 мм летних осадков соответствуют изменению дополнительного таяния на 10% в областях питания и на 3% — в области абляции; дополнительное таяние возрастает при меньших осадках и уменьшается — при больших.

Полученные в результате расчета суммарная величина дополнительного стока с гор Средней Азии и Казахстана, поступающая на территорию СНГ (исключая сток в Котловину э. Каракуль и на территорию Китая), равна 6,5 км³. Этот объем стока соответствует приблизительно 12—15% современного расхода воды на орошение, т.е. он удовлетворяет 20% потребностей в ней хлопка. В жаркие и засушливые годы потенциал дополнительного таяния возрастает приблизительно до 8—8,5 км³.

Однако очевидна серьезность сложного зачернения всех ледников и сохранения запасов на протяжении всего сезона абляции, как это предусмотрено в расчете. Из приведенных цифр следует, что даже величины в 1—2 км³ (2—5% расхода воды на орошение и около 1% естественного стока) малорасшириями, так как потребуют запасания примерно 2000—3500 км² ледников (прилипшийный эффект увеличения таяния равен 50 ц/см², или 0,5 млн м³ воды с 1 км² ледников).

Итак, проблема использования ледников в качестве ресурсов пресных вод в принципе разрешима, но она требует ответа на вопрос: а не приведет ли усиление использования ледниковых вод к нарушению естественного баланса массы ледников, их уменьшению и исчезновению? Чтобы ответить на этот важнейший вопрос, требуется специальные исследования, но пока можно сказать, что ограниченное воздействие на таяние ледников, вероятно, не приведет к их уменьшению по двум причинам.

Во-первых, опыт показывает, что в случае внешнего уменьшения массы льда (например, при вулканическом извержении) ледник в ближайшее время стремится привести свои размеры в соответствие с современным климатом. Однако в эпоху преимущественного убывания отделения, накапливайшейся массы снега может недоставать для приобретения прежних размеров ледников. Во-вторых, необходимость искусственного увеличения таяния ледников не будет постоянной, а возникает лишь время от времени, особенно в засушливые годы. Вместе с тем следует подчеркнуть, что искусственные воздействия на снег и лед должны быть комплексными, как уже отмечено выше. В частности, заполнение сезонного снежного покрова в высокогорье, хотя и не изменяет суммарного летнего стока, сместит часть его со второй половины лета на первую, что в некоторых случаях бывает крайне необходимо.

Часть 4. Снег и лед в жизни людей

це, для усиления таяния ледников путем искусственного запления их поверхности наиболее благоприятны по климатическим условиям ледники на Центральном и Восточном Памире. Компактность отложения в этих районах, преобладание в них средних и крупных ледников делают их особенно удобными для массовых воздействий на режим ледников с воздуха.

Каковы же потенциальные размеры увеличения стока в Средней Азии, вызванного заплениением ледников? Для ответа на этот вопрос была выполнена оценка среднего многолетнего естественного стока с учетом зависимости водоотдачи из фиолетовой области от типов ледообразования. Расчет сделан отдельно для областей аблиции, покрытых мерзлыми отложениями, открытых областей аблиции и областей питания ледников. Для областей аблиции, занятых снеговой мореной, таяние рассчитано для средней высоты этой области и в каждом бассейне по формулам: А = (t - 9,5)², где t — средняя температура лета (июнь—август) (Краснов, Ходаков, 1966). Полученная величина приложена к площади под снеговой мореной в каждом бассейне и уменьшена на коэффициент 0,5. Для открытых областей аблиции таяние в каждом бассейне рассчитано по той же кубической формуле для средневзвешенной высоты ледниковых языков и пересечено на площадь открытой области аблиции.

Для области питания выделены три зоны: бесточная, холодная со стоком, теплая со стоком, к последней относится и зона питания наложенным льдом. Высоты границ трех выделенных зон соответствуют соотношению между таянием и твердыми осадками, равными 0,1 и 0,5. Таяние снова рассчитывалось по кубической формуле; осадки принимались равными осадкам на средней высоте границы питания, рассчитанным по температурам лета, приведенным к этой высоте. Таяние учитывалось для средней высоты каждой из зон, уменьшалось на ориентировочную площадь зон и на поправочный коэффициент, учитывающий внутреннее таяние (он равен 0,25 в холодной зоне и 0,75 — в теплой). Сток из бесточной зоны приравнивался к нулю.

Полученные таким образом величины вводились в расчет потенциального дополнительного стока, полученного в результате искусственного запления всей площади ледников. На этом этапе расчета приняты такие допущения: 1) в зонах сплошной мореной и в холодной бесточной зоне дополнительного таяния не будет; 2) дополнительное таяние в области аблиции на основе полевых опытов принято равным 25% естественного; 3) в теплой фиолетовой зоне запление изменяет альбэдо от 70 до 40% и увеличивает таяние вдвое, причем все избыточное таяние пойдет в сток; 4) в холодной фиолетовой зоне таяние изменяется вдвое ведущее изменение альбэдо с 80 до 40%, но половина полученной вновь воды замерзает, поэтому здесь также предусмотрено двойное увеличение таяния; 5) расчеты по кубической формуле
Часть 4. Снег и лед в жизни людей

По-видимому, подобные воздействия на один и те же ледники можно выполнять не чаще одного раза в 20–30 лет, так как на восстановление баланса массы ледников после резкого усиления их таяния уходит примерно такое время. Лишь один раз в течение этого периода в высокогорных районах Средней Азии наблюдаются многолетние зимы, когда твердых осадков выпадает вдвое–втрое больше обычного, как это имело место на Памиро-Алае в 1911, 1941 и 1969 гг.

Проблема сохранения ледников ресурсов в связи с искусственным уменьшением таяния ледников ставит задачу разработки способов увеличения твердых осадков, прежде всего в областях питания ледников. Увеличение осадков в высокогорье приведет к росту стока из пояса ниже ледниковой зоны, в то время как сток из ледниковой зоны, по-видимому, не изменится. Во внеледниковой части бассейна увеличение осадков вызовет возрастание стока прежде всего в середине и во второй половине лета, вследствие более длительного таяния снежников. Зато на поверхности ледников дополнительные осадки в виде снега приведут к задержке их таяния и, следовательно, к уменьшению стока в результате таяния льда, что также сократит сток в середине и во второй половине лета. В результате в год искусственного увеличения осадков сток из ледниковой зоны не возрастет, а увеличится многолетний запас льда и, следовательно, потенциал стока на следующие годы.

Моделью изложенной закономерности может быть сравнение стока из ледниковых бассейнов в годы относительно сухие и с повышенными притом среднемесячными осадками. Рассмотрим данные по бассейну ледника Центральный Тюкку в Занлийском Алатау (табл. 4.1). Площадь бассейна 19,3 км². Ледники занимают здесь 8,5 км², или 44% всей площади. Площадь водосбора по ледникам мало, Алтаты, стекающих с главного ледника, между постами Мышьянки и Сарысай – 15,9 км² (без ледников), между постами Сарысай и Алаты – 84,8 км² (без ледников). Второй водосбор характеризует среднегорную зону, третий – низкогорную.

Из табл. 4.1 следует, что изменчивость стока с ледниковых бассейнов гораздо ниже, чем изменчивость питающих их осадков: коэффициент вариации за 5 лет – 0,07 против 0,25. Изменчивость стока из среднегорной полосы за те же годы составляет 0,31, из низкогорной – 0,16. Хорошо видно, что если величина стока из среднегорной и низкогорной зон соответствует сумме выпавших осадков, то сток из ледникового бассейна с ними совсем не связан. Поэтому ледниковый сток не может быть увеличен в тот же год, когда произведено искусственное увеличение осадков.

Регулирование снегозапасов на ледниках может проводиться не только путем увеличения выпадающих осадков, но и посредством перераспределения снега с помощью снегозадерживающих щитов. Такие щиты увеличивают аккумуляцию снега, если за ними пологий склон, и уменьшают аккумуляцию на кругом склоне; возможны разные развороты щитов. Установка щитов на снежниках в Переводом хребте в штате Колорадо (Martinelli, 1973) привела к значительному увеличению аккумуляции снега, в результате чего сток увеличился на 50 м³ воды с каждого погонного метра щитов, что эквивалентно примерно 20 кг каменноугольной пыли при зачернении его поверхности снега.

Другой способ – обрушивать снежные кирпичи и лавины с окружающих склонов. Сброшенные массы снега на ледниках уменьшают сток, но вместе с тем и увеличивают ледниковые ресурсы, на свободных же от льда склонах это даст прямое увеличение стока. Общий эффект от сохранения летом снежного покрова на ледниковых языках равномерно сокращается таяния в бассейнах рек Средней Азии примерно на 6 км³, или на 30%.

В горах для регулирования таяния весьма эффективно сооружение водохранилищ в верховьях рек ледниково-снегового питания. Здесь в глубоких ущельях с прочными слабоводопроницаемыми горными породами или на месте бывших горных обвалов могут быть построены высокие плотины, за которыми в расширениях речных долин уже через несколько лет заполняются воды искусственных озер.

Дополнительную воду из нивально-глациального пояса гор может дать откачка воды или спуск мореных или ледниково-подпрудных
Часть 4. Снег и лед в жизни людей

озер. Объем их в Средней Азии (по самым грубым подсчетам) равен 0,5 км³. Успешный спуск подобных озер по туннелям и каналам выполнен в Швейцарии. Другой способ заключается в установке сифонной системы гибкого трубопровода из озера. Он применялся для спуска селезеночных озер в бассейне Малой Альминки (Казахстан).

Объем только одного озера Меридиана на Тянь-Шане равен 0,2 км³, т.е. соизмерим с потенциалом искусственного усиления таяния с 400 км² ледников. Возможен также поиск с помощью геофизических методов внутренних ледников, в том числе артиллерийскими, с последующим их спуском. Если даже их общий объем не превышает 0,1% массы ледников (Голубев, 1976), то это количество для всей Средней Азии дает 2,5 км³ воды.

Регулирование стока возможно также путем создания приледниковых наледей — наращивания их в осеннее-зимне-весенний период, когда ледниковый сток используется для сельского хозяйства, и соответствующего уменьшения стока за счет таяния наледей в вегетационный период. Наиболее перспективна для этой цели зона сезонных наледей на Памире, охватывающая южную часть Залайского хребта, северную и западную части хр. Муна, Северо- и Южно-Алакуртские хребты. Наледный сток там составляет около 2% общего стока нижнего стока. В районах с постоянными наледями консервирования части зимнего стока не приведет к существенному увеличению стока в годы с нормальным увлажнением, но в аномально жаркие годы произойдет увеличение стока, накопленного за ряд предыдущих лет, что позволит существенно повысить сток в естественном состоянии.

Приведенные расчеты показывают лишь качественный подход к проблеме искусственного воздействия на режим ледников, основанный на ограниченном числе полевых экспериментов. Однако существующие данные говорят о перспективности экспериментов влияния на ледники для усиления ледникового стока. Общий недостаток опытов по искусственному увеличению таяния ледников, проводимых до сих пор, заключается в их разрозненности во времени и пространстве, кратковременности и малых размерах опытных участков, не позволяющих судить о том, как поведет себя в аналогичных условиях весь ледник.

В целях дальнейшей разработки этой проблемы необходима организация широкого эксперимента полупроизводственных характеристик на одном или нескольких ледниках для отработки методики и аппаратуры, уточнения эффективности метода с экономической точки зрения, выяснения характера влияния таяния всего ледника на его естественную эволюцию и природные процессы в ледниковом бассейне (сели, оползни и т. п.). Очевидно, что подобный эксперимент должен сопровождаться широким комплексом специальных гляцио-гидрометеорологических наблюдений.

Глава 3. Использование ледников как источников воды

Опыт искусственного усиления таяния в крупном масштabe следует ставить одновременно на двух ледниках: один полностью подвергается запланированному, а другой тех же размеров в одинаковых условиях остается в качестве контрольного. При выборе пар ледников надо исходить из следующих условий: а) ледники должны находиться в бассейне, нуждающемся в получении дополнительного стока; б) в бассейне существует достаточно развитая сеть гидрометеорологических станций; в) опытные ледники хорошо доступны для наледных наблюдений и запланирован с воздуха.

Однако при определении целесообразности использования ледников как источников пресной воды никогда нельзя забывать о природно-организованном аспекте этой проблемы. Любой расчет по усилению таяния ледников должен исходить из условия их сохранения, так как ледники служат источниками значительной части стока с гор и естественным образом регулируют его, усиливая сток во вторую половину лета, когда потребность в воде особенно возрастает. Следует принять во внимание и огромное рекреационное значение ледников, поскольку ландшафт высокогорной зоны гор обладает наименьшей привлекательностью для человека и несет большую эмоциональную и познавательную нагрузку.

Использование полярных ледников

Пресную воду для засушливых прибрежных районов, вполне вероятно, скоро станут поставлять айсберги. Эти естественно возобновляемые ресурсы идеально приспособлены для прямого и экономически безвредного использования. В 70-х и 80-х годах разрабатывался ряд проектов по плаванию ледников в засушливые районы Австралии, Америки, Африки и даже Аравии.

Предлагается использовать айсберги длинной 1 км, шириной 0,5 км и толщиной 200-250 м. Мгновенно видно, что общий объем такого айсберга составляет 0,1 км³ или немного больше. Только одной такой ледяной массы достаточно для оставления на востоке долгого пути в Антарктиде к жарким побережьям. Как айсберг предстоит долгий. Местами «оттока» годных для транспортировки образуются, очевидно, районы и иль, и вернувшего ледника, далеко за пределы Путь айсберга, отдаляющиеся от южных ледников, более удобны и безопасны при перемещении, чем любые другие.

Для букировки айсбергов из антарктических вод на север требуется мощность, в несколько раз превышающая мощность самого
Глава 3. Использование ледников как источников воды

берег будут транспортировать 4-5 буксеров мощностью 10-15 тыс. л.с. каждый, и в сопровождении танкера водонизмешением 80 тыс. т. При этом значительную часть работы при перемещении айсбергов возьмут на себя холодные течения, а устойчивый ветер может обеспечить движение айсберга в воде со скоростью, достигающей 1,6% скорости ветра.

Рассчитанные оптимальные пути транспортировки айсбергов несколько различаются для айсбергов разных размеров. Путь от берегов Антарктиды до Австралии составляет около 9000 км, а до Южной Америки - около 7000 км. На пути решения проблемы стоит ряд технических трудностей, но некоторые из них, например, техника обвязки и крепления айсберга к буксирным, уже решены. При удачном «захвате» айсберга, благоприятных ветрах и течениях он может быть доставлен даже на берега Австралии менее чем за год, а на берега Австралии за несколько месяцев. Но значительную угрозу представляет таяние айсбергов в теплых водах - ведь вода в Индийском океане превышает 24 °C. Без надлежащей мер защиты айсберг небольших размеров, наверное, не выдержит 200-дневного путешествия. Поэтому важно сохранить айсберг от интенсивного таяния в пути, возможно, с помощью пластиковой капсулы. Но и в этом случае будет потеря часть не менее 20% его первоначальной массы.

Другая неприятность, поджидающая айсберг, - воздействие волн и эрозии его обрывающегося края. Особенно опасна длинноволная зыбь небольшой амплитуды, способная разломить айсберг, если ее длина很大 порядок большие толщины. Предстоит решить и задачи манипулирования и швартовки у берега, а также превращения массы льда в воду. Из-за огромной осадки ледяной горы, достигающей 150-200 м, ее нельзя будет подвести под берег ближе чем на 20-40 км. Следовательно, придется строить длинные трубопроводы или устроить несколько рейсы наливных судов.

По как же растопить без больших потерь стоящую на якоре в море ледяную глыбу? Можно применить взрывные методы или горючие машины, чтобы разделить огромный массив льда на крупные куски, затем их раздробить и измельчить для образования ледяной жижи и направить ее по трубопроводам. Можно разделить ледяную глыбу на плоские куски с помощью термической резки или взрывов по предварительно ослабленным сечениям. Видимо, будет применяться и естественное таяние в пришвартованном состоянии, с использованием перегородок, препятствующих смешению пресной и морской воды.

И, наконец, неплохо использовать термозеллектрический потенциал между холодным льдом и теплом окружающей среды. Скрытая теплота плавления льда в пути может давать электроэнергию, что повысит эффективность доставки айсберга в дальнние страны более чем вдвое. А на месте его швартовки у пункта назначения может
Глава 3. Использование ледников как источников воды

быть построена электростанция, работающая только на энергии, выделяемой плавящимся льдом.

Таким образом, перспективы использования айсбергов на благо человечества велики. В этой связи весьма важно усовершенствовать Антарктический договор, подтвердить принадлежность Антарктики всему миру, включить в него установки, и ввести принципы использования ее ресурсов и охраны окружающей среды.

Поиски новых источников энергии все больше обращают внимание ученых и инженеров на арктические ледниковые покровы. Предлагается проект использования огромных гидроэнергетических ресурсов талого стока на юге Гренландии с помощью системы ГЭС и передачи энергии в Европу и Америку по подводным кабелям. Области, дающие жидкий сток, лежат на Гренландском ледниковом шите ниже 2200–2300 м над ур. моря в прибрежной полосе шириной 150 км на западном побережье и 65 км на восточном. Для получения талого стока предлагается большая часть этой области общей площадью свыше 150 тыс. км². При естественном таянии за год здесь ставит 1,4–1,75 м, что в переводе на оцененный гидростатический 1000-метровый ледник обеспечивает энергетический потенциал 460–475 ГВт час.

Для получения электроэнергии рассматривается идея строительства у края ледников и на поверхности ледникового покрова системы водохранилищ, каждое площадью 150–250 км² и объемом 7–12 км³, в которые по специальной сети каналов собираются талые воды с 150 тыс. км² поверхности ледников (рис. 4.7). Рациональное создание около 15 гидроузлов мощностью около 5 ГВт каждый с водоемом около 10 тыс. км³. Наиболее благоприятные природные условия западной части Гренландии, где естественные резервуары позволяют ограничиться высотой плотин 20–50 м.

Предполагается прокладка кабеля для подключения к объединенным энергосистемам Западной Европы и США — Канады. Часть энергии может использоваться на месте для производства алюминия. Перспективным также метод доставки энергии в виде жидкого или газообразного водорода с использованием танкерно-наливных судов либо трубопроводов. Водород может быть получен электролизом с использованием местной электроэнергии при потерах её всего в 10%.

Осуществление этого грандиозного проекта вполне возможно в XXI в. Помимо инженерных разработок, он требует и серьёзного гляциологического анализа наиболее рационального размещения водохранилищ и ГЭС и возможностей усиления таяния ледникового покрова с точки зрения его современного и возможного в будущем баланса массы.

При разработке и осуществлении подобных проектов нельзя забывать о проблеме сохранения ледников, которая становится все острее в связи с усилением антропогенного воздействия на природу.
и глобальным потеплением, что может существенно, а на каком-то этапе и катастрофически, изменить режим ледников, вызвав их быструю деградацию и уничтожение. Будущие исследования должны, поэтому, совмещать задачи поиска методов активных воздействий на ледники с задачами изучения условий их сохранения.

ЛИТЕРАТУРА

Аксюк Г.А. Искусственное усиление таяния льда и снега горных ледников // Тр. Ин-та географии АН СССР. Т. 56. Работы Тр.-Шаньской геол.-геогр. станции. Вып. 3. 1953. С. 5–43.

Гроковальд М.Г. Покровные ледники континентальных шельфов // Наука, 1983. 216 с.

Часть 4. Снег и лед в жизни людей

Калелисн С.В. Общая гляциология. Л.: Учпедгиз, 1939. 327 с.

Кароль Б.П. Снежный покров. Л.: Гидрометеоиздат, 1949. 74 с.

Кренке А.Н., Панькова Л.Н. Использование высоты границы питания в гидромеетеорологических расчетах // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 34. 1978. С. 167–177.

Крылов М.М. Накопление снега в поживе для уменьшения засушливости // Вестн. мелиорации и гидротехники. 1940. № 1.

Литература

Троин М.В. Об устойчивости ледников // Изв. Весн. геогр. об-ва. 1948. № 5. С. 476–488.

Троин М.В. Очерки оледенения Алтая. М.: Геогр. изд-во, 1949. 376 с.

Шульгин А.М. Снежный покров и его использование в сельском хозяйстве. Л.: Гидрометеоиздат, 1962. 84 с.

Шульгин В.Л. К вопросу о целесообразности искусственного усиления таяния снега в горах Средней Азии // Метеорология и гидрология. 1963. № 5. С. 38–41.

Шумский П.А. Энергия оледенения и жизнь ледников. М.: Геогр. изд-во, 1947. 60 с.

Часть 4. Снег и лед в жизни людей

Шумский П.А., Михалев В.И., Цветков Д.Г. Колебания ледника Обручева (Полярный Урал), их механизм и причины. Кинематика поверхности // Материалы гляциол. исслед. Хроника, обсуждения. Вып. 20. 1972. С. 35–69.

АВТОРСКИЙ КОММЕНТАРИЙ

Содержание этого тома основано на многом численных публикациях, первые из которых увидели свет еще в середине 60-х годов и затем появились в печати в 70-х и 80-х годах. В основе первых двух частей книги лежат материалы моей докторской диссертации, защитенной в начале 1967 г. и вскоре опубликованной в Ленинграде («Снежный покров Земли и ледники». Л.: Гидрометеоздат, 1968. 479 с.).

Часть главы 2 основана на двух статьях, опубликованных в Докладах Академии наук:

Котляков В.М., Кренке А.Н., Глебова Л.Н., Зверкова Н.М., Чернова Л.П. Роль снежного покрова материков Южного полушария в перераспределении влаги между океанами // Докл. АН СССР. Т. 304. № 5. 1989. С. 1221–1225.

**Во второй части, помимо отрывков из книги «Снежный покров Земли и ледники», приведены материалы из следующих статей.

В главе 1:

В главе 2:

Авторский комментарий

В главе 3:

В третьей части приведены результаты моих исследований в сотрудстве с коллегами – гляциологами, выполненных в основном в 70-х – начале 80-х годах.

В основе главы 4 лежат следующие публикации:

Глава 2 базируется на материалах следующих статей:

Авторский комментарий

В третьей части приведены результаты моих исследований в сотрудстве с коллегами – гляциологами, выполненных в основном в 70-х – начале 80-х годах.

В основе главы 4 лежат следующие публикации:

Глава 2 базируется на материалах следующих статей:
Авторский комментарий

Во главе 2 использовано содержание раздела «Прогноз и польза» своей книги «Снег и лед в природе Земли» (М.: «Наука», 1986. С. 133–144), а также следующие статьи:

ПОСЛЕСЛОВИЕ

Перевернув последнюю страницу этой книги, и вот — свежее впечатление: с одной стороны, в ней все знакомо; за десятки лет работы в Институте географии это не раз слышано, читано, обсуждено на конференциях, семинарах, защищено диссертаций. А с другой — материал книги вновь и вновь, как то и должно быть, стал значительнее, глубоким. Не бери судить, в чем тут дело. Возможно, прошедшие годы поставили работы В.М. Котлякова в перспективу, высветив их истинный масштаб. А возможно, что здесь также сработал эффект отсева, когда все мелочи-однодневки, т.е. все то, что «забивает» жизнь (и список публикаций) любого активного ученого, удаляется отбросить, а наиболее важное и крупное — отобрать и объединить, так что «то» вдруг становится новым цехом, о возможности существования которого мы даже не догадывались...

Настоящая книга, как мы видим, состоит из четырех частей, из которых половина посвящена проблемам изучения снежного покрова. Не секрет, что снежный покров был первым крупным объектом исследований автора книги, исследований, которые он так долго считал своей узкой специальностью форменный покров Антарктиды, а затем и всего мира стали основными темами его кандидатской и докторской диссертаций. К проблемам снежного покрова, подчеркиваю, до сих пор лежит его душа, изучению снега он просто не может не отдавать предпочения. Естественно поэтому, что в первой двух частях книги, т.е. там, где характеризуется сезонный снежный покров (отдельно для равнинных и горных областей), снежный покров ледников (опять т.е. отдельно для периодов аккумуляции и абляции), климатическая роль снежного покрова и его место в географической оболочке планеты и глобальных моделях климата, профессионализм автора особенно очевиден.

В первой части, отдав должное предшественникам и коллегам — А.И. Воейкову, П.П. Кузьмину, Г.Д. Рихтеру, А.К. Юшкевич и другим, автор широково использует собственные данные, собраные в десятках экспедиций. Здесь разрабатывается ряд сложных проблем, таких как зональность процессов льдообразования, питание ледников за счет роста льда внутри снежно-фирновых толщ, климатическая роль снежного покрова и ледников, принятый глицимологического районирования Земли, охарактеризовано комплексное географическое понятие снежности. Повторяю: в этой части книги автор демонстрирует
Последнее

максимальный профессионализм, во всем здесь, начиная с описания методик и кончая принципиальными вопросами географического снеговедения, его работа представляет собой подлинный state-of-the-art в науке, ее вершину.

Для общей гляциологии чрезвычайно важны те разделы первой и второй частей, в которых рассматриваются проблемы хионсферы, снеговой и фириновой линий, границы питания на ледниках. Этим разделом отведено значительное место, что вполне оправдано. В высотном положении названных границ предметно выражается связь снеговедения с климатом и рельефом, а в интенсивности масштабов на них, в высотных градиентах изменения этой интенсивности — энергии снеговедения, включая способность ледников к выпахиванию ложа, изменению его рельефа.

Опираясь на материал двух первых частей, можно уже сейчас сделать выводы, способные пощечь целый ряд укоренившихся стереотипов, которые хоть и заведомо противоречат данным наблюдениям и теории, но тем не менее часто не сходят со страниц научных изданий. Одним из таких стереотипов, вершина начало еще от А.И. Воеводова, состоит в утверждении, что в районах с сухим климатом даже сильные походки не ведут к развитию покровного оледенения. При этом обычно ссылается на старые реконструкции плейстоценовых обстановок в северо-восточном Сибии, севере Аляски и западе Канадской Арктики, где, как считается, «климат был слишком сухим, чтобы сделать возможным появление покровных ледников». И хотя каждый день приносит доказательства обратного, хотя и «комплексное» моделирование древних оледенений с помощью компьютеров, и новые открытия исследований в районах Арктики, которые еще вчера считались бездневыми, свидетельствуют о повсеместности оледенения высших широт, инерция старых заблуждений сохраняется. Чтобы преодолеть ее, нужны очень сильные аргументы. И представить их может только специалист-гляциолог, который знает все о режиме снежного покрова, об аккумуляции и таянии снега в тех реальных термодинамических условиях, которые характерны для полярных областей Земли.

Другой стереотип касается связей между высотами «климатической» снеговой границы на склонах разной экспозиции и образованием ледниковых покровов. Судя по расчетам, а также наблюдениям в районах «мальных» оледенений, на подветренных склонах ледников и возвышенностях эта граница лежит выше, чем на наветренных. В этом факте, хорошо известном даже начинающим исследователям, палеогеографы часто видят серьезное препятствие для развития крупных ледниковых комплексов за барьерами краевых гор. Так, например, из известной карты высот снеговой границы, составленной Ю. Он и Г. Нарузом для позднего плейстоцена Восточной Азии, вроде бы следует, что за хребтами, образующими Тибет и другие межгорные плато, снеговая граница резко «затическая» вверх, вследствие чего сколько-нибудь значительное оледенение этих плато становилось невозможным. Но ведь такая ситуация характерна и для Гренландии, где есть береговые хребты и внутренние равнины, лежащие в ветровой тени гор, и она отнюдь не помешала возникновению в русле Гренландского ледникового шита. Не могла она помешать и покровному оледенению высоких плато Восточной Азии, о чем, среди прочего, говорят данные исследований геоморфологии Тибета и Тань-Шаня. В чем же дело? Очевидно, в том, что карта Он и Наруз — это всего лишь «омоложенный снимок» снеговой границы в самом начале эпохи походления, вслед за которым неизбежно развивался длительный процесс взаимодействий атмосферы и меняющейся поверхностью Земли в зоне этой границы.

Таким образом, наши «претензии» к карте Он и Наруз состоят в том, что она не учитывает результатов указанных выше взаимодействий. Между тем именно они приводили к накоплению снега и льда за гребнями хребтов, к охлаждению подветренных склонов, повышению их поверхности и, в итоге всего этого, к снижению здесь границы питания. Повторяю: приведенные в качестве примера карта дает картину снеговой границы для рубежа начала оледенения, когда она действительно принимает форму «окутки». Однако последующие процессы приводили к тому, что купол постепенно прибывался и приобретал форму наклонной плоскости, а затем и форму «капли». Такую «каплю» образовывала снеговая граница над плейстоценовым Тань-Шанем и Тибетом. Последнее было доказано геоморфологическими исследованиями Матт Isaac Kule, и мы не могли не согласиться с его доводами, когда работали над составлением Атласа сквозных-ледовых ресурсов мира.

Чрезвычайно богата мыслями и вторая половина книги, которую открывает раздел «Глобальные изменения и судьбы ледников». Этот материал опубликован довольно давно, однако проблематика раздела и сегодня абсолютно актуальна, особенно в теперешние дни, когда касается связей объема ледников с колебаниями уровня Мирового океана. Она ни на ютпе не утратила остроты, составляя ядро ряда текущих научных программ, в том числе американского проекта SeaRISE, осуществляющегося с 1997 года в Антарктике.

В самом начале третьей части обсуждаются перспективы, которые открывает перед гляциологией применение космических методов. Справедливости ради следует сказать, что В.М. Котляков был первым российским гляциологом, кто не только понял возможности этих методов, но и сделал ставку на их использование при составлении Атласа сквозных-ледовых ресурсов мира. Он же стал организатором и участником первых космических экспериментов, включая памятники, к которым были привлечены космонавты Ю.В. Романенко, Г.М. Гречко, В.В. Коваленко и А.С. Иванченков. Сейчас
ясно, что наблюдения из космоса не только расширили знания о распространении современных и древних ледников, но и открыли новые перспективы для исследований их режима, прогноза изменений оледенений. Среди прочего, космические методы позволили сделать прорыв в исследованиях природной гидрологии, т.е. в области, которая особенно близка моим собственным научным интересам. Именно они позволили обнаружить следы катастрофических трансгрессий и регрессий в Евразии, которые, как сейчас ясно, сопровождали декадацию плейстоценовых ледников Арктики.

Вернемся, однако, к основной теме третьей части — гляциологическим эффектам современных глобальных изменений, прежде всего — к следствиям потепления средних широт и горных областей, где сейчас расположены крупнейшие ледниковые комплексы. Известно, что при этом ледник имеет водосбор площадь, которая зависит от сельскохозяйственного использования крупнейших ледников. Не менее важно, что, как уже говорилось, эти изменения ледников напрямую связаны с уровнем Мирового океана, что позволяет оценить влияние на подъем этого уровня. Согласно данным, сделанным мии, вспышки активности в горных регионах, где расположены крупнейшие ледники, в периоды потепления средних широт и подъема уровня Мирового океана, достигали значительной степени активности. Эти изменения, с одной стороны, могут привести к увеличению рисков наводнений и оползней, а с другой — к уменьшению площади ледников и их глобального масштаба. Однако, эти изменения не могут быть оценены без учета других факторов, таких как изменение климата, особенности ландшафта и т.д.

Таким образом, прогноз оледенений и их последствий — дело чрезвычайно ответственное, за ним могут следовать политические решения и практические меры, требующие огромных расходов. К сожалению, данные о ледниковых образованиях и их поведении в период потепления и подъема уровня Мирового океана в виде наблюдений и оценок пока недостаточны. Необходимо проводить дополнительные исследования, чтобы лучше понять механизм изменения ледниковых образований в условиях глобальных изменений, чтобы лучше подготовиться к возможным последствиям и уменьшить риск негативных последствий. Основной целью таких исследований должно быть создание подробного картографирования ледниковых образований, оценка их влияния на окружающую среду и разработка стратегий адаптации и предотвращения негативных последствий.
и в научной литературе продолжают сосуществовать взаимосключающие модели оледенений.

Среди прочего, новые подходы должны означать гораздо более короткие и прямые пути от исходных данных к итоговым реконструкциям. Поскольку уже возникновение ледников требует определенного сочетания температуры воздуха и атмосферных осадков, и сами ледники — «образования meteorологические», эти пути будут вымощены данными палеометеорологии. Примеры таких новых подходов уже есть, это — компьютерные модели ледниковых покровов, созданные на базе палеотермографических кривых. Такие — «климатические» — модели М.Я. Вербых, И. Мареи, У. Бада и других еще далеки от совершенства, однако в них еще одна общая особенность, которая не может не обнаруживаться: модели демонстрируют хорошее соответствие результатов. С разной степенью точности авторы рисуют одну и ту же картину, причем мне приятно отметить, что последняя оказывается близкой к тем палеоэкструзиям, которые были сделаны, по данным геоморфологии, для Атласа снежно-ледовых ресурсов мира. Уже сегодня новый подход мог бы состоять в переходе от Господственной сейчас индукции к методу дедукции, причем бадвоксова типа модели могли бы сыграть роль исходных (интуитивных) посылок, оставаясь для геологических данных основных средств контроля.

Вернулись к книге в целом. Она глубоко научна и имеет под собой такую великолепную базу данных, как Атлас снежно-ледовых ресурсов мира. Но могу, вкладывая в этот, повторить: многие из эпизодов в книге проблем дискуссионны, но автор не избегает их обсуждения, не оскорбляя, не ищет компромиссов и «плажек» формулировок, а решительно становится на сторону тех взглядов, которые считает верными. И так везде — будто то прогноз изменений уровня океана в XXI в., или выбор между альтернативными реконструкциями древних оледенений.

Рассматриваемая книга будет не просто еще одним мемориальным изданием. Это — современное научное исследование, которое, в комплексе с другими томами данной серии, составит грандиозную в России (да и в мире!) монографию по гляциологии и смежным с ней дисциплинам. Монографию, которую так долго ждали гляциологии и физикогеографы...

M.Г. Гросвальд

ПЕРЕЧЕНЬ ИЛЛЮСТРАЦИЙ

Часть 1. Сезонный снежный покров Земли

1. c. 16. Характеристика погоды и развитие снежной толщи на южном склоне Эльбруса в районе Ледовой Базы зимой 1961/62 г.
2. c. 17. Фото: Общий вид фирнового поля на южном склоне Эльбруса.
3. c. 18. Снежная толща на фирновом поле Эльбруса зимой 1962/63 г.
4. c. 20. Схема баланса массы снега во временной схеме метели.
5. c. 25. Схема прохождения снежного покрова от снежных осадков до уровня снега на южном склоне Эльбруса.
7. c. 28. Снежная толща на фирновом поле Эльбруса зимой 1962/63 г. по снегомерам и снегомерам снежных осадков на южном склоне Эльбруса.
8. c. 34. Схема прохождения снежного покрова от снежных осадков до уровня снега на южном склоне Эльбруса.
9. c. 42. График связи орографической плотности и орографической плотности на южном склоне Эльбруса.
10. c. 46. Карта: Зимние потоки влаги на Северной Америке.
11. c. 47. Карта: Зимние потоки влаги на северной части Евразии.
12. c. 48. Карта: Годовая сумма твердых осадков в России и сопредельных странах.
13. c. 49. Карта: Годовая сумма твердых осадков в Северной Америке.
14. c. 52. Карта: Максимальные снегозапасы в России и сопредельных странах.
15. c. 53. Карта: Максимальные снегозапасы в Северной Америке.
16. c. 56. Связь дат схода снежного покрова с данными о его установления.
17. c. 60. Карта: Максимальные объемы снегопогонна на территории России.
18. c. 62. Карта: Возможные объемы снегозапасов в России и сопредельных странах.
19. c. 63. Карта: Годовая сумма твердых осадков в Северной Америке.
20. c. 66. Повторяемость малоснежных, многонежных, неустойчиво снежных и среднеположенных зим на территории Северной Америке.
21. c. 68. Фото: Снежный покров на склонах горы Фудзияма в дни цветения сакуры.
22. c. 69. Карта: Годовая сумма снегопогонна в Японии.
23. c. 71. Карта: Изменение снегопогонна от года к году на территории России.
24. c. 72. Средние месячные данные о распределении снежного покрова в Северном полушарии по наблюдениям со спутника в видимом диапазоне.

425
Перечень иллюстраций

25, с. 74. Карта: Соотношение снежного покрова и некоторых континентальных границ в Северном полушарии
26, с. 75. Карта: Глобиологическое районирование Северного полушария
27, с. 78. Карта: Соотношение снежного покрова и некоторых континентальных границ в Южной Америке
28, с. 79. Карта: Соотношение снежного покрова и некоторых континентальных границ в Антарктиде
29, с. 92–93. Фото: Снег и лед на земном шаре в феврале
30, с. 94–95. Карта: Снег и земной шар в январе
31, с. 98–99. Фото: Ледник в конце периода альпации. Слева плановый, справа перспективный снимок ледника МТУ на Поллярном Урале
32, с. 101. Переходение границы сезонного снежного покрова на северной и ледяной поверхности в районе ледника Пастерс (Альпы) летом 1955 г.
33, с. 103. Различия в высотном положении снежной и снеговой линий в ряде регионов Северной Евразии в зависимости от широты и степени континентальности климата

Часть 2. Снежный покров на ледниках

1, с. 126. Схема линий тока, осадков и распределения снежного покрова через горный массив
2, с. 131. Фото: Мощные отложения изморози в районе одного из рудников Кольского полуострова
3, с. 137. Характер связи между выпадающими осадками и суммой отрицательных среднемесячных температур воздуха
4, с. 140. Зависимость таких величин от скорости ветра на высоте 1–2 м
5, с. 142. Повторяемость метелей при разных температурах воздуха
6, с. 145. Диаграмма гранулеметрического состава снега
7, с. 155. Качественные схемы перепадов снега ветром на Гренландском ледниковом покрове при переплавлении циклопоированного ветром ледникового щита, резким подъеме циклопа и завихрении их недалеко от ледораздела и господствовании стиховетров
8, с. 157. Характер отложения снежника в зонах затишья около пребывания при разном наклоне поверхности по отношению к ветру
9, с. 158. Распределение снега на южном склоне Эльбруса за время метелей в декабре 1961 г. и в марте–апреле 1962 г.
10, с. 160. Ход снегоотложения на участках разного типа
11, с. 161. Снегоотложение на ледниках южного склона Эльбруса
12, с. 163. Фото: Вид Эльбруса с запада
13, с. 166. Фото: Общий вид ледника туркестанского типа на Памире
14, с. 173. Изменение составляющих радиационного и теплового баланса с широтой и абсолютной высотой на широтах 40–45° на ледниках Среднего полушария
15, с. 179. Радиационный баланс на южном склоне Эльбруса за день при разных типах погоды с мая по сентябрь
16, с. 181. Условия погоды на южном склоне Эльбруса в период альпации 1962 г.
17, с. 183. Изменение средних сухоточных величин альбего на южном склоне Эльбруса в периоды альпации 1962 и 1963 гг.
Перечень иллюстраций

Часть 3. Глобальные изменения и судьба ледников

1. с. 264. Схема бассейна ледника Бивачного, составленная на основе дейсторийной
реконструкции геологических снимков 1973 г.
2. с. 266. Структура генезиса-воздушно-космической службы наблюдений
за снегом и льдом, соотношение элементов службы с существующей
программой наблюдений за колебаниями ледников
3. с. 271. Изменения структуры поверхности в среднем течении ледника
Бивачного, выявленные по аэрогеологическим материалам разных
лет
4. с. 273. Фото: Среднее течение ледника Бивачного в середине июля
1976 г.
5. с. 274. Схема определения долины р. Гандо по наблюдениям в 1948 г. и
результатам дешифрирования космических снимков 1973 г.
6. с. 276. Схема бассейна ледника Русского географического общества, составленная
pо космическим снимкам 1973 г.
7. с. 278. Подвиги на ледниках Малья Саукдара, Дженкина и Вали в
1972-1977 гг.
8. с. 282. Карта: Современное определение Каракумы: морфологические
типы ледников и пульсирующие ледники
9. с. 285. Карта: Южное Пантагоеское ледниковое плато
11. с. 287. Положение фронта ледника Морено в 1899-1978 гг.
12. с. 288. Французская часть озера Братенг
13. с. 292. Колебание уровня воды, на котором измерялся баланс массы с
1945/46 по 1980/81 год
14. с. 193. Основные термины и определения при измерении баланса массы на
ледниках
15. с. 296. Изменение среднего удельного годового баланса массы с
абсолютной высотой 1000 м на площади Северной Америки
16. с. 298. Отклонения от среднего уделного годового баланса массы
ледников Северной Америки
17. с. 300. Результаты синхронных наземных наблюдений за балансом массы
и колебаниями концов на изолированных ледниках в разных районах
бывшего СССР
18. с. 301. Нарастающие колебания ледниковых языков с конца прошлого века
19. с. 302. Упрощенные графики изменений температуры воздуха, осадков,
аккумуляции, абляции и баланса массы на всей площади ледника
жимой и летом
20. с. 304. Связь выпадающих осадков с температурой воздуха
21. с. 304. Годовой ход аккумуляции, абляции и баланса массы для ледника с
летним максимумом абляции
22. с. 306. Продольный и поперечные профили ледника Меджевского в разные
годы перед подвижкой и во время подвижки 1973 г.
23. с. 307. Диаграммы изменения площади, высоты поверхности и скорости
движения льда пульсирующей части ледника Меджевского по
данным наземных наблюдений и аэрофотосъемке
24. с. 310-311. Ледник Меджевский: границы пульсирующей части до (1972) и
после (1974) подвижки 1973 г., а также компьютерные изображения
некоторых морфологических характеристик

428
Перечень иллюстраций

Часть 4. Снег и лед в жизни людей

1. с. 364. Основы гидрологии и гидрографии
2. с. 365. Основы гидрологии
3. с. 388. Карта: Возможное намораживание льда за зиму на территории Северной Евразии и Северной Америки
4. с. 392. Современное оледенение Средней Азии и юго-восточного Казахстана
5. с. 393. Влияние землетрясений на дополнительное таяние льда
6. с. 406. Карта: Оптимальные маршруты транспортировки айсбергов в Антарктике
7. с. 408. Карта: Энергоснабжение айсбергов в юго-западной Гренландии

LIST OF ILLUSTRATION

Part 1. Seasonal Snow Cover of the Earth

1. p. 16. Characteristics of weather and development of snow thickness on the southern slope of Elbrus in 1961/62
2. p. 17. Photo: General view of firm field on the southern slope of Elbrus
3. p. 18. Snow accumulation on the firm field of Elbrus in winter 1962/63
4. p. 20. Scheme of snow mass balance during total snow drifting
5. p. 25. Relationship between sums of precipitation over natural periods of snow accumulation in winter 1961/62 according to precipitation gauge and snow observations on firm field of the southern slope of Elbrus
6. p. 26. Dependence of relationship of the precipitation amount on firm field H to the amount of precipitation in precipitation gauge X, and relationship of difference between precipitation on firm field and in precipitation gauge $(H-X)$ to precipitation on firm field H
7. p. 28. Comparison of precipitation gauge readings and amount of snow deposited on site of the Volkovskiy Glacier station (the Fedchenko Glacier)
8. p. 34. Settling of seasonal snow cover over a month
9. p. 42. Relationship of optical density and albedo logarithm received by measurements in field and corresponding optical densities of six helicopter images of the Abramov Glacier in Gissaro-Alay
10. p. 46. Map: Winter moisture flows over North America
11. p. 47. Map: Winter moisture flows over northern area of Eurasia
12. p. 48. Map: Annual sum of solid precipitation in Russia and adjacent countries
13. p. 49. Map: Annual sum of solid precipitation in North America
14. p. 52. Map: Maximum snow mass in North America
15. p. 53. Map: Maximum snow mass in Russia and adjacent countries
16. p. 56. Relationship between dates of snow cover loss and dates of its formation
17. p. 60. Map: Maximum volumes of snow transport on the territory of Russia and adjacent countries
18. p. 62. Map: Possible volumes of snow deposits near obstacles on the territory of Russia and adjacent countries
19. p. 63. Map: Snow driftings on the Russian plain
20. p. 66. Recurrence (expressed as a percentage) of winters with low, large, unstable, and average amount of snow on the territory of North Eurasia
21. p. 68. Photo: Snow cover on slopes of Fujiyama mountain when sakura is in blossom
22. p. 69. Dates of the earliest snow cover in Tokyo for some centuries
23. p. 71. Change of snow mass from year to year on the Russian plain
24. p. 72. Mean monthly data of snow cover distribution over Northern Hemisphere according to space observation in the visible band
25. p. 74. Map: Correlation of snow cover and some continental boundaries in the Northern Hemisphere
List of illustration

26. p. 75. Map: Glaciological zoning of the Northern Hemisphere
27. p. 78. Map: Correlation of snow cover and some continental boundaries in South America
28. p. 79. Map: Correlation of snow cover and some continental boundaries in Antarctica
29. p. 92–93. Maps: Snow and ice on the globe in February
30. p. 94–95. Maps: Snow and ice on the globe in August
31. p. 98–99. Maps: Glacier (Polar Ural) at the end of ablation season
32. p. 101. Displacement of seasonal snow line on rocky and glacier surfaces in the area of the Pasterze Glacier (the Alps) in summer 1935
33. p. 103. Differences in the altitudes of firm and snow lines in different regions of the Northern Hemisphere according to latitude and degree of climate controllability

Part 2. Snow Cover on Glaciers

1. p. 126. Scheme of flow lines, precipitation and distribution of snow cover over mountain massif
2. p. 131. Photo: Strong deposits of hoarfrost at the Kola peninsula
3. p. 137. Character of relationship between precipitation amounts and sum of negative average monthly values of air temperature
4. p. 140. Relationship of snow-blown discharge and wind velocity at the height of 1–2 m
5. p. 142. Frequency of snow drifting under different air temperatures
7. p. 155. Qualitative schemes of snow transport by wind on Greenland ice sheet while turning over the ice sheet by cyclonic winds, over sharp rise of cyclonic winds and their attenuation not far from ice divide, and over predominance of catabatic winds
8. p. 157. Character of snowfall deposits in calm zones near obstacles with different inclination of surface towards wind
9. p. 158. Distribution of snow on the southern slope of Elbrus during snow drifts in December 1961 and in March–April 1962
10. p. 160. Snow accumulation on areas of different types
11. p. 161. Snow accumulation on glaciers of the southern slope of Elbrus
12. p. 163. Photo: View of Elbrus from the west
13. p. 166. Photo: General view of turkestan-type glacier in the Pamirs
14. p. 173. Change of components of radiation and heat balance with latitude and altitude on glaciers in the Northern Hemisphere
15. p. 179. Radiation balance on the southern slope of Elbrus over a day under different types of weather in May–September
16. p. 181. Weather conditions on the southern slope of Elbrus in ablation period of 1962
17. p. 183. Change of average daily values of albedo on the southern slope of Elbrus in ablation periods of 1962 and 1963
18. p. 185. Change of seasonal snow line altitude at the Central Tuyukusu Glacier on Zailisky Alatau ridge in summer 1964
19. p. 186. Change of snow-and-ice thickness and of amount of precipitation on the lower firm field of Elbrus during the ablation period in 1962
20. p. 187. Change of snow-and-ice thickness and amount of precipitation on the lower firm field of Elbrus during the ablation period in 1963

List of illustration

22. p. 190. Photo: Penitents on the Akkait Glacier; the Eastern Pamirs, 5100 m, September 1971
23. p. 192. Daily alterations of heat balance on the Bakhchir Glacier; in August
24. p. 194. Maps: Snow and ice on the globe in August
25. p. 195. Photo: Ribbed surface of penitents on the Bakhchir Glacier; in August 1973
27. p. 198. Photo: Penitents on Aconcagua
28. p. 204. Accumulation and melting on the southern slope of Elbrus in 1961/62 balance year
29. p. 209. Relationship between a total melting and average summer air temperature
30. p. 215. Principle scheme of calculation of internal glacier accumulation
31. p. 220. Types of ice formation on the southern slope of Elbrus
32. p. 222. Scheme of zones of ice formation and section of firm-and-ice thickness on the Novaya Zemlya ice sheet
33. p. 223. Diagram of change of annual income in accumulation area of the southern slope of Elbrus
34. p. 236. Functional scheme of global glacio-nival system
35. p. 238. Map: Relative depth of relief dissection and geomorphological boundary between the Western and Eastern Pamirs
36. p. 239. Map: Degree of glaciation of Pamir-Aral
37. p. 240. Distribution of number and area of glaciers by dimensions and gradations in logarithmic scale by exposures, and by groups of morphological types in the Pamirs, Chassar-Aral, and in the Caucasus
38. p. 241. Adjustment diagrams of altitude and location, and correlation of accumulation and ablation areas of glaciers in the main basins of Pamir-Aral
39. p. 242. Altitudinal location of glaciers of different morphological types on slopes of different orientation in the basin of the Surkhab river on the southern slope of the Alay ridge
40. p. 245. Altitudinal location and average values of glacier coefficient on glaciers of different types in the basin of the Koksu river on the southern slope of the Alay ridge
41. p. 246. Map: Change of the main indications of regime of the Pamir-Aral glaciers from north-west to south-east
42. p. 247. Map: Components of water-ice balance in the accumulation areas of glaciers at Pamir-Aral

Part 3. Global Changes and Fate of Glaciers

1. p. 264. Scheme of the Bivakhny Glacier basin compiled on the basis of space images of 1973
2. p. 266. Structure of surface-air space service of observations over snow and ice, and correlation of the service elements with existing programme of glacier monitoring
3. p. 271. Changes of surface in the middle flow of the Bivakhny Glacier presented by aerial-space materials of different years
List of illustrations

4. p. 273. Photo: Middle part of the Bivachny Glacier in July 1976
5. p. 274. Scheme of glaciation of the Gando river valley in 1948, and according to the space images of 1973
6. p. 276. Scheme of the basin of the Russian Geographical Society Glacier compiled by space image of 1973
7. p. 278. Surges of the Maly Sankdara, Vali, and Dzerzhinsky glaciers in 1972–77
8. p. 282. Maps: Contemporary glaciation of Karakoram: morphological types of glaciers; surging glaciers
10. p. 286. Tearing away of a large iceberg from the O’Higgins Glacier in 1977–78
12. p. 288. Dynamics of the frontal part of the Bruggen Glacier
13. p. 292. Number of glaciers on which mass balance was measured from 1945/46 till 1980/81
14. p. 293. Some terms and explanations to methods of glacier mass balance calculations
15. p. 296. Change of annual mass balance with altitude on some glaciers of North America
17. p. 300. Results of ground observations over mass balance on selected glaciers in different regions of the former USSR
18. p. 301. Total changes of glacier fronts since the end of the XIX century
19. p. 302. Simplified graphs of changes of air temperature, precipitation, accumulation, ablation, and mass balance on the whole area of a glacier in winter and in summer
20. p. 304. Relationship between precipitation and air temperature
21. p. 306. Annual course of accumulation, ablation, and mass balance for a glacier with summer maximum of ablation
22. p. 306. Longitudinal and transverse profiles of the Medvezhya Glacier before its surge and during surge in 1973
23. p. 307. Range of changes of area, surface height, and ice velocity at surging part of the Medvezhya Glacier according to natural observations and aerophotography
25. p. 312. Spatial-temporal fields of surface dynamics at the Medvezhya Glacier
26. p. 315. Aerial images of the surging part of the Medvezhya Glacier during its surge in 1988-89
27. p. 316. Dynamics of the Medvezhya Glacier during its surge in 1988-89
28. p. 319. Scheme of the Kolka Glacier and its surroundings
29. p. 320. Photo: Surge of the Kolka Glacier in 1969/70
31. p. 322. Scheme of the outburst of the Kolka Glacier in September 2002
32. p. 323. Photo: Sequences of the last mudflow: «waves» of 150 m high on a slope
33. p. 324. Photo: Bedrock of the Kolka Glacier after the surge
34. p. 328. Increase of greenhouse gases content in the atmosphere according to ice core studies
35. p. 329. Multi-year course of annual values in 1900-80: anomalies of air temperature within latitudinal zone of 87.5–72.5° N; relationship of zonal processes duration to meridional ones, shares of advancing and stationary glaciers of Switzerland in their total amount

List of illustrations

36. p. 330. Cyclic changes of palaeotemperatures in the north-western Greenland over the past 800 years according to isotope-oxygen analysis of ice core from Camp-Century station
37. p. 332. Global changes of temperature over 1800-2050
38. p. 338. Longitudinal profile of «sea» ice sheet
39. p. 339. Stable and unstable response of «sea» ice sheet to changes of sea level with different longitudinal profiles of glacier bed
40. p. 341. Disastrous retreat of «sea» ice sheet
41. p. 344. Decrease of annual snow accumulation on the Tuyuktu Glacier in Zailiysky Alatau, Sary-Tor in the inner Tien Shan, and No.1 in the Chinese Tien Shan
42. p. 345. Contemporary trends of degradation runoff, and its forecasted values according to this trend calculated on the basis of measurements on the Tuyuktu, Sary-Tor and No.1 glaciers
43. p. 346. Degradation runoff according to calculation of mass balance of six Norwegian glaciers
44. p. 347. Trends of changes of mean winter and mean annual air temperature in high mountains of inner Tien Shan
45. p. 352. Normalized autocorrelation functions of parameters of external mass and energy exchange of the Dzhankuat Glacier in the Central Caucasus
46. p. 353. Changes of glacier-derived runoff due to degradation of the Dzhankuat Glacier in the Caucasus
47. p. 355. Balance curves received by measurements during one year show the whole possible range of changes of annual glacier mass balance values depending on altitude and position of seasonal snow and equilibrium lines

Part 4. Snow and Ice in Life of People

1. p. 364. Branches of glaciology and trends of glaciological studies
2. p. 365. Tree of glaciology
3. p. 388. Maps: Possibility of ice freezing over a winter on the territories of Northern Eurasia and North America
5. p. 393. Impact of glacier blackening upon additional ice melting
7. p. 408. Maps: Power resources of glacial water in south-western Greenland
ГЕОГРАФИЧЕСКИЙ УКАЗАТЕЛЬ

Абастумани 56
Абрамова, ледник 40, 42, 305
Австралия 233, 405–407
Австрйские Альпы 200, 329
Австрия, ледник 153
Азия 10, 45, 46, 51, 76, 86, 105, 171, 230, 265
Айсмитте, станция 155
Академия Наук, хребет 13, 150
Аккайталь, ледник 190, 195, 238
Аккемский ледник 150
Аконкагуа 198
Акель-Хейберг, остров 218
Актру, ледники 183, 184
Алайский хребет 13, 175, 238, 242, 245, 392
Алданское нагорье 50
Алжирский остров 65
Алтус-Ата 366
Алтай 6, 103, 105, 127, 131, 171, 175, 184, 202, 206, 226, 228, 229, 291, 297, 344, 384
Америка 44, 47
Амур, р. 76
Англэх, р. 106
Анды 103, 104, 188, 230
Антарктида 15, 105, 229, 406
Антарктикад 14, 79, 81, 87, 90, 91, 94, 110, 111, 132, 138, 142, 143, 147, 154–156, 171, 174, 188, 219

Географический указатель

Валдайская возвышенность 47
Вани, ледник 277, 278
Вар, р. 238
Вачхала, ледник 263
Варсоно, р. 40
Вахи, р. 237
Вашингтон, гора 70
Верхнекамский хребет 50
Витковский, ледник 25–28
Воркута 387
Восток, станция 155
Восточная Антарктида 334
Восточная Сибирь 51, 86, 100, 124, 171, 173, 188, 219
Восточно-Европейская равнина 59, 63
Восточные Альпы 83, 184
Восточный Кавказ 106, 107
Восточный Памир 150
Восточный Саян 150
Вратицки, о. 104
Выгоню 387
Высоцкие Татры 83, 136
Гайаское-эва 327
Гагаринский хребет 56
Гандо, ледник 273–275
Гано, р. 273, 274
Гармо, ледник 279
Гарно, пик 271, 276
Гарно, р. 263
Геналдон, р. 318, 320
Германия 64, 100
Гизельдон, р. 323
Гималая 76, 105, 131, 232, 301
Гиндукуш 237
Гиссаро-Айш 10, 40, 42, 237–249, 305
Главный Кавказский хребет 135
Гольфстрим 336, 337
Гукара, о. 154, 205, 228
Гуант, р. 238
Географический указатель

Шакегам, перевал 281
Шамхор, р. 86
Шиведа 289, 404
Швейцарские Альпы 129, 184
Швейцария 54, 70, 175, 176, 218, 291
Шилтуна, вулкан 135
Шокальский, ледник 228, 279
Шпицберген 218, 344
Шумского, ледник 291
Эзер, шельфовый ледник 405
Эйр, фьорд 286, 287
Южная Америка 77, 81, 104, 189, 230, 233, 265, 405, 407
Южная Георгия, о. 175
Южное Патагонское ледниковое плато 284–287
Южный океан 335
Южный полюс 327
Югурские Альпы 88
Якутия 45, 47, 132
Ян-Майен, о. 127
Япония 51, 69, 129
ИМЕННОЙ УКАЗАТЕЛЬ

Аверьянов В.Г.	110
Аксонов Г.А.	226, 229, 368, 391
Агаханян О.Е.	238
Агеев Ю.	301, 303
Адаменко В.Н.	177
Альман Х.	38, 39, 208, 225, 229, 291, 294, 368
Антропова У.И.	206
Аракова Х.	69
Баду Я.	307
Бажев А.Б.	213, 215, 222, 371
Бальсев Р.	128
Бар Д.	297
Беркасов Т.	154–156
Боль Ф.	156
Будько М.И.	108, 109, 333
Бут И.В.	90
Вангий В.Г.	67
Варданян Л.А.	183, 187
Великанов М.А.	127
Вертман Ё.	338
Веселовский К.С.	365
Висман Г.	281
Войнович А.И.	108, 365, 381
Войтовский К.Ф.	306, 372
Волошин А.И.	172, 178
Гаврилов М.К.	171, 173
Галлахов Н.Н.	65
Гарелек И.С.	40
Гернет Э.С.	89
Гладковский А.Ф.	373
Глебова М.Я.	100
Глен Дж.	372
Голубев Г.Н.	295, 371
Грецко Г.М.	265
Григорян С.С.	370
Гришин И.С.	57
Гроссвалд М.Г.	372, 373
Давидович Н.В.	223
Даньков В.	331
Дезнор А.	281
Денисов Ю.М.	39
Диренфурт Г.О.	281
Догушин Л.Д.	275, 306, 372
Достовиков Б.Н.	366
Дионисий А.К.	9, 15, 58, 127, 139–141, 144–146, 148, 149, 157, 156, 369
Дюрер М.	366
Егергер А.	105
Жуковский Н.Е.	365
Зарабов Р.Д.	188, 238
Зотиков И.А.	371
Зубков Н.Н.	365, 371
Иванченков М.С.	265
Ивонецко А.С.	63, 83
Калесник С.В.	89, 90, 96, 98, 99, 366, 367
Клейбельсберг Л.	131
Коваленко В.В.	265
Козин С.М.	155
Комолыш Э.Г.	69
Коновалов Д.М.	230
Копылов А.А.	148, 149
Коновалова Г.И.	280
Корженевский Н.Л.	366
Корнеев В.А.	325
Корейша М.М.	88
Королев В.И.	55
Костычев П.А.	381
Кренк А.Н.	40, 88, 98, 110, 171, 205, 206, 208, 209, 230, 370
Крюков М.	366
Крылов А.Н.	365
Крылов М.М.	386
Кузьмин П.П.	9, 16, 17, 61, 63, 147, 171, 368, 369
Кукла Дж.	108
Кун В.	184
Лафер Ф.	128–130
Лан Шэнь	36
Лебедева И.М.	36, 178, 188, 397
Лёва Ф.	131, 156
Линчукя N.	189, 229
Ломоносов М.В.	89, 365
Лопосс К.С.	167
Лосева И.А.	284
Любимова Л.С.	201
Майер М.	225, 227, 288, 292, 293, 295
Майо Л.	296
Макаров С.О.	365
Маккиннес Б.	307
Марков К.К.	198, 238
Маркух Г.И.	336
Матвеева А.С.	59
Мейсон К.	283
Мельник Д.М.	140, 141
Менгели Г.	135
Михайлова М.Б.	59
Мушкетов И.В.	366
Обручев В.А.	366
Осинова Г.Б.	275, 306
Осокин И.М.	56
Павлов А.П.	366
Пальку Л.Н.	227
Панчихин В.	103, 133
Подольский К.И.	366
Попов А.И.	366
Пост О.	228
Преображенский В.С.	86, 230
Ревскин В.С.	201
Рихтер Г.Д.	9, 55–57, 70, 108
Робин Г.	316, 348, 371
Романенко О.В.	265
Ротзей Ф.П.	319, 322
Руднева А.В.	59
Русин Н.П.	188
Рычков М.А.	365
Северский Н.В.	370
Станников К.В.	238
Сумион И.В.	370
Тимашев Е.В.	273–275
Толль Э.	366
Тольмар Г.	184
Тронов М.В.	88, 98–100, 130, 183, 187, 366, 367
Тушинский Г.К.	14, 94, 100, 102, 187, 366, 367
Урмбах А.	370
Флинт Р.	104, 133
Хемпи Р.	202, 203
Хугуны К.	301, 303
Хобе В.	154
Хаджаков В.Г.	39, 40, 88, 125, 137, 144, 201, 202, 205–210, 369, 370, 372
Чжеков О.П.	148, 149, 156
Шаныков Л.Н.	370
Швер Ц.А.	129
Шведов П.Ф.	366
Шуляков В.Л.	203, 391
Шурова Н.Е.	370
Штетт В.	132
Эммет Г.	294
Яковлев Ю.Я.	370
Контент

Введениение

Глава 1. Сезонный снежный покров Земли
- Снежные наблюдения в горах
- Измерение количества снежных осадков
- Расчет количества осадков по снежным наблюдениям
- Связь структуры снежных покровов и ледяных образований
- Сравнительный анализ снежных покровов в горах и равнинных
- Ледяные покровы
- Ледяные образования

Глава 2. Снежный покров на равнинных
- Формирование снежного покрова
- Ветровой перенос и испарение снега
- Колебания снега
- Перемещение воды между океанами через снежный покров

Глава 3. Снежный покров в горах
- Факторы снегонакопления в горах
- Сноходство и снежные линии
- Снежник как переходная стадия к леднику
- Существование ледников и хионосферы
- Снеговая и зимняя линии
- Связь снежной линии с климатом и рельефом

Глава 4. Глобальная климатическая роль снежного покрова и ледников
- Климатические оценки влияния снега и льда на климат
- Влияние снежного покрова и ледников в глобальных моделях климатов

Часть 2. Снежный покров на ледниках

Глава 1. Снежный покров на ледниках в период акумуляции
- Питание ледников атмосферными осадками
- Общеметеорологические факторы питания ледников
- Особенности снеготаяния на ледниках
- Роль метелей и лавин в питании ледников
- Механизм метелевого переноса на ледниках

Глава 2. Снежный покров на ледниках в период аблации
- Метеорологические условия, определяющие таяние
- Тепловой баланс таящего снега
- Изменение албезий поверхности и роль льных снегопадов
- Особенности таяния льда
- Таяние и абляция снежного покрова
- Связь таяния с температурой воздуха
- Льдозаборство внутри снежно-фирновой толщи
CONTENTS

Preface ... 9

Part 1. SEASONAL SNOW COVER OF THE EARTH

Chapter 1. Some methods of snow cover measurements 11
 Snow survey in mountains 11
 Measurement of solid precipitation 14
 Calculation of the precipitation amount by daily snow measurements .. 19
 Relationship between snowdrift transport and solid precipitation .. 29
 Some remarks to snow stake measurements 33
 Method of heat develop of snow-and-ice objects 38

Chapter 2. Snow cover on plains 44
 Formation of snow cover 44
 Wind transport and evaporation of snow 57
 Fluctuations of snowiness on plains 65
 Redistribution of moisture between oceans through snow cover on continents 73

Chapter 3. Seasonal snow cover in mountains 82
 Factors of snow accumulation in mountains 82
 Chionosphere and snow line 87
 Snow patch as a transitional stage to glacier 87
 Existence of glaciers and chionosphere 89
 Snow and firm lines ... 96
 Relationship of snow line with climate and relief 102

Chapter 4. Global climatic role of snow cover and glaciers 108
 Qualitative estimations of snow and ice impact upon climate .. 108
 Taking into account snow cover and glaciers in global models .. 111

References ... 114

Part 2. SNOW COVER ON GLACIERS

Chapter 1. Snow cover on glaciers during the accumulation period 123
 Nourishment of glaciers by atmospheric precipitation ... 124
 General climatic factors of glacier nourishment 127
 Peculiar features of snow accumulation on glaciers .. 130
 Role of snow drifting and avalanches in glacier nourishment ... 138
 Mechanism of snow drifting transport on glaciers 138
 Role of snow drifting in existence of mountain glacierization ... 149
 Role of avalanches in glacier nourishment 165

Chapter 2. Snow cover on glaciers during the ablation period 170
 Meteorological conditions determining melting 170
 Heat balance of melting snow 170
 Change of surface albedo, and role of summer snowfalls ... 181
 Special role of evaporation. Snow and ice penitents .. 187
 Melting and ablation of snow cover 199
 Relationship between melting and air temperature 205
 Ice formation within snow-and-firm thickness 210

Chapter 3. Snow and ice in landscape mantle of the Earth 225
 Glacier regime and energy of glacierization 225
 Glaciological zoning of the globe 228
 Glacio-nival systems .. 233
 Glacio-nival system of the Pamirs and Gissar-Alay 237

References ... 250

Part 3. GLOBAL CHANGES AND FATE OF GLACIERS

Chapter 1. Proceedings of space glaciology 259
 Possibilities of space glaciology 259
 Indication of surging glaciers of the Pamirs by space data ... 269
 Glaciological experiments at the «Salyut-6» orbital station ... 280
 Observations over Karakoram glaciers 280
 Observations over Southern Patagonian ice field 284
 Chapter 2. Fluctuations of glaciers 289
 Mass balance and fluctuations of glaciers 291
 Monitoring of the dynamics of unstable glaciers 306
 Conclusion from the catastrophe of Kolka Glacier 318
 Chapter 3. Glaciological forecast 327
 Future changes of the climate and glaciers 327
 Glacierization and ocean interactions 335
 Response of glaciarization to forthcoming changes of the climate .. 342
 Principles of glaciological forecast 349

References ... 357

Part 4. SNOW AND ICE IN LIFE OF PEOPLE

Chapter 1. Development of glaciological ideas in the USSR and Russia 363
 Main achievements of XX century 365
 Prospects of glaciology on the threshold of XXI century ... 373
 Chapter 2. Engineering glaciology and economic activity of people ... 379
 Chapter 3. Use of glaciers as a source of fresh water ... 390
 Artificial intensification of melting of mountain glaciers ... 390
 Use of polar glaciers ... 405

References ... 411

Author’s Commentary .. 415
Epilogue (M.C. Grosvald) ... 419
List of illustrations ... 431
Geographical index .. 436
Author index .. 442
Научное издание

Котляков Владимир Михайлович

Избранные сочинения в шести книгах

Книга 2

СНЕЖНЫЙ ПОКРОВ
И ЛЕДНИКИ ЗЕМЛИ

Утверждено к печати
Ученым советом Института географии РАН

Зав. редакцией И.Л. Петрова
Редактор Л.Г. Васютина

Набор и верстка выполнены автором
на компьютерной технике

Подписано к печати 06.04.2004
Формат 60 х 90 1/16. Гарнитура Таймс
Печать офсетная
Усл. печ. л. 28,0. Усл. кр.-отт. 112,0. Уч.-изд. л. 30,0
Тираж 600 экз. Тип. звк. 9978

Издательство "Наука"
117864, Москва, Профсоюзная ул., 90
E-mail: secret@naukaran.ru
Internet: www.naukaran.ru

ППП "Типография "Наука"
121099, Москва, Шубинский пер., 6