ЭКОЛОГИЯ И РАЦИОНАЛЬНОЕ ПРИРОДОПОЛЬЗОВАНИЕ
учебное пособие для студентов ВУЗов

Бишкек - 1997
МИНИСТЕРСТВО ОБРАЗОВАНИЯ, КУЛЬТУРЫ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

КЫРГЫЗСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ПЕРЕПОДГОТОВКИ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ КАДРОВ

Кубаев Б.Х.
Шакирбеков Д.Ш.
Самаков Р.С.
Осмоналиев А.О.
Шакирбекова Л.Д.

ЭКОЛОГИЯ И РАЦИОНАЛЬНОЕ ПРИРОДОПОЛЬЗОВАНИЕ

учебное пособие для студентов ВУЗов

Бишкек - 1997
Кубаев Б.Х., Шакирбеков Д.Ш., Осмоалиев А.О., Самаков Р.С., Шакирбекова Л.Д., Экология и рациональное природопользование - для студентов ВУЗов. Бишкек: КГНУ, 1997 - 190 с.

Учебное пособие написано на основе материалов лекций, прочитанных в Кыргызском Государственном Национальном Университете и Кыргызской Академии Туризма, в соответствии с программой курсов “Основы экологии” и “Экономика природопользования”. В нем рассматриваются предмет и задачи экономической науки, изложены основные проблемы взаимодействия человека и природы, вопросы рационального использования, современные экологические проблемы, медицинские, правовые, экономические и социально-политические аспекты экологии.

Пособие предназначено для студентов специальностей: гуманитарного, юридического, экономического, естественного, технического, сельскохозяйственного и других направлений, изучающих экологию и экономику природопользования.

Ответственные редакторы: канд. геогр. наук, доцент Кулматов Т.Н., канд. экон. наук, доцент Искаков И.И.

Рецензенты: доктор биол. наук, проф. Токтосунов А.Т., доктор экон. наук, проф. Атышев К.А.

© Кыргызский государственный национальный университет
Институт переподготовки и повышения квалификации кадров
1997 год.
Предисловие

Сохранение экологической безопасности на Земле и ее отдельных районах, является одной из самых насущных задач человечества, важность проблем экологической безопасности подчеркивается в Конституциях многих стран и нашей республики. В нем накладывается ряд конкретных обязанностей на органы управления всех рангов хозяйственных руководителей и всех граждан Кыргызской Республики. В частности, "в интересах настоящего и будущего поколений в Кыргызстане принимаются необходимые меры для сохранения экологической безопасности, охраны и научно-обоснованного, рационального использования земли и ее недр, водных ресурсов, растительного и животного мира, для сохранения в чистоте воздуха и воды, обеспечения воспроизводства природных богатств и улучшения окружающей человека среды".

Поэтому экологические проблемы в настоящее время волнуют каждого из нас. Особенно остро они встали в последние годы, когда нам стало доступной более достоверная информация о состоянии окружающей среды на территории бывшей СССР и в том числе Кыргызской Республики. Исходя из этого в настоящее время во всех высших учебных заведениях введены курсы "Основы экологии" и "Экономика природопользования". Согласно Государственному образовательному стандарту базового высшего образования Кыргызской Республики изучение этих курсов считается важными и необходимыми при подготовке высокооквалифицированных специалистов для различных отраслей народного хозяйства. Целью данных курсов является формирование у студентов представления о современном состоянии экологической науки, знания об экологических проблемах в мировом масштабе и ее отдельных районах и проводимые природоохранные мероприятия и многие другие аспекты взаимоотношения человеческого общества с окружающей средой. Так как современные экологические проблемы привлекают к себе повышенное внимание не только специалистов, но и самых широких слоев населения. Внедрение частной собственности на Земле и других природных ресурсов, способствовало установлению водораздела в отношении к природе как объекту экологических интересов граждан и здоровой, и благоприятной природной среды и экономических интересов в удовлетворении материальных потребностей общества. То
есть дальнейшее развитие многих отраслей народного хозяйства. Общественные достижения будут основываться и базироваться с решением тех или иных экологических проблем общества. В частности, в основе новых технологий, приемов и методов применяемых в промышленном производстве, сельском хозяйстве и на многих других лежат современные пути экологизации их. Таким образом, современная экологическая наука представляет собой не только научную базу охраны природы, но и также становится неотъемлемой частью технологических, сельскохозяйственных, медицинских, экономических, гуманитарных и других дисциплин.

Настоящее учебное пособие написано на основе прочитанных лекций КГНУ и КАТ, составленные по новой программе курса "Основы экологии" и "Экономика природопользования", с учетом новейших публикаций и изданий отечественных и зарубежных авторов. В данном учебном пособии авторами проводится единая сквозная идея экологической безопасности с продолжающейся многообразной деятельностью человека на современном этапе. Рассматриваются теоретические основы экологии; вопросы взаимоотношения организма с окружающей средой; общие закономерности развития и распространения организмов; потоки энергии и круговорот веществ в природе; уровень организации живых организмов в биосфере: человек и среда его обитания; проблемы рационального использования природных ресурсов: медицинские, экономические, правовые и социально-политические аспекты экологии; современные экологические проблемы в Кыргызстане и возможные пути их решения. В конце каждой темы для самоконтроля приведены контрольные вопросы и задачи. В приложении имеется краткий словарь терминов и понятий по экологии.
1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭКОЛОГИИ

1.1. Предмет и задачи экологии.

В последние годы как и во многих странах мира, так и в нашей республике слово "экология" приобрело особую популярность и стала обязательным термином людей, в особенности общественных деятелей и политиков, писателей и журналистов, экономистов и инженеров и многих других. То есть экологические проблемы стали излюбленной темой разговоров и обсуждений.

Что же такое экология? Это слово образовано от греческого "οἶκος" (oikos), что означает "дом" или "жилище" и "λόγος" (logos) - учение. Таким образом, дословно экология - это наука о доме. Только "дом" здесь понимается в очень широком смысле слова, как среда обитания в масштабе Земли.

Первоначально экология обозначала раздел биологической науки о взаимоотношениях между живыми организмами и средой их обитания. В настоящее время отмечается чрезвычайно разнообразная трактовка как самого термина, так и многочисленных производных от него (например, экологическое мышление, экологические проблемы, экологический кризис и др.). Таким образом широкое употребление термина объясняется резким усилением интереса к вопросам сохранения наиболее сложной "живой" части природы и самого человека.

С учетом разнообразных высказываний о содержании термина "экология" можно объединить в 4 основные группы определения: 1) экология это одна из фундаментальных разделов биологической науки, которая исследует взаимоотношения между организмами и средой; 2) экология это комплексная метанука, которая синтезирует все естественноисторические знания и выводы общественных наук о природе и взаимодействия природы и общества; 3) экология это особый общенчный подход к исследованию проблем взаимодействия организмов, биологических систем и среды (экологический подход); 4) экология это совокупность научных и практических проблем взаимодействия человека и природы (экологические проблемы).

С учетом вышеотмеченных предметом экологии является изучение совокупности или структуры связей между организмами и их окружающей средой. В современном виде экологическая наука имея новое содержание изучает взаимодействие и взаимосвязь человеческого общества с при-
родной средой и разрабатывает научные основы рационального природопользования. То есть, экология в настоящее время охватывает чрезвычайно широкий круг вопросов и тесно переплетается с целым рядом смежных наук, таким, как биология, геология, география, физика, химия, экономика, агрономия, социология и многие другие. Во второй половине XX столетия происходит своего рода как бы "экологизация" современной науки. Появился раздел экологии человека, или социальной экологии, которая изучает закономерности взаимодействия общества и окружающей среды. Вместе с тем возникали философские, социальные, экономические, этнические, медицинские и многие другие аспекты. Во многих ситуациях слово "экология" в повседневной жизни приобретает достаточно широкий и распространенный смысл. Например, встречаются даже такие словосочетания как "экология интеллекта", "экология культуры", "экология искусства". Смысл этих сочетаний это сохранение непреходящих ценностей в различных сферах жизни человека. Таким образом в настоящее время экология стала своеобразно универсальной, бурно развивающейся комплексной и системной наукой, которая имеет огромное практическое значение для всех жителей планеты. Иначе говоря, экологическая наука стала своеобразным конгломератом всех известных научных дисциплин современности. В целом в этой науке сформировалась новая точка зрения, новый ее предмет содержания - изучение совокупности природных и социальных явлений с точки зрения интересов живых организмов и растений.

Согласно вышеотмеченного предмета, экологическая наука имеет следующие основные задачи: а) исследование закономерностей организации жизни, в том числе в связи с антропогенными воздействиями на природной системе и биосферу в целом; б) создание научной основы рациональной эксплуатации биологических ресурсов; в) прогнозирование изменений природы под влиянием деятельности человека; г) управление процессами, протекающими в биосфере и сохранение среды обитания человека; д) разработка системы мероприятий, обеспечивающих минимум применения химических средств борьбы с вредными видами организмов; е) экологическая индикация загрязнения компонентов (воздух, вода, почва) природы; ж) восстановление нарушенных природных систем, в том числе рекультивации земель, восстановление пастбищ, плодородные истощенных
почв, продуктивность водоемов и др.; 3) сохранение (консервация) эталонных участков биосферы.

1.2. Теоретико-методологические основы экологии.

Методологической основой экологической науки служит закон материалистической диалектики о всеобщей взаимосвязи и взаимозависимости предметов и явлений в природе и обществе. Согласно этому закону ни одно явление в природе не может совершиться без того, чтобы не оказать влияние на множество других явлений и предметов. То есть каждое явление или предмет есть часть целого, именуемого природой.

Сведения о существующих в природе взаимосвязях накапливались в различных отраслях науки с давних пор, но широкие и глубокие обобщения появились лишь с развитием диалектико-материалистического представления о природе и обществе.

В частности, в книге "Диалектика природы" Ф. Энгельс писал: "Ведь в природе ничто не совершается обособленно. Каждое явление действует на другое, и наоборот". Важность в существующих в природе взаимосвязей Ф. Энгельс показывает в своем широко известном примере: "Людям, которые в Месопотамии, Греции, Малой Азии и в других местах выкорчевывали леса, чтобы получить таким путем пахотную землю, и не снялись, что они этим положили начало нынешнему запустению этих стран, лишив их, вместе с лесами, центров скопления и сохранения влаги. Когда альпийские итальянцы вырубали на южном склоне гор хвойные леса, так заботливо охраняемые на северном, они не предвидели, что этим подрывают корни высокогорного скотоводства в своей области; еще меньше они предвидели, что этим они на большую часть года оставят без воды свои горные источники". Подобные примеры наблюдаются и в настоящее время. В частности с усилением вырубки тропических лесов (селва) в долине Амазонки, что грозит опустыниванию этого района.

Существующие в природе конкретные взаимосвязи, природные комплексы и системы практически долго не были раскрыты естествознанием. Только в XIX веке благодаря значительному развитию производительных сил и огромным успехам естественных наук, в частности, об эволюционном пути развития живых организмов Ч. Дарвина, учение о "живых веществ" В. И. Вернадского и многих других сформировались теоретические основы экологической
науки. Таким образом в широком смысле слова теоретической основой экологии является характер взаимодействия общества и природы, которые возникли в процессе становления человека. Человеческое общество, появившееся на Земле, проводило последовательную деятельность по улучшению условий своего обитания. Создание и освоение источников энергии, земледелие, добыча полезных ископаемых в конце концов, по мере увеличения масштабов деятельности, оказывают существенное влияние на природу. Человек, благодаря своим интеллектуальным и физическим способностям смог стать в полном смысле слова хозяином планеты. Бурный рост народонаселения стал возможен не столько за счет физического совершенства человека и его изумительной приспособляемости, сколько за счет создания искусственной среды обитания со специально созданными, удобными для человека параметрами. Иначе говоря, человек стремясь создать блага, получить их как можно быстрее и дешевле, пренебрегает в первую очередь интересами окружающей среды. Пока масштабы таких дешевых (за счет природы) технологий малы - они не сказываются на условиях обитания человека. Однако, наступает такой момент, когда "вдруг" оказывается, что вода, воздух, почва настолько "отравлены", что и проживание человека становится невозможным. То есть современное человечество (общество) в своем взаимоотношении с природой подошло к тому порогу, когда требуется принятие решения "всем миром" с целью предотвращения глобальных экологических проблем.

1.3. История развития экологической науки.

Как и большинство наук, экология имеет длительную предысторию. Ее обособление представляет собой естественный этап роста научных знаний о природе. Выделявшееся из системы других естественных наук, экология и сейчас продолжает развиваться, обогащая свое содержание и расширяя задачи. Современная экология является теоретической основой рационального природопользования, ей принадлежит ведущая роль в разработке стратегии взаимоотношений природы и человеческого общества.

Накопление сведений об образе жизни, в зависимости от внешних условий, характера распределения животных и растений началось очень давно. В древнейших рукописях и сохранившихся памятниках египетской, китайской, индий-
ской, тибетской культуры есть описания способов обработки земель, вредные для земледелия организмы и др.

В трудах античных (греческих) философов (Аристотель, Геофраст Эрезийский) имеются первые попытки обобщения сведений об экологических факторах и взаимоотношениях живых организмов.

В средневековый интерес к изучению природы ослабевает в связи с феодальной разобщенностью, низким уровнем производства и самое главное господством богословия и схоластики. То есть познание природы и ее законы развития было заменено библейскими догмами. На органический мир широко распространялись религиозные взгляды. В частности, связь строения организмов с условиями природной среды толковались как воплощение воли бога. Поэтому в средневековье были лишь единичные научные труды экологического характера Разезы (850-923 годы), Авиценны (980-1037 годы), Марко Поло и Афасия Никитина (13-15 века).

Великие географические открытия в эпоху Возрождения, колониализации новых стран послужили определенным толчком в развитии экологии. В XV-XVII вв. развитию экологической науки определенный вклад внесли А.Цезальпин, Д.Рей, Ж.Турнефор, А.Реомюра, Л.Трамбле, С.П.Крашенников, И.И.Лепехин, П.С.Паллас, Ж.Бюффон. Впервые эволюционное учение в экологии предложено Ж.Б.Ламарком. Дальнейшее развитие экологического мышления в науке отражено в трудах А.Гумбольдта, А.Декандоль, К.Ф.Рулье и других.

Выдающимся английским ученым Ч.Дарвином в XIX веке было доказано, что "борьба за существование" в природе, под которой он понимал все формы противоречивых связей вида со средой, приводит к естественному отбору. То есть последняя является как бы движущим фактором эволюции.

В 1869 г. известный немецкий биолог Эрнест Геккель ввел в науку термин "экология". Он определял экологию как "общую науку об отношениях организмов окружающей среды".

В дальнейшем становлении экологической науки определенный вклад внести следующие зарубежные ученые: К.Мебиус, Ч.Адамс, В.Шелфорд, Ч.Элтон и русские ученые: Г.Ф.Морозов, В.Н.Сухачев, Л.Г.Раменский и другие.

В 1942 г. американским ученым Р.Линдeman разработаны основные методы расчета энергетического баланса экосистем. Развитие последнего привело к возрождению на
новой экологической основе учения о биосфере, принадлежащем крупнейшему ученому современности В.И. Вернадскому. Он в своих научных трудах определил новое содержание биосферы (сфера живых веществ) как глобальная экосистема, стабильность и функционирование которой основаны на экологических законах обеспечения баланса вещества и энергии.

Такой подход в дальнейшем позволило ученым работавшим по Международной биологической программе (МБП) выявить основные закономерности качественного и количественного распределения и воспроизводства органического вещества в интересах наиболее рационального использования их человеком. Таким образом, итоги работы ученых МБП с большой остротой поставили перед современным обществом задачу предотвращения возможных нарушений биологического равновесия в масштабах Земли, проблемы охраны и разумного использования природных ресурсов на основе экологических законов и положений.

1.4. Экология в системе естественных, гуманитарных, экономических, технических, сельскохозяйственных, медицинских и других наук.

В настоящее время экология представляет собой развителенную систему отраслей науки. Она прежде всего тесную связь имеет с биологическими и географическими науками. В частности, в рамках биологии традиционно экология имела следующие разделы: аутэкология (изучающий организм и его среду); синэкология (биологическое сообщество, экосистема и их среда); популяционная экология или денмозэкология (популяция и его среда); экология животных (образ жизни животных и значения факторов среды); экология растений (взаимозависимости и взаимодействия между растениями и средой). Между географией и экологией сформировались такие отрасли науки, как: геоэкология (изучающая основе экологических закономерностей географические процессы и явления); глобальная экология (взаимоотношения организмов и среды в масштабе географической оболочки); экология города или антропоэкология (взаимоотношения людей и окружающей среды в масштабе территории города).

В последние годы сформировались такие быстро растущие разделы экологии как: медицинская экология (изучающий в единый комплекс гигиену, токсикологию и экологию человека); промышленная экология (изучающий
воздействие промышленности на природу и наоборот); сельскохозяйственная экология (экологические особенности культурных растений и животных); химическая экология (исследующий совокупность химических связей в живой природе и химические взаимодействия, связанные с жизнью); экономика природопользования (изучающий вопросы экономической оценки природных ресурсов и такой же оценки ущербов от загрязнения среды); социальная экология (изучающий, взаимоотношения в системе "общество - природа -"), экология человека (изучающий общие законы взаимоотношения биосферы и человека). В связи с усиленными темпами и огромными масштабами загрязнения на различных районах Земли в системе науки экологии и охраны природы сформировались различные совокупные понятия экологических проблем. К ним относятся: экоразвитие (формы социально-экономического развития общества, учитывающая экологические ограничения на обогащение ресурсов среды жизни); экполитика (социально-экономическая политика, построенная на понимании выигрышей и недостатков, связанных с экологическим состоянием территории); экотехника (технические меры по охране восстановления и улучшения качества окружающей человека среды); экополис (городское население, спланированное с учетом комплекса экологических потребностей человека); экотехнология (технология, построенная по типу процессов, характерных для природы, иногда прямое их продолжение): экокультура (часть общемировой культуры, характеризуемое острым, глубоким и всеобщим осознанием насущной возможности экологических проблем в жизни и будущем развитии человечества).

В целом в современном виде экология из острой биологической науки превратилась в значительный цикл знания, взяв в себя соответствующие разделы вышепомеченных многочисленных наук. Возникают все новые и новые ветви и отрасли экологической науки. В настоящее время их число по данным профессора Н.Ф.Реймерса приближается к 50 наименованиям.

Вопросы и упражнения.

1. Назовите предметы и задачи экологии?
2. Что является теоретико-методологической основой экологии?
3. Охарактеризуйте историю развития и становления экологической науки?

4. Роль и место экологии в системе естественных, гуманитарных и других наук.

2. ОРГАНИЗМ И ОКРУЖАЮЩАЯ СРЕДА И ИХ ВЗАИМООТНОШЕНИЯ

2.1. Окружающая среда.

Окружающая среда - это природные тела и явления, с которыми организм находится в прямых или косвенных взаимоотношениях. К понятию "окружающая среда" включают в широком смысле слова социальные, природные и искусственно создаваемые физические, химические и биологические факторы, то есть все то, что прямо или косвенно воздействует на жизнь и деятельность человека. С экологической точки зрения окружающей средой называют "все, что окружает организмы и прямо или косвенно влияет на их состояние, развитие, возможности выживания и размножения". Иначе говоря, окружающая среда действует на организмы посредством физических, химических и биологических аспектов. То есть организмы полностью зависят от окружающей среды: во-первых, организмы получают пищу из этой среды, а во-вторых, распространение растений и животных ограничивается их выносливостью к различным условиям среды. Например, жаркий и сухой климат пустыни препятствует жизни в ней большинства организмов или суровый климат полярных областей земного шара, также ограничивает жизни многих организмов.

2.2. Организмы.

Организмами является отдельный элемент однородных живых веществ, которые как в единой совокупности участвуют в процессах круговороте природы. От остальных природных тел или явлений организмы отличаются способностью размножаться, двигаться и т.д. То есть к организмам прежде всего характерны два наиболее важные свойства: движения и саморазмножения. К основной отличительной особенности живого вещества (организмов) также относится способ использования энергии. Организмы являясь уникальными природными образованиями имеют способность улавливать энергию, приходящую из космоса преимущественных в виде солнечного света удер
живать ее в виде энергии сложных органических соединений (биомассы) передавать друг другу, трансформировать механическую, электрическую, тепловую и другие виды энергии. Остальная часть окружающей среды (неживые тела) не способны к таким сложным преобразованиям энергии, они преимущественно рассеивают ее. Например, камень под действием солнечного света нагревается и только, но он не может ни сойти с места, ни увеличить свою массу и др.

Существование живых организмов основано на потреблении энергии из внешней среды. При этом организмы используют энергию Солнца, подобно двигателям внутреннего сгорания, производят превращение энергии. То есть непрерывный поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергии химических связей. Создаваемые таким образом химические вещества (энергии) последовательно переходят от одних организмов к другим. То есть от растений к растительным животным, от них к плотоядным животным и далее. Таким образом за счет притока энергии извне живые организмы создают как бы упорядоченные структуры своих тел, увеличивают свою биомассу и численность, совершают работу. При этом преобразование энергии в организмах не основано на использовании разницы температур, как это делается в тепловых машинах. Иначе говоря, живые организмы могут существовать или функционировать при отсутствии каких-либо перепадов давлений или температур.

Один из уникальных особенностей живых организмов это их способность к самопроизведению, то есть к производству на протяжении многих поколений форм, практически идентичных (сходных) по структуре и функционированию. Несмотря на успехи науки и техники, до сих пор не сконструировано ни одной машины, которая могла бы воссоздать копию самой себя, начиная с производства материалов и кончая самосборкой. Самопроизведение организмов является не только копированием, но сопровождается и определенной изменчивостью признаков, что приводит к высокой адаптационной пластичности живого вещества и его эволюции во времени.

Среди органических соединений, составляющих организмы, важнейшую роль играют белки, представляющие собой длинные полимерные цепи, составленные из аминокислот. Белковые молекулы образуют пространственные структуры – глобулы, слои, волокна, которые формируют
струкуры тел живых организмов. Наряду со строительной функцией разнообразные белки служат катализаторами (ускорителями) биохимических реакций обмена веществ в организмах. Без участия белковых катализаторов-ферментов обмен веществ в организмах либо был бы невозможен, либо происходил медленно. Несмотря на огромную важность белков для функционирования организмов, они не способны к самокопированию, то есть к само-размножению. Способность к самокопированию обладают нуклеиновые кислоты, имеющие вид очень длинных жестких полимерных цепей, строительными блоками, в которых являются азотистые основания - мононуклеотиды.

При функционировании живых организмов в отличие от косной (неживой) материи существуют химические соединения, обладающие нежеследующими свойствами: а) способностью самокопированию; б) способностью к образованию полимерных слоев и оболочек; в) способностью аккумулировать и передать химическую энергию, а также осуществлять химические реакции в условиях обычных температур и давлений с высокой скоростью и без образования побочных продуктов.

Исходным носителем наследственности в живых организмах является одна из нуклеиновых кислот - дезоксирибонуклеиновая кислота (ДНК). ДНК имеет вид двойной спирали, состоящей из двух антипараллельных полинуклеотидных цепей. При раскручивании спирали ДНК каждая отдельная полинуклеотидная цепь конденсирует на себя нуклеотиды из окружающей среды, создавая новую нуклеотидную цепь - копию уже существующей. Кроме копирования своих молекул ДНК осуществляет и копирование белков. Синтез белков на нуклеотидных матрицах основан на принципе кодировки - три последовательно расположенных нуклеотида однозначно определяют одну аминокислоту - строительный блок белка.

Таким образом, функции белков и нуклеиновых кислот в живых организмах удачно дополняют друг друга. В частности, нуклеиновые кислоты способны к точной репликации (копированию), но сами по себе не могут служить ни строительным материалом, ни катализаторами реакций, что обусловлено жесткостью конstrukции полинуклеотидных цепей. Белки, наоборот, имеют множество биологических функций, однако не способны к точному самокопированию.
2.3. Взаимоотношение организмов с окружающей средой.

Организмы и среда, в которой они обитают, находятся в постоянном взаимоотношении. В результате возникает поразительное соответствие двух систем: организма и окружающей среды. Это соответствие главным образом носит приспособительный характер и выражается в виде особых черт в анатомической структуре, физиологии, питания в выборе мест обитания, в связях с другими организмами. Проявляется оно и во внешнем облике организмов. Таким образом, окружающая среда всегда действует на организмы целым комплексом так называемых экологических факторов. Поэтому основные черты приспособленности возникают в ответ на весь комплекс факторов.

В природе нередко можно видеть, что организмы, принадлежащие к разным систематическим группам, но живущие в одинаковых (или подобных) экологических условиях, приобретают сходные черты в целом ряде признаков, и особенно во внешнем облике организмов. В некоторых случаях они бывают настолько четко выражены, что можно разные виды объединить в одну группу, отображающую свойства окружающей среды. Такие группы организмов, принадлежащие, но имеющие сходные черты строения, физиологии и внешнего вида называется жизненными формами организмов. То есть жизненная форма - это своеобразная внешняя форма организмов, обусловленная биологией развития и внутренней структурой их органов, возникает в определенных почвенно-климатических и других условиях как приспособление к жизни в этих условиях. Иначе говоря, они представляют собой формы приспособленности видов к жизни в той или иной среде, исторически сложившиеся под длительным влиянием экологических факторов. Например, можжевельник туркестанский (арча) в условиях лесного пояса на Тянь-Шане на высоте 2600-2800 м над уровнем моря, имеет форму невысокого дерева (высота 5-6- м), а в субальпийском поясе гор (3000-3300 м над уровнем моря) приобретает форму стланника (жапалак арча). Таким образом, в понятие "жизненные формы" входят такие признаки организмов, как форма роста, ритм сезонного развития, степень защищенности от неблагоприятных условий, способность к вегетативному размножению и другие. Например, растения по жизненной форме бывают: фанерофитом (от греческого "фанерос" - видимый) - где
почки возобновления у растений расположены высоко над землей (деревьями кустарники); камефиты (приземистые, карликовые) - невысокие растения с почками возобновления на побегах высотой не более 20-30 см (полукустарнички); криптофиты (скрытые) - травянистые многолетние с почками возобновления на подземных органах (куклинцах, клубнях и т.д.); терофиты - травянистые растения, переживающие неблагоприятный период в виде семян (эфемеры).

Очень многообразные жизненные формы и у животных организмов. К основным группам жизненных форм животных относятся: плавающие (водные - нектон, плактон, бентос; полуводные - ныряющие, неныряющие); питающие (землерой); наземные (бегающие, прыгающие, ползающие); древесные лазающие (не сходящие с деревьев, лишь лазающие по деревьям); воздушные (добывающие пищу в воздухе, высматривающие ее в воздухе).

Изучение многообразия жизненных форм - важное направление в экологических исследованиях. Знание жизненных форм помогает определить специфику, структуру и своеобразие условий обитания в тех или иных районах Земного шара, их экологическую емкость и другие. Например, присутствие в данном участке землероющих организмов, свидетельствующих не только о рыхлости почвы, но и о ее сравнительно высоком плодородии.

С понятием "жизненные формы" тесно связано понятие об экологических нишах. Совокупность множества параметров среды, определяющих условия существования того или иного вида организмов, и его функциональных характеристик (преобразование им энергии, обмен информацией со средой и др.) представляет собой экологическую нишу. То есть, экологическая ниша включает не только положение любого вида организмов в пространстве, но и также функциональную роль его в сообществе (например, трофический уровень) и его положение относительно абстрактных условий существования (температура, влажность и т.п.). Таким образом, каждый вид организма в окружающей среде, где он обитает, занимает место, которое обусловлено его потребностью в пище, территории, связано с функцией воспроизводства. Следовательно, экологическая ниша включает в себя ту роль, функцию которую выполняет данный вид организма в среде обитания.

В природе нередки случаи перехода некоторых видов организмов из одной экологической ниши в другую.
Обычно это происходит в связи с изменением условий существования в данной территории, то есть носит приспособительный характер. Переход из одной экологической ниши в другую происходит, например, при сохранении кормовой базы до критического предела или перенаселенности, а также при вытеснении другим более активным видом организмов.

Окружающая среда действует на организмы посредством физических, химических и биологических сторон. Каждую сторону, качественно отличную от других, называют элементами действия среды или факторами. Таким образом, окружающая среда характеризуется огромным разнообразием, слагаясь из множества динамичных во времени и пространстве элементов. явлений, условий, которые рассматриваются в качестве экологических факторов.

2.4. Экологический фактор.

Экологический фактор - это любое условие среды способное оказывать прямое или косвенное влияние на живые организмы, хотя бы на протяжении одной из фаз их индивидуального развития. В свою очередь организм реагирует на экологический фактор специфическими приспособительными реакциями. При этом следует отметить, что одни факторы являются жизненно необходимыми для организма (вода, тепло, воздух) - их называют условиями существования, другие могут оказывать хотя и существенное, но эпизодическое воздействие, не являясь жизненно необходимыми. Ветер, например, является экологическим фактором, но не условиями существования организмов.

Экологические факторы воздействуют на организмы не изолированно, а совместно. Нередко действие одного усиливает или ослабляет действие другого. Так, ветер усиливает физическое действие холода и сухости, а высокие температуры обостряют дефицит влаги. Таким образом, действие одного экологического фактора зависит от "экологического фона".

По происхождению и характеру воздействия экологические факторы делятся на три группы: абиотические (неживые), биотические (живые), антропогенные (связанные с деятельностью человека).

К абиотическим факторам относятся: климатические (свет, температура, влажность, воздух, давление); здафогенные или почвенные (механический состав, вла
гоемкость, воздухопроницаемость, плотность); орографические (рельеф, высота над уровнем моря, экспозиция склонов); химические (газовый состав воздуха, солевой состав воды, концентрация, кислотность).

Биотические факторы выражаются в виде различных форм воздействия организмов друг на друга. К ним относятся: фитогенные (растительные организмы), зоогенные (животные), микробиогенные (вирусы, простейшие, бактерии).

Антропогенными факторами являются различные формы воздействия человека: содействие или препятствие расселения и изменение среды обитания организмов, рубки леса, выпас, сенокошение, охота, рекреация и другие.

2.5. Климатические факторы.

Комплекс климатических факторов играет важнейшую роль в расселении организмов и формировании растительного покрова, животных и населения Земли. Особо важное значение среди них имеют тепло и влага.

Процессы жизнедеятельности организмов могут протекать лишь на известном тепловом фоне, которое формируется определенным количеством тепла и продолжительностью его действий. Количество тепла характеризуют температурные показатели, причем для организмов существенно не столько осредненные показатели (среднегодовые, месячные, суточные температуры) сколько реальный ход температур, особенно их экстремальные значения, которые могут приводить к гибели животных, растений и даже человека. Термические условия жизни организмов в приземном слое воздуха или в различных ярусях леса заметно отличаются от наблюдаемых на специальных местах. В частности, растения не имеют собственной стабильной температуры. Однако усиленная транспирация влаги приводит к их охлаждению, а темная окраска к уменьшению транспирации - наоборот. Вызывает нагревание. Густое светлое опушение листьев, блестящая их поверхность, уменьшение листовой поверхности и их вертикальное расположение предотвращают перегрев и ожоги растений. Ряд весенних растений (крокусы, тюльпаны, гусиные луки и др.) избегают перегрева, заканчивая вегетацию до наступления жары.

Растения умеренных и высоких широт обладают холодостойкостью. У большинства из них наблюдаются периоды осеннего-зимнего покоя. Сбрасывание листьев, толстая кора,
опущение почечных чешуй, восковой налет и другие морфологические особенности способствуют перезимовке растений. В особо суровых условиях - в арктической зоне и в высокогорьях - растения прижимаются к поверхности почвы, приобретают разветвленные, подушковидные, стланниковые формы.

Приспособления к холоду животных весьма разнообразны. Птицы и млекопитающие обладают способностью к терморегуляции (гомотермность), от переохлаждения их обычно защищают шерстный покров или оперение, а также жировой слой. Гомотермность - важное преимущество животных в борьбе за существование, оно позволило млекопитающим и птицам освоить экосистемы высоких широт и высокогорий. Существенную роль в перенесении холода играет соотношение между массой и поверхностью тела животного. У мелких животных и птиц опасностью гибели от переохлаждения обычно больше чем у крупных.

Животных, не обладающих терморегуляцией, называют пойкilotермными. К ним относятся: беспозвоночные, земноводные, пресмыкающиеся. Они переносят холод в анаэробиотическом состоянии (спячке) или в покоящихся стадиях (яйца, личинки). Спячка характерна и для некоторых млекопитающих (летучие мыши, грызуны).

2.6. Вода в качестве экологического фактора.

Вода в качестве экологического фактора, прежде всего является необходимым условием жизни. В частности, растения не только используют воду в процессе ассимиляции, но и испаряют (транспирируют) ее в огромных количествах. Между тем, обеспеченность водой в экосистемах суши крайне неравномерна как в пространстве, так и во времени. Недостаток влаги, также является одним из основных препятствий к расселению организмов. Однако в процессе эволюции биосферы выработались формы жизни, приспособленные к крайнему дефициту влаги. Организмы, обитающие в условиях достаточного, но умеренного увлажнения, называются мезофильными (мезос - средний), во влажных условиях - гигрогрильными (гигро - влажный), в сухих - ксерофильными (ксерос - сухой). Основным источником влаги для растений являются атмосферные осадки, аккумулируемые почвой и поглощаемые корневыми системами. Иногда наблюдается впитывание капельно-жидкой и парообразной влаги надземными частями расте-
ний. При близком залегании грунтовых вод растения по-лучают смешанное, атмосферно-групповое водное питание.

Особенно разнообразны и интересны приспособления к перенесению сухости. Приспособление к засухе - это, в первую очередь, увеличение мощности корневой системы и сосущей силы корней и снижение транспирации. Последнее достигается уменьшением площади листовой поверхности налета, густого войлочного опушения и т.д. Растения сухих мест называют _ксерофитами_. Типичные ксерофиты - растения пустынь. Это не имеющие листвьев саксаул, джузгунь, сильно опущенные пустынные виды польней и другие. Кроме указанных выше морфологических особенностей, они отличаются сильным развитием механических тканей. У них жесткие, долго независимые побеги и мощные корневые системы. Ксерофитами являются и степные растения: ковыль, типчак, житняк, люцерна и другие.

Своеобразные приспособления к засухе имеют _суккуленты_ - сочные растения (кактусы, алоэ и другие). Они способны накапливать в тканях большое количество воды и крайне экономно ее расходовать. Суккулентность - оригинальное, но не очень выгодное приспособление, поскольку эти растения весьма чувствительны к низким температурам. Этим объясняется и приуроченность в основном к тропическим и субтропическим засушливым областям.

Для засушливых областей характерны _эфемеры_ и _эфемероиды_ - растения с укороченным вегетационным периодом. Они не имеют признаков ксероморфности, поскольку развиваются в короткий влажный период, после чего засыхают, оставляя лишь семена (эфемеры), а также клубни, луковицы (эфемероиды).

Растения, требующие достаточного увлажнения, которые называются _мезофитами_ не имеют столь ярких морфологических особенностей, как ксерофиты. Листья у них более крупные и мягкие, лишенные, как правило, приспособлений к уменьшению транспирации. К ним относятся растения лесов и лугов.

Растения, особенно чувствительные к недостатку влаги в почве и в воздухе, называют _гигрофитами_. У них тонкие, нежные, ярко-зеленые листья, слабые стебли и корни. Такие растения обычно избегают открытых солнечных мест, растут во влажных тенистых лесах (кислица, папоротники).

Растения, обитающие в воде называются _гидрофитами_. Они не нуждаются в развитой корневой системе, механических тканях и средствах уменьшения транспирации.
Они плавающие, нередко крупные листья (кувшинки, рдесты).
Сухопутные животные, организмы либо нуждаются в водопоях, либо удовлетворяют потребность в воде за счет влаги, содержащейся в пище. Копытные, хищники, птицы в поисках водопоев могут преодолевать большие расстояния. Грызуны (суслики, сурки и другие) получают воду с травой. причем ее высыхание летом вынуждает животных залегать в спячку. При этом существенную роль в поддержании водного баланса играет накопление жира, который в организме может окисляться с образованием воды.

2.7. Солнечный свет.
Солнечный свет, являясь экологическим фактором также считается необходимым условием существования биосферы. Солнечный свет является единственным источником энергии для всех живых организмов. Для растений солнечный свет может быть лимитирующим фактором за счет поглощения самой растительностью, особенно в тенистых местах. По отношению к интенсивности освещения различают растения светолюбивые, теневыносливые и тенелюбивые. Первые не способны переносить затенения, и к ним относятся: сосна, лиственница, береза и другие. Теневыносливые растения могут расти на открытых участках, так и при затенении. Примером их могут служить ели, пихты, мятлик, бузульник. Тенелюбивые растения способны переносить сильное затенение и погибают под действием прямых солнечных лучей. К ним относятся: молокон, кислица, грушанка.
Большое значение имеет для растений и животных так называемая фотоперiodизм, то есть режим чередования дня и ночи. Он определяет суточный и годовой циклы и образ жизни организмов. Например, в умеренных и высоких широтах Земли изменение продолжительности светового дня вызывает у млекопитающих и птиц переход к размножению, начало линьки, перелетов птиц.
Из других факторов, связанных с климатом, но не имеющих универсального значения, можно отметить снег, многолетнюю мерзлоту, а также ветер.

2.8. Эдафические факторы.
Эдафическими факторами называют свойства субстрата. Для водных организмов - вода. Из свойств почвы основное экологическое значение имеет ее механический состав, аэрация и химизм.
Механический состав почвы влияет на ее водный, воздушный, солевой режим. Особая экологическая группа растений - псаммофиты - произрастают на песках. Для них характерны длинные корни и корневище, которые имеют способность противостоять засыпанию и искушению при развевании песка путем закладки нового узла кущения (песчаная осока).

Аэрация почв (обеспеченность кислородом) определяется их механическим составом, структурой и водным режимом. Недостаток кислорода при избыточном застойном увлажнении вызывает такие морфологические адаптации, как образование кочек (осоки) и дыхательных корней (болотный кипарис).

Из химических свойств почвы наиболее существенны концентрация почвенного раствора, его состав и реакция. Почвы с большим содержанием легко растворимых солей - солончаки - позволяют существовать только растениям особой экологической группы галофитам. Они отличаются очень высокой концентрацией кластичного сока, что позволяет всасывать солевые растворы (пшеница, клевер). Галофиты являются хорошими индикаторами засоленных почв.

По требовательности к уровню минерального питания различают растения эвтрофные - богатых почв и олиготрофные - к бедных. Существуют группы растений, особо требовательные к содержанию в почве отдельных элементов. Так, нитрофильные растения (крапива, конопля) приурочены обычно к солончакам: старым стойбищам, где почвы богаты азотом.

Для водной среды главными экологическими факторами являются: соленость, обеспеченность кислородом, течения. Например, среди организмов различаются обитатели пресных, соленоватых и морских вод. Причем большинство организмов имеют узкую амплитуду по отношению к этому фактору, так называемые стеногалильные формы.

Обеспеченность вод кислородом зависит от температурных условий. Наиболее богаты кислородом холодные воды северных частей Атлантики и Тихого океана и Антарктические воды. Именно в этих районах наблюдается богатство планктона и высокая рыбопродуктивность.
2.9. Рельеф земной поверхности

Рельеф земной поверхности как экологический фактор играет для организмов преимущественно косвенную роль. Изменяя и осложняя действие климатических факторов. В частности, в горах ярко проявляется климатическая поясность, в основе которой лежит закономерное понижение температур и более или менее значительное повышение увлажненности с высотой. Огромное разнообразие экспозиции склонов, их формы и крутизны создает пеструю экологических условий, которые сказываются на распределении растений. Условия рельефа также определяют степень дренированности территории. Например, плохо дренированные водоразделы в тайге заняты верховыми болотами и угнетенным лесом, а склоны их занимают леса более лучшего качества. Например, горные цепи могут служить путями миграции северных видов в более южные широты. А с другой стороны, горные хребты могут служить барьерами в расселении равнинных растений и животных.

2.10. Биотические факторы.

Каждый живой организм живет в окружении множества других, вступает с ними в самые разнообразные отношения, как с отрицательными, так и положительными для себя последствиями. В конечном счете организмы не могут существовать без этого живого окружения. Так как связь с другими организациями - необходимое условие питания и размножения, возможность защиты, смягчения неблагоприятных условий среды. А с другой стороны это опасность ущерба и часто даже непосредственная угроза существованию организма. Всю сумму воздействий, которые оказывают друг на друга живые существа, объединяют названием биотические факторы среды.

Непосредственное живое окружение организма составляет его биотическую среду. То есть представители каждого вида организмов способны существовать лишь в таком биотическом окружении, где связи с другими организмами обеспечивают им нормальные условия жизни. Иными словами, многообразные живые организмы встречаются на Земле не в любом сочетании, а образуют определенные сообщества, в которых входят виды, приспособленные к совместному обитанию. Поэтому среди огромного многообразия взаимосвязей живых существ выделяется следующие типы отношений.
Отношения типа хищник-жертва, паразит-хозяин являются прямой пищевой связью организмов. Они для одного из партнеров имеют отрицательные, а для другого - положительные последствия. По существу, к этому типу экологических взаимодействий относятся все варианты пищевых связей. Хищниками называют животных, питающихся другими животными, которых они ловят и умерщвляют. А последние являются жертвами.

Паразитизм - это такая форма пищевых связей между видами, при которой организм - потребитель использует живого хозяина не только как источник пищи, но и как место постоянного или временного обитания. По существу, типичный паразитический характер имеют связи насекомых-вредителей с растениями. Паразиты обычно намного мельче своего хозяина. Основная экологическая роль хищничества, паразитизма и других вариантов пищевых связей в сообществах заключается в том, что последовательно питаясь друг другом, живые организмы создают условия для круговорота веществ, без которого невозможна жизнь. Вторая, не менее важная роль этих отношений - это взаимная регуляция численности определенных видов организмов.

Комменсализм - это такая форма взаимоотношений между двумя видами организмов, когда деятельность одного из них доставляет пищу или убежище другому (комменсали). То есть комменсализм - одностороннее использование одного вида другим, без принесения ему вреда. Таковы, например, взаимоотношения львов и гиен, подбирающих остатки недоеденной львами добычи.

При аменсализме для одного из двух взаимодействующих видов организмов последствия совместного обитания отрицательны, тогда как другой не получает от них ни вреда, ни пользы. Такая форма взаимодействия чаще встречается у растений. Например, светолюбивые травянистые виды, растущие под елью, испытывают угнетение в результате сильного затенения ее кроной. При этом для самого дерева их соседство может быть безразличным. Взаимосвязи этого типа также ведут к регуляции численности организмов, влияют на распределение и взаимный подбор видов.

В природе широко распространены взаимовыгодные отношения видов организмов и для них применяются термин мутуализм. Мутуалистические связи могут возникать на основе предшествующего паразитизма или комменсали-
лизма. Степень развития взаимовыгодного сожительства может быть самой различной - от временных, необязательных контактов до такого состояния, когда присутствие становится обязательным условием жизни каждого из них. Такие неразделимые полезные связи двух организмов получили название симбиоза. Примеры сожительства гриба и водорослей.

Конкуренция - это взаимоотношения, возникающие между видами со сходными экологическими требованиями. Когда такие виды обитают совместно, каждый из них находится в невыгодном положении, так как присутствие другого уменьшает возможности в овладении пищевыми ресурсами, убежищами и прочими средствами к существованию. Конкуренция - единственная форма экологических отношений, отрицательно сказывающаяся на обоих взаимодействующих партнерах. Формы конкурентного взаимодействия могут быть самыми различными: от прямой физической борьбы до мирного совместного существования.

Нейтраллизм - это такая форма биотических отношений, при которой сожительство двух видов организмов на одной территории не влечет для них ни положительных, ни отрицательных последствий. При нейтраллизме виды организмов не связаны друг с другом непосредственно, но зависят от состояния сообщества в целом. Например, белки и лоси, обитая в одном лесу, практически не контактируют друг с другом.

2.11. Антропогенные факторы.

Антропогенные факторы связаны с влиянием человека на жизнедеятельность организмов. Своей разнообразной деятельностью человек может уничтожать местообитания организмов и творить новые формы культурных растений и домашних животных, вызывать деградацию среды обитания и создавать оптимальные условия для существования организмов. Человеческое воздействие могут быть сознательными (преднамеренными), или бессознательными, часто совершенно неожиданными по своим результатам. Главными формами человеческого воздействия являются: 1) чрезмерное использование диких растений и животных; 2) распашка осушение и орошение земель, сопровождающиеся формированием новых сообществ - агроценозов; 3) рубки леса; 4) антропогенные пожары; 5) выпас домашних животных; 6) изменение среды обитания за счет загрязнения промышленными отходами, ядохимикатами; 7)
рекреационные нагрузки (вытаптывание и истребление растений, усиление фактора беспокойства для животных).

В последнее время все большую опасность для живых организмов представляет антропогенное загрязнение среды. Например, известны кислотные дожди, которые выпадают в промышленно развитых странах за счет растворения в атмосферной воде сернистого газа, выбрасываемого при сжигании топлива. В целом загрязнение среды создает угрозу в первую очередь самому человеку и всех живых организмов.

Экологические факторы среды могут оказывать на живые организмы воздействия разного рода: 1) как раздражители, вызывающие приспособленные изменения физиологических и биохимических функций; 2) как ограничители, обуславливающие невозможность существования в данных условиях; 3) как модификаторы, вызывающие анатомические и морфологические изменения организмов; 4) как сигналы, свидетельствующие об изменениях других факторов среды.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

Вопросы и упражнения.

1. Дайте объяснение понятии "окружающая среда".
2. Дайте объяснение понятию "организмы".
3. Роль и взаимоотношения организмов с окружающей средой.
4. Объясните значение экологических факторов.
5. Охарактеризуйте климатические факторы.
6. Значение воды как экологического фактора.
7. Какова роль солнечного света для существования организмов?
8. Роль здафических факторов.
9. Значение рельефа земной поверхности для жизнедеятельности организмов.
10. Биотические факторы и их значения.
11. Объясните важность антропогенных факторов.
3. ОБЩИЕ ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ПРИРОДЫ ЗЕМЛИ И В ЕЕ СФЕРАХ

3.1. Понятия о земных сферах.

Земля является одним из бесчисленных космических тел Вселенной. Она как планета относится к Солнечной системе. Масса Земли (5976×10^18 тонна) состоит из уникального химического состава: атмосферы, литосферы, гидросферы и биосферы. Такая масса Земли определяет ее гравитационные силы, связанные с ускорением свободного падения.

Земля находится в среднем расстоянии от Солнца 149,9 млн. км и на среднем расстоянии 384,4 тыс. км вокруг Земли вращается ее естественный спутник - Луна.

Земля вращается вокруг своей оси (с наклоном к плоскости эклиптики - 66 градусов 34 минуты 22 секунды) за 23 ч. 56 минут 4 сек. (звездные сутки). С обращением Земли вокруг Солнца (со скоростью 29,76 км/сек.) и наклоном земной оси связаны на Земле времена года. А с вращением вокруг своей оси - смена дня и ночи.

Форма Земли имеет геоида со средним радиусом 6371,032 км, длина окружности экватора (большого диаметра) - 40075,7 км. Площадь поверхности Земли - 510,2 млн. кв. км, из них суши - 149,1 млн. кв. км (29,2 %), моря и океаны 361,1 млн. кв. км (70,8%). Объем Земли - 1083×10^12 куб. км, средняя плотность - 5518 кг/куб. м. Земля обладает магнитным полем.

Земля образовалась около 4,7 млрд. лет назад из расщепленного в протосолнечной системе газово-пылевого вещества.

Земля точнее ее географическая оболочка включает земную кору (литосферу), нижние слои атмосферы, гидросферу и биосферу. Они взаимно проникают друг в друга и взаимодействуют. ТО есть она целостная саморазвивающаяся сложная система и находится в относительно подвижном равновесии. Вышеотмеченные все составные части географической оболочки и происходящие в ней процессы тесно взаимосвязаны и взаимообусловлены.

Средняя мощность географической оболочки составляет 55 км. Ее верхняя граница происходит на переходном слое от тропосферы к стратосфере, расположенной на высоте 8-10 км в приполярных широтах, 10-12 км в умеренных, 15-16 км в тропических и 17 км над экватором. Нижняя
грани географической оболочки располагается в земной коре (верхней части литосферы). Средняя мощность земной коры 35 км и в ее составе преобладают кислород и кремний. Земная кора подвержена постоянным тектоническим движением и в ее строении выделяются подвижные области (геосинклинали) и относительно спокойные (платформы). Ниже земной коры находятся слои мантии и ядро Земли. Особо важную роль в образовании осадочного покрова географической оболочки Земли играет так называемый процесс кора выветривания. Она образует своеобразный слой веществ толщиной до нескольких десятков метров в зоне контакта литосферы с поверхности Земли в течение многолетней истории ее развития. Именно здесь активно протекают различные химические и физические, а также биологические процессы.

Большую часть географической оболочки покрывают воды океанов и морей. Они вместе с водами суши образуют гидросферу. Она считается водной оболочкой Земли. Большая часть вод при этом приходится на Мировой океан - около 96% (по объёму). Подземные воды составляют около 2%, ледники - 2% и только 0,02% приходится на поверхности вода материков: реки, озера, болота и других. Незначительное количество воды содержится в атмосфере и живых организмах. Запасы пресных жидких вод составляют всего 0,6%. Общее количество воды на Земле оценивается в 1,4-1,5 млрд. куб. км. Земля получила воду в результате химического соединения элементов, вошедших в состав Земли при зарождении планеты. На ранней стадии развития Земли вода постепенно выделялась из недр, увеличивая объем гидросферы. В дальнейшем объем воды гидросферы оставался практически неизменным. В гидросфере все формы вод (жидкая, твердая и газообразная) переходят одна в другую благодаря процессам круговорота.

Следующей оболочкой Земли является атмосфера. Она воздушная оболочка, которая окружает ее и вращается вместе с ней вокруг оси. Атмосфера состоит из слоя нескольких газов и в нем находится во взвешенном состоянии жидкие и твердые частицы. Общая масса воздуха 5.15×10^15 т.

Первичная атмосфера Земли состояла главным образом из водяных паров, водорода и аммиака. Под воздействием ультрафиолетового излучения Солнца водяные пары разлагались на водород и кислород. Водород в
значительной части уходил в космическое пространство, кислород вступал в реакцию с аммиаком и образовывались азот и вода. На раннем этапе геологической истории Земли в атмосфере преобладал углекислый газ, который поступал из недр при интенсивных вулканических извержениях. С появлением в конце палеозоя зеленых растений кислород стал поступать в атмосферу. Последнее было связано с разложением углекислого газа при фотосинтезе и состав атмосферы принял современный вид.

Среднегодовая температура воздуха у земной поверхности +14 градусов С. С высотой она понижается. Давление оказываемое атмосферой на земную поверхность составляет на уровне моря в среднем 1013 мб. На уровне 5 км высоты давление в два раза ниже, на 10 км - в 4 раза, 20 км - в 13 раз ниже. С понижением давления, также уменьшается плотность воздуха. У поверхности Земли плотность воздуха в среднем равна 1250 г/м^3, 5 км высоте - 730 г/м^3, 10 км - 411 г/м^3, 20 км - 87 г/м^3.

Атмосфера имеет слоистое строение. Ее нижняя часть называется тропосферой (до 17 км высоты над экватором), выше до 55 км занимает стратосфера, далее мезосфера (55-80 км), ионосфера (до 1200 км) и термосфера. В пределах стратосферы на высоте 25-30 км выделяется озоновый слой воздуха. Последними поглощаются ультрафиолетовые радиации Солнца. Благодаря этому сохраняется жизнь на земле.

Между атмосферой и земной поверхностью происходит обмен тепла, влаги, постоянный круговорот вода. Воздух атмосферы находится в непрерывном движении (циркуляции), которое обуславливается неравномерным нагреванием поверхности Земли.

Важнейшая особенность Земли отличающая ее от других планет Солнечной системы связано существованием жизни. Она возникла в результате закономерной эволюции материи. Именно последним на Земле сформировались определенные физические и химические условия, необходимый синтез сложных органических молекул. Таким образом, благодаря активной жизни образована особая оболочка Земли называемая биосферой.

3.2. Биосфера

Биосфера (от греч. bios - жизнь и sphaira - шар), является одной из сфер географической оболочки Земли, которая населена живыми организмами. Область распро-
странения живых организмов определяет границы биосферы. По определению многих ученых за верхнюю границу биосферы принимается слой озона (озоновый экран), находящиеся на высоте 20-30 км, выше которого существование живых организмов не возможно наличием ультрафиолетовой радиации Солнца. Нижняя граница биосферы проходит в верхней части литосферы. По мнению ученых она проходит при различной глубине: от нескольких сот метров, для нескольких километров, где встречаются такие называемые анаэробные бактерии. Таким образом, биосфера включает в себя нижнюю часть атмосферы, всю гидросферу и верхнюю часть земной коры. Именно между ними на вышенуточных пределах проходит взаимосвязанные и сложные биологические, химические и физические процессы (Рис. 1).

Биологическая масса географической оболочки Земли составляет 1841⋅10^9 тонн сухого вещества и является неизмеримо меньшим по сравнению с массой Земли (около 6⋅10^27 тонн). Причем максимальная плотность живого вещества (свыше 90% общей биомассы) отмечается на суше. То есть превышает биомассу океана в 1000 раз. В настоящее время на биосфере обитают около 2 млн. видов различных организмов. Из них 1,5 млн. видов являются животные и 500 тыс. видов растениями.
Велика роль живых организмов в создании особого природного образования на географической оболочке Земли - почвенного покрова. Последний со средней мощностью 50-60 см образует тонкий слой земной коры. Почвы, обладая естественным плодородием, является необходимым условием роста растений и местом обитания многочисленных живых организмов.

Происходящий в биосфере круговорот веществ, энергии осуществляется при участии всех населяющих ее организмов. Все живые существа являются частями одного целого, гигантской совокупности живых существ. Живого покрова Земли.

При круговороте (точнее биологическом) зеленые растения в процессе фотосинтеза потребляют из почвы минеральные вещества, а из воздуха - углекислый газ и выделяют кислород, создавая в результате органические вещества (в виде своих тел) из неорганических. Они являются продуктами (производителями). ТО есть продуктами называются организмы (растения), образующие из неорганических элементов органические вещества. Таким образом, растения перерабатывают и накапливают солнечную энергию в органо-минеральных веществах (Рис. 2).
Животные организмы потребляют кислород, поедают растения и выделяют углекислоту. Они являются консументами (потребителями). Консументами называется организм, питающийся органическим веществом. То есть консументы потребляют органические вещества и накапливают у себя в виде энергии.

Бактерии, грибы, простейшие и другие перерабатывают мертвых животных и растения, разрушают их, превращая в минеральные и простые органические соединения. То есть организмы, превращающие органические остатки в неорганические вещества (минеральные, горные породы) называются редуцентами или деструкторами. Они замыкают цикл внутреннего круговорота вещества и превращения энергии в биосфере и обеспечивают подготовку их дальнейших циклов общего круговорота элементов в географической оболочке Земли. Таким образом, биологический круговорот является основой существования биосферы. Он основан на способности одних организмов пользоваться отходами других. Все живые организмы выполняют в биосфере определенную роль.

3.3. Эволюция биосферы и основные этапы ее развития.

В процессе развития биосферы ее состав и строение непрерывно усложнялись. Современная ее структура является результатом длительной эволюции. В развитии биосферы можно выделить 3 ее этапа: добиогенный, биогенный и антропогенный.

Добиогенный этап отличался в целом слабым участием в развитии биосферы живого вещества. Она является самым длительным этапом, которая охватывала примерно 2,8-3 млрд. лет. В геологическом отношении она охватывала архейскую и протерозойскую эру. В данном этапе эволюции биосфера была возникновением самой жизни из неизовой материи. Возникновению жизни предшествовало образование простых органических соединений из метана, аммиака, водорода и паров воды в условиях высоких температур, ультрафиолетового излучения Солнца и повышенной вулканической активности. Этими соединениями были молекулы сахара, аминокислот, азотистых оснований. То есть те самые молекулы, из которых состоят белки, нуклеиновые кислоты и другие. Один из важнейших этапов эволюции было то, что органические молекулы стали подвергаться процессам синтеза и разрушения, где
продукты распада одних молекул служили материалом для построения других. То есть возник первичный круговорот органического вещества. Неравномерное распределение органических молекул в толще воды привело к образованию более или менее устойчивых полужидких (коллоидных) сгущений или коацерватов (от лат “коацерватус” - собранный). Характерная особенность этих сгущений состояла в том, что существовала некоторая граница их раздела с окружающим раствором. Таким образом, коацерваты рассматриваются в качестве первых предбиологических систем. Эти капли могли разрушаться, образовываться вновь, причем в ряде случаев по достижении определенного размера они могли распадаться на дочерние, то есть делиться. В конечном итоге капли и их дочерние капли приобретали химический состав и структуру способные к самопроизведению. По мнению многих ученых с возникновением процессов самопроизведения окончилась предыстория развития жизни и коацерватная капля превратилась в простейший живой организм (одноклеточный). Они существовали в архейской эре на Земле в бескислородной среде. Об этом свидетельствуют обнаруженные остатки нитей водорослей и бактериоподобных организмов.

Дальнейшее усложнение жизни на данном этапе связано с развитием многоклеточности. Поэтому в протерозое наряду с одноклеточными и были многоклеточные водоросли и бактерии. Постепенно многоклеточные организмы совершенствовались и приобретали отличие друг от друга (дифференцировались) в течение многих миллионов лет. Круговорот органического вещества сменился круговоротом биологическим, который заключается в непрерывном обмене веществами и энергией между организмом и средой.

Характерной чертой доогенского этапа развития биосферы было накопление в морях мощных железистых кварцитов (джесперитов), которые свидетельствуют о богатстве в то время верхней части земной коры соединениями железа и своеобразном составе атмосферы, то есть о бедности свободным кислородом и высоком содержании углекислоты.

Биогенный этап развития биосферы во время (геологической) соответствует палеозою, мезозою и кайнозою. Начиная с нижнего палеозоя органическая жизнь становится ведущим фактором развития Земли. Слой живого вещества (биосферой) получает глобальное распределение.
ние. Вместе с тем строение и структура организмов (растений и животных) усложняется.

В кембрийском периоде (начало палеозоя) на земле существовало множество водных животных (сотни видов трилобитов, брахиоподы, археоподы, ракообразные, различичные медузы и другие). Растительность того времени включала различные водоросли.

В ордовикском и силурийском периодах (середина палеозоя) количество видов беспозвоночных животных значительно возросло. Появились многие виды членистоногих (раки и скорпионы), первые позвоночные (примитивные бесчелюстные рыбы). В структуре растительности возникли первые флоры (псилофиты) суши.

Девонский период (середина палеозоя) характеризовался значительными изменениями в составе флоры и фауны. Появились кистеперые рыбы, амфибии, насекомые организмы. Также появились новые растения: хвоши, папоротники и голосеменные виды.

В каменноугольном и пермском периоде (конец палеозоя) формировались многие гигантские насекомые, амфибии, рептилии и другие организмы. Обширные территории суши были покрыты лесами и голосеменными растениями (саговниковым и гинкговым).

На границе мезозойской эры органический мир значительно изменился. Многие формы морских беспозвоночных, включая трилобитов, вымерли, другие стали малочисленными.

В мезозое наблюдался расцвет рептилий; возникли черепахи, динозавры, итиозавры; появились первые примитивные млекопитающие, птицы и костистые рыбы. Но последние не занимали заметного места в структуре фауны того времени. Широко распространялись хвойные растения. Папоротники и в конце мезозоя появились первые покрытосеменные растения (дубы, тополи, буку, пальмы и другие деревья).

Начало кайнозойской эры является важным рубежом в истории органического мира Земли. В конце мезозоя вымерло подавляющее большинство групп рептилий (динозавры, итиозавры, летающие ящерицы). Сохранились из разнообразных рептилий только крокодилы, черепахи, ящерицы и змеи. Постепенно млекопитающие организмы и птицы заняли экологические ниши, освобожденные вымершими рептилиями, многие из них достигли гигантский размеров.
На протяжении кайнозоя растительность менялась сравнительно мало, однако зоны их разными типами распределения при колебаниях климата перемещались на большие расстояния (особенно в четвертичном периоде).

Таким образом, в результате длительной эволюции биосферы на биогенном этапе происходили крупномасштабные преобразования органического мира, в частности вымирание отдельных групп растительности и животных, появление и прогрессивное развитие других, были связаны в основном с процессами происходящими в самой биосфере. Но с другой стороны на эволюции биосферы существенную роль оказывали так называемые факторы абисонтальной среды. Например, повышенные содержания углекислоты в атмосфере во время интенсивной вулканической деятельности сразу отражается на фотосинтезе. Последние способствовали к существенному изменению экологических условий, которые приводили к гибели многих форм и видов организмов (гигантские рептилии), обеспечивая бесконкурентное развитие других. То есть изменения внешней среды служили толчком к видообразованию в органическом мире на Земле.

С другой стороны появление фотосинтезирующих растений коренным образом изменило состав атмосферы: понизилось содержание углекислоты, появился свободный кислород.

Крупнейшим событием в эволюции биосферы было появление наземных позвоночных животных и особенно теплокровных, резко изменивших уровень трансформации энергии. При этом менялось количество живого вещества биосферы, и ее общая биомасса. И эти изменения определялись не скоростью размножения организмов, а их видовым разнообразием. Общая тенденция была в сторону нарастания биомассы, для большей возможности осваивать новые пригодные для жизни пространства и вещества Земли и вовлекать их в биологический круговорот.

Развитие биосферы на протяжении последних сотен тысячелетий происходило в присутствии человека. Поэтому она называется антропогенным этапом развития биосферы. Сначала появились родственные человеку приматы, далее первые человекообразные обезьяны, затем примерно 40 тысяч лет тому назад неоантропы - предки современного человека. Впоследствии его деятельность оказала громадное влияние на эволюцию биосферы.
3.4. Значение учения В.И. Вернадского о биосфере.

Основоположником современных представителей о "сфере жизни" (биосфере) является выдающийся русский ученый, академик Василий Иванович Вернадский (1863-1945). Поверхность Земли В.И. Вернадский рассматривал как качественно своеобразную оболочку. Развитие ее в значительной мере определяется деятельностью живых организмов. Сущность его учения заключается в том, что высшая форма развития материи на Земле - жизнь опосредствует другие планетарные процессы. По Вернадскому, химическое состояние наружной коры нашей планеты - биосферы, всецело находится под влиянием жизни, определяется живыми организмами. Энергия, придающая биосфере обычный облик является космического происхождения. Она исходит из Солнца в форме лучистой энергии. То есть основным внешним источником энергии для биосферы служит излучение Солнца. Таким образом биосфера является сложной физико-химической системой, получающей энергию извне, преобразующей часть ее в работу и рассеивающей остальную энергию в виде тепла. Так, мощность потока солнечного излучения в верхних слоях стратосферы составляет 2 кал. (млн. кв. см), поверхности Земли достигает только 52% этой энергии, из которой в среднем лишь 1 улавливается растениями и превращается в живое вещество биосферы. А остальная часть энергии тратится на испарение, нагревание и другие физические процессы.

Живое вещество биосферы проникнуто энергией, благодаря ей оно становится активным. собирает и распределяет в биосфере полученную в форме солнечного света энергию, способную совершать работу. Работа, производимая жизнью, состоит в переносе и перераспределении химических элементов в биосфере, создании из них новых тел, благодаря ему значительная часть атомов, составляющих матерью земной поверхности, находится в непрерывном круговороте. Все почвы и минералы верхних слоев земной поверхности - черноземы, глины, известняками, месторождения руд, углей, нейт и другие образования и продолжают создаваться только под действием жизни. Химический состав природных вод в значительной мере сформирован живыми организмами; состав атмосферы Земли в ее основных газах - кислороде, азоте и углекислote - есть создание жизни. Таким образом живое вещество биосферы растекается по земной поверхности и оказывает давление на окружающую среду, изменяя ее. С течением
всеми живое вещество неизбежно покрывает весь земной шар и только временно может отсутствовать на отдельных его участках. Это движение, приводящее к "всююности жизни", достигается путем размножения и перемещения организмов. То есть именно живые организмы, совокупность жизни, благодаря космической лучистой энергии, превращая ее в химическую энергию и тем самым создают бесконечное разнообразие нашего окружающего мира. Живые организмы со своим дыханием, своим питанием, своим круговоротом (метаболизмом), своей смертью и своим естественным размножением, постоянным использованием своего вещества, происходящих сотни миллионов лет существуют только в биосфере. В.И. Вернадский, таким образом рассматривает биосферу термодинамическую оболочку (пространство), где сосредоточены жизнь и существует постоянное взаимодействие всего живого с неорганическими условиями среды.

Основой динамического равновесия и устойчивости биосферы является круговорот веществ и превращение энергии. Он слагается из множества процессов превращения и перемещения вещества. Отдельные циклические процессы представляют последовательный ряд изменений вещества, чередующихся с временным состоянием равновесия. Примерами могут служить круговорот воды на Земле, круговорот кислорода, углерода, азота и различных минеральных веществ.

В.И. Вернадский разработал учение о биосфере, ввел в науку понятие "живое вещество". Под живым веществом понимается совокупность всех организмов, населяющих в то или иное время нашу планету. Оно представлено биомассой растений (наземной и подземной), биомассой животных (включая насекомых) и биомассой бактерий, грибов и других. Таким образом живое вещество находится в состоянии постоянного обмена веществом и энергией с геохимической средой. Оно ежегодно поглощает и ассимилирует огромное количество химических элементов и выделяет в окружающую среду новые, образующиеся в организмах соединения. Поэтому В.И. Вернадский подчеркивал, что живое вещество является самой активной формой материи во Вселенной. С их помощью на Земле происходит гигантская геохимическая работа, где полностью преобразуются все компоненты природы, за время своего существования.
По определению В.И. Вернадского биосфера переходит к высшей стадии ее развития. Сферу разума (ноосферу). Ноосфера является высшей стадией развития биосферы, где разумная человеческая деятельность становится главным определяющим фактором развития на Земле. По В.И. Вернадскому "Ноосфера есть новое геологическое явление на нашей планете. В ней впервые человек становится крупнейшей геологической силой. Он может и должен перестраивать свой трудом и мыслью область своей жизни, перестраивать коренным образом по сравнению с тем, что было раньше". В ноосфере у человека проявляется своеобразная планетная и космическая функция, при этом взаимодействуют его мысли и действия.

Вопросы и упражнения
1. Охарактеризуйте земные сферы географической оболочки.
2. Дайте подробную характеристику биосферы.
3. Каковы особенности эволюции биосферы и ее основных этапов развития?
4. Объясните значение и роль учения о биосфере В.И. Вернадского.

4. ЗАКОНОМЕРНОСТИ РАЗВИТИЯ И РАСПРОСТРАНЕНИЯ ОРГАНИЗМОВ НА СУШЕ И ОКЕАНЕ

4.1. Развитие организмов на суше.
Поверхность суши была освоена в ходе эволюции живых организмов значительно позднее, чем водная. Жизнь на суше потребовала таких приспособлений, которые оказались возможными лишь при достаточно высоком уровне организации и растений, и животных. Экологическая среда на суше была более сложна для жизни, чем в океане. В первую очередь тела живых организмов окружены воздухом - газообразной средой с низкой плотностью, высоким содержанием кислорода и малым количеством водных паров. Это сильно изменило условия дыхания, водообмена и передвижения живых существ.
Во-первых низкая плотность воздуха определяли малую подъемную силу и незначительную опорность обитающих организмов на суше. Во-вторых, малая подъемная сила
воздуха определяли предельную массу и размеры наземных организмов.
Млекопитающие размером с современного кита не могли бы существовать на суше, так как было бы раздавлено собственной тяжестью. В-третьих, малая плотность воздуха обусловливалась низкую сопротивляемость передвижению организмов. Поэтому многие наземные животные использовали в ходе эволюции экологические выгоды этого свойства воздушной среды, приобретая способность к полету. В-четвертых, наземные организмы существуют в условиях сравнительно низкого давления, обусловленного малой плотностью воздуха. В норме она равна 760 мм ртутного столба. С увеличением высоты над уровнем моря давление уменьшается. Поэтому для большинства позвоночных видов организмов верхняя граница жизни находится на 6000 м высоте.

На существование живых организмов чрезвычайно важную роль играет газовый состав воздуха в приземном слое атмосферы (азот - 78,1%, кислород - 212,0%, аргон - 0,9%, углекислый газ - 0,03% по объему). Такое соотношение однородность газового состава атмосферы на приземном слое сохраняется благодаря высокой диффузионной способности газов и постоянному перемешиванию конвекционными и ветровыми потоками. При этом высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первично-водными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойотермия (способность поддерживать постоянную температуру тела независимо от температуры окружающей среды) животных.

Как правило, по закону диалектического материализма как и все материю организмы на земной поверхности непрерывно изменяются и приспосабливаются. То есть один организмы умирают, а на смену им рождаются другие. При этом энергия и питательные вещества проходят через организм, неся конечным и непрерывным потоком. А между тем внешний вид и состав большинства организмов не меняются. Например, дубы сменяются дубами, зайцы зайцами, то есть происходит непрерывный процесс самовозобновления и самовосстановления. Последние в первую очередь осуществляется приспособление организмов к определенной экологической среде. То есть эволюционное приспособление организмов к изменяющимся условиям.
среды обитания земной поверхности называется адаптацієй. Способность к адаптации является одно из основных свойств жизни и ее возможность существования, выживания и размножения. В целом адаптация проявляется на разных уровнях: от биохимии клеток и поведения отдельных организмов для строения и функционирования сообществ и экологических систем. Адаптация возникает и изменяется в ходе эволюции различных видов организмов.

Любой организм может существовать при определенном размахе, амплитуде значений вышеназванных экологических факторов. Минимумом обычно называется наименьшие значения экологических факторов, ниже которых животные или растения не могут существовать. Максимумом называется наибольшее значение экологических факторов, выше которых жизнь организмов того или иного вида невозможна. С учетом этих положений немецким ученым В. Шелфордом (1913) для проживания (процветания) организмов определено понятие "лимитирующий фактор". Она определяется величиной выносимости организма (толерантности - от латинского толеранціо - терпимость). То есть жизнедеятельность организма может в равной степени лимитироваться не только минимальным значением, но и также избытком (максимальным значением) экологических факторов.

Следовательно, существование организма возможно в определенных границах толерантности, которые ограничены минимумом и максимумом относительно того или иного экологического фактора. Максимально и минимально переносимые значения фактора - это критические точки. За пределами этих критических точек находятся экстремальная зона и зона смерти органов. Однако внутри этих границ (точек) значение экологического фактора не всегда одинаково благоприятно для протекания всех жизненных процессов. Зона минимума и максимума неидентична (не сходна) для протекания различных процессов жизнедеятельности одного и того же организмам. Например, по исследованиям учеников установлено, что скорость фотосинтеза и дыхания изменяется при изменении температуры неоднаково. Наиболее оптимальны для процесса фотосинтеза температуры в пределах 20-25 градусов С. У большинства растений, за исключением жаровыносливых, с дальнейшим ростом температур энергия фотосинтеза падает. При этом наблюдается в определенной мере различные степени требовательности того или иного вида ор-
организма к экологическим факторам среды. Она обозначается понятием экологическая валентность, экологическая пластичность или экологическая амплитуда организма. Организмы, имеющие широкую экологическую валентность по отношению к абиотическим факторам среды называются эврибионтами. А организмы, существующие в строго определенных экологических условиях (экологической валентности) называются стенобионтами. Таким образом можно меняться при переходе от одной стадии развития к другой. Часто молодые организмы оказываются более уязвимыми и чувствительными к экологическим факторам, чем взрослые. При последовательных сменах стадий жизненного цикла у одного и того же вида организма границы толерантности заметно изменяются.

В природе организмы поддерживают со средой определенное равновесие с помощью саморегуляции. То есть состояние организмов, сохраняющие внутреннее динамичное равновесие путем постоянной функциональной саморегуляцией называется гомеостазом. Таким образом гомеостаз обеспечивается как постоянной функциональной саморегуляцией живой системы, так и постоянным возобновлением основных ее структур клетка, организм или другая природная система). Например, в саморегуляции растительных организмов важное значение имеют ферментные системы. Благодаря им растения в значительной мере могут противостоять неблагоприятным внешним факторам. Так, сосна обыкновенная в отличие от многих растений по отношению к кислотности почвы обладает широкой экологической амплитудой и успешно растет на кислых, нейтральных и щелочных почвах. В данном случае пределы приспособляемости сосны обыкновенной меняются к различным условиям среды.

В природе организмы на уровне биоценоза находятся в состоянии внутреннего подвижного равновесия, то есть постоянно претерпевают какие-то изменения. Эти изменения могут быть обратимы и необратимы. Необратимые во времени последовательная смена биоценозов, преимущественно возникающих на одной и той же территории в результате влияния природных факторов или воздействий человека называется сукцессией (от латинского суксесси - преемственность, наследование). При этом каждый живой организм в результате жизнедеятельности меняет вокруг себя среду, изымаая из нее часть веществ и насыщая ее продуктами биологического круговорота. Таким образом
сукцессии ведут к формированию или восстановлению (демутации) устойчивого стабильного биоценоза или же наоборот к его дигрессии - ухудшению состояния неустойчивости, распаду. В целом сукцессионные процессы находятся под контролем абиотических, биотических и антропогенных факторов.

4.2. Весьма своеобразны существование организмов морей и океанов.

В последних прежде всего различаются две эколого-гические области: пелагиаль (овхватывающая толщу воды) и бенталь (природная). Условия существования организмов в этих областях весьма различна. Обитатели пелагиали всю жизнь или значительную ее часть проводят в толще воды, и они мало связаны с дном океана. Поэтому окраска организмов, форма тела приспособлены к жизни именно в этой области океана. Для пелагиали характерны особые экологические группы организмов планктон и нектон.

Планктонные организмы не обладают способностью к продвижению на далекие расстояния и находятся во взвешенном состоянии. К ним относятся: одноклеточные водоросли, простейшие медузы, моллюски, икра и малые рыбы и многие другие. Планктонные организмы обладают многими сходными адаптациями, повышающими их плавучесть и препятствующими оседанию на дно. К таким приспособлениям относятся: 1) общее увеличение поверхности тела за счет уменьшения размеров, сплющенности, удлинения, развития многочисленных выростов или щетинок, которые увеличивает трение о воду; 2) уменьшение плотности за счет редукции скелета, накопления в теле жиров, пузырьков газа и других.

Плотность и вязкость воды сильно влияют на возможность активного плавания организмов. Животных, способных к быстрому плаванию и преодолению силы течений, объединяют в экологическую группу нектона. Представители нектона - рыбы, кальмары, дельфины, китообразные и другие организмы. Быстрое движение в водной толще возможно лишь при наличии обтекаемой формы тела и сильно развитой мускулатуры.

Особую разновидность планктона составляет экологическая группа нейстоны. К ним относятся обитатели (организмы) поверхностной пленки воды на границе с воздушной средой.
В зависимости от глубины бентальная экологическая область подразделяется на 3 подобласти: литоральную (прибрежную), батиаль (природные слои материкового склона океана) и абиссальную (глубоководную часть океана).

Литораль характеризуется весьма значительным богатством органической жизни. Здесь обитают, кораллы, разноцветные рыбы, морские звезды и другие. Здесь организмы жили в условиях относительно невысокого давления, дневного солнечного освещения, часто в довольно значительных изменениях температурного режима.

В батиальной и абиссальной подобластях обитают организмы (бактерии, водоросли), существующие во мраке. При постоянной холодной температуре и на высоком давлении в несколько сотен, а иногда около тысячи атмосфер.

Таким образом плотность воды является самым важным фактором, определяющим условия передвижения водных организмов и давление на разных глубинах. Другим важным обстоятельством обитания организмов на воде - кислородный режим. В частности, коэффициент диффузии кислорода в воде примерно в 320 тыс. раз ниже, чем в воздухе, а общее содержание его не превышает 10 мл в 1 л воды. Такое соотношение в 21 раз ниже, чем в атмосфере. При этом кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние слои водной толщи, как правило, богаче кислородом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается. Например, в Мировом океане богатые жизнь глубины от 50 до 1000 м характеризуются резким ухудшением аэрации - она в 7-10 раз ниже, чем в поверхностных водах населенных фитопланктоном, около дна водоемов условия могут быть близки к анаэробным. Нехватка кислорода в воде приводит иногда к катастрофическим явлениям - заморам, сопровождающимся гибелью множество гидробионтных организмов.

Следующим важным фактором обитания организмов - это солевой режим воды. Большинство водных организмов, благодаря осмотическому давлению в их теле зависят от солености окружающей воды. Поэтому для них основной способ поддерживать свой солевой баланс - это избегать местообитаний с неподходящей соленостью. То есть пресноводные формы не могут существовать в морях, морские - не переносят опреснения. В этом случае соленость воды
подвержена изменениям, животные перемещаются в поисках благоприятной среды.

В целом вода океанов и морей как среда обитания имеет некоторые специфические свойства. такие как большая плотность, сильные перепады давления, относительно малое содержание кислорода, сильное поглощение солнечных лучей, солевой режим, скорость горизонтальных перемещений (течений), содержанием взвешенных частиц.

4.3. Распространения живых организмов на суше и океане.

Живые организмы. растительный покров и животный мир Земли имеют различные распространения по ее поверхности. Так как условия жизни в глубоководных впадинах океанов и на высокогорьях, в полярных областях Евразии и Северной Америки и на экваториальной суше - на островах и континентах крайне различны. В целом распространения живых организмов (без человека) подчиняется следующими закономерностями: широтной зональности, региональности и высокой поясности. Смена растительного покрова и животного населения от экватора и полюсам на суше называется широтой (географической или природной) зональностью. То есть для каждой природной зоны характерна своя специфика распространения и обитания растений и животных организмов.

Для влажных экваториальных и тропических лесов характерны оптимальные условия влажности и температурного режима, которые обеспечивают максимальную продуктивность биомассы (особенно растительного покрова). Основные районы их распространения: бассейны рек Амазонки, Конго, Большие Зондские острова и другие. Здесь произрастают густые вечноzelенные леса (гилеи, сильва). Их называют эпифитами (отсутствуют специальные приспособления для удерживания и сохранения влаги). Лес очень густой, вокруг деревьев обвиваются лианы. Их видовой состав очень разнообразен и богат. Цветут и плодоносят многие растения круглый год. Травостоя мало и кустарники почти отсутствуют. Животный мир влажных экваториальных и тропических лесов отличается также богатством и разнообразием. Для них характерно круглогодичное размножение, которое способствует плавной динамике численности животных, без редких пиков и спадов. Многие организмы (змеи, насекомые, пауки и другие) обитают в кронах дере-
вьев, а на поверхности почвы много крупных млекопитающих (носороги, слоны). Встречаются много различных птиц (мухоловки, трогонь, дронговые). Общая биомасса влажных экваториальных и тропических лесов в среднем составляет 400-700 т/га.

Для тропических сезонных лесов, редколесьев и колючих кустарников земного шара свойственны сезонные засухи и влажные периоды в течение года. Основу растительного покрова образуют, полулистопадные, листопадные и разреженные леса (змейдженты, рамифлория, тиковые, пальмы, бамбук и другие) и колючие кустарники (караинга, мимозы, кактусы, молочаи, аканы и другие). Животное население не столь богато, как во влажных экваториальных и тропических лесах. Основная причина связана с неблагоприятностью для животных сухого периода. Характерны различные виды жуков, сараковых, чешуекрылых, грызунов, кошачьих, камышевых и многих птиц. Из крупных здесь обитают леопарды, пума, оцелот, ягуар и другие. Общие биомассы органического мира этой зоны не превышает 200-250 т/га.

Саваннами заняты обширные площади Африки, Южной Америки, Азии и Австралии. Саваннами называются травы (тропические злаки), которые имеют высоту от нескольких десятков сантиметров до метра. Сезонная ритмика их тесно связана с периодичностью выпадения осадков. В дождливый сезон - это зеленые пространства, в сухой сезон - выгоревшие и покрытые сухими растительными остатками зеленые территории. В составе травы кроме злаков встречаются осоковые и небольшие деревья и кустарники, которые произрастают одиночно. Обилие растительных кормов способствуют здесь к обитанию здесь травоядных животных: антилопы, буйволы, зебры, жирафы, олени, а также связанные с ними крупные хищные звери: лев, ягуар и птицы. Общая биомасса органического мира саванны составляют 100-150 т/га.

Пустыни формируются в условиях умеренного, субтропического и тропического природных поясов. Для них характерен недостаток увлажнения, аридностью условий в климатическом режиме. Именно они ограничивают развитие растений и обитания животного населения. Растительности пустынь свойственны: разреженное произрастание, невысокое проективное покрытие. Основной фактор, ограничивающий развитие растений - это недостаток влаги в почве и воздухе, в связи с чем важнейшую роль играют
приспособления растений к дефициту влаги. Поэтому почти все растения являются ксерофитными. Пустынные растения бывают эфемерами, суклетами. Состав и структура животного мира формируется под воздействием тех же основных экологических факторов. Однако реакции животных организмов основные адаптивационные процессы связаны с характером субстрата (почвы) пустыни. Для пустынь характерны многие виды беспозвоночных (жуки, термиты), пресмыкающиеся (змеи, ящерицы), мелкие птицы, грызуны (песчаники, тушканчики), млекопитающие (пустынная рысь, барханная кошка, сайгак), черепахи и многие другие. Средняя биомасса органического мира пустынь составляет 8-10 т/га.

Для субтропических лесов и кустарников, основным фактором дифференцирующим развитие растительности является влажность и продолжительные понижения температуры воздуха. Основа растительного покрова образуется из жестколистных лесов и кустарников (маквис, гарига, бата), влажных лесов (дуб, кипарис, лавровые деревья, эвкалипты). Жаркое сухое лето прохладная влажная зима здесь определяет основные условия обитания животных. Характерными являются: животные - сапрофаги (термиты, дождевые черви, мокрицы, тараканы), млекопитающие (хомяки, белка, кабан, безоаровый козел, ласка, барсук). Общие запасы биомассы организмов этой зоны достигают до 500 т/га.

Степи, прерии и их аналоги распространяются на умеренном поясе и отличаются ксерофильной травянистой растительностью. Их климат отличается теплым и сухим летом, прохладной зимой и сравнительно большим количеством выпадаемых осадков. Для них свойственна держновинные злаковые, эфемерные растения и низкорослые кустарники. Значительная часть этой зоны распахана. Животные степей и прерий в целом приспосабливаются к довольно своеобразному режиму травянистых растений умеренных широт. Травянистая растительность обеспечивает обильные запасы корма животным - зеленоядам (грызуны, жуки и другие), копытных (антилопы, сайгаки, бизоны, вилорги), птицы (куропатка, перепел, жаворонки, дрофа) и многие другие. Общие запасы биомассы степей и прерий в среднем составляет 30-50 т/га.

Широкохолстные леса умеренного пояса занимают большие площади на северном полушарии. Климат этой зоны умеренно прохладный, осадки распределены в
течение года относительно равномерно. Основу широколиственных лесов составляют: бук, дуб, каштан, граб, ясень, липа, тюльпанное дерево и многие виды кустарников. Сезонность годичного цикла. Теплое влажное лето и холодная зима со снежным покровом обуславливает четкую сезонную динамику активности животных. На кроах деревьев обитают многие виды насекомых; из крупных млекопитающих встречаются - марал, изюбъяр, лань, олень, кабан; из птиц - дроzdы, совки, мухоловки, синицы, горностай, ласка и другие. Запасы биомассы в среднем составляет 500-600 т/га.

Хвойные леса умеренного пояса (тайга) характеризуются в климатическом отношении сравнительно коротким вегетационным периодом, холодной зимой, относительно прохладным летом. Значительные площади хвойных лесов находятся в области распространения многолетнемерзлых пород. Основу хвойных лесов составляют: ель, пихта, тюг, сосна, лиственница, кедр, тюя, секвойя и многочисленные виды кустарников. Животное население (белка, кедровка, зайцы, глухарь, тетерев, лось и многие другие) приспособлено к экологическим условиям тайги. Общие запасы биомассы таежных лесов в среднем составляет 300-400 т/га.

Тундровая зона отличается коротким и прохладным вегетационным периодом и низкой температурой почвы. Также характерна высокая относительная влажность воздуха и преобладание осадков над испарением. Важнейшими экологическими факторами также являются длительное сохранение снежного покрова и повсеместное распространение вечной мерзлоты. На тундре распространены в основном растения - криофиты (мох, лишайник и низкорослые травы, кустарнички). Низкие температуры воздуха, длительная малоснежная зима, наличие подпочвенного слоя вечной мерзлоты ограничивают распространение животного населения. К последним относятся: нематоды, клещи, личинки, шмели; грызуны - лемминги, полевки, суслики; млекопитающие - северный олень, снежный баран, овцы, бык и другие. Общие запасы биомассы в среднем составляют 10-15 т/га.

Распространение живых организмов о подножиях вершин связаны с высотной поясностью. То есть для конкретного пояса гор свойственно определенное взаимосвязанное сочетание растительного и животного мира. Например, в предгорных пустынях растет ксерофитные, эфеме-
ровые, суккулентные растения и связанные с ними насекомые и другие виды животных.

Распространение живых организмов также связано с региональностью или древностью (молодостью) материков и островов. В частности, в Новой Зеландии вообще нет млекопитающих животных, а в Австралии почти полностью отсутствуют так называемые плацентарные млекопитающие (у которых плод прикреплен к стенке матки плацентой). Зато господствуют сумчатые животные (кенгуру), яйцекладущие (утконос, ехидна).

В Южной Америке и островах Карибского моря обитают так называемые неполнозубные млекопитающие (броненосцы, ленивцы), которые в других районах земного шара не встречаются.

По распространению организмов на Мировом океане подразделяются на биполярные и амфибореальные. Биполярные организмы распространены на умеренных холодных водах северного и южного полушария, но отсутствуют в тропических и экваториальных водах. К ним относятся: тюлени, многие виды китов, ряд рыб, многие бурые водоросли и беспозвоночные животные.

Амфибореальное распространение организмов выражается в том, что в северных частях Атлантического и Тихого океанов обитают одни и те же виды трески, сельды, камбала и другие, которые отсутствуют в Северном Ледовитом океане.

Наиболее богаты органическим миром Бореальные (Атлантические и Тихоокеанские) и Умеренно-Атлантические районы мира. В Арктической и Антарктической полярной частях мирового океана и мощному развитию жизни препятствуют очень низкие температуры и длительный ледяной покров. А на тропических и экваториальных водах океана - относительная бедность теплых вод кислородом.

Вопросы и упражнения

1. Охарактеризуйте основные моменты развития организмов на суше.
2. Какова особенность существования организмов на море и океане?
3. Объясните основные причины распространения организмов на суше и океане.
5. ПОТОКИ ЭНЕРГИИ И КРУГОВОРОТА ВЕЩЕСТВ В ПРИРОДЕ

5.1. Потоки энергии в природе и ее значения для живых организмов.

Солнечная радиация является единственным источником энергии почти для всех природных процессов, развивающихся в биосфере. Поток солнечной радиации на среднем расстоянии Земли от Солнца приблизительно равен 1000 ккал/кв. см год. Вследствие шарообразности Земли на единицу поверхности внешней границы атмосферы в среднем поступает 1/4 часть от общей величины поступа (250 ккал/кв. см год). Причем приблизительно 170 ккал/кв. см год поглощается Землей как планетой. Таким образом преобразования солнечной энергии в биосфере связана с ее энергетическим балансом. При этом особенно большое значение имеют данные по энергетическому балансу поверхности Земли. Она является главным источником энергии для биосферы и где сосредоточена основная часть биомассы живых организмов.

Уравнения энергетического баланса представляют собой частные формулировки одного из физических законов - закона сохранения энергии. Она включает потоки энергии между элементами земной поверхности и окружающим пространством. В число этих потоков входят радиационные потоки тепла, сумма которых равно рациональному балансу.

Для составления уравнения энергетического баланса будем обозначать радиационный поток тепла через R, турбулентный поток тепла от подстилающей поверхности к атмосфере через P, поток тепла от подстилающей поверхности к нижележащим слоям через A и затрату тепла на испарение через LE (L - скрытая теплота испарения, E - скорость испарения). Уравнение энергетического баланса будет иметь следующую форму.

\[R = LE + P + A \]

Таким образом, приход энергии Солнца и космических лучей на поверхности Земли, усвоение ее в ходе фотосинтеза растениями, далее передача от одного трофического уровня организмов к другому в биосфере называется потоком энергии.

То есть органическое вещество в природе создается в результате деятельности так называемых автотрофных
растений. То есть они являются единством группы организмов, способных синтезировать органическое вещество из минерального. Иначе говоря, организмы, синтезирующие из неорганических соединений органические вещества при помощи энергии Солнца называются автотрофами. Ими являются фотосинтезирующие растения суши, фитопланктоны морей и океанов. В частности, фотосинтезирующие растения суши используют для построения органического вещества углекислоту воздуха, воду и небольшое по сравнению с общей массой синтезируемого вещества количество минеральных веществ почвы.

Основное содержание суммарной реакции фотосинтеза упрощенно можно выразить в виде уравнения:

$$6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$$

Орган ассимиляции фотосинтезирующего растения является ее лист. Она представляет собой футляр из плотной кутикулярной ткани, пронизанной множеством малых отверстий, которые могут открываться и закрываться. В этом футляре заключена весьма большая поверхность хлоропластов, содержащих зерна хрофилла. Поверхность хлоропластов сообщается с атмосферным воздухом через межклеточники и отверстий. При этом весьма существенно, что для развития фотосинтеза поверхность хлоропластов должна поддерживаться в увлажненном состоянии, поскольку углекислоты может ассимилироваться только в виде растворов. Вследствие этого относительная влажность воздуха в межклеточниках велика и обычно значительно превышает относительную влажность в атмосферном воздухе. Таким образом, диффузия углекислоты в лист с открытыми отверстиями, неизбежно сопровождается диффузией в обратном направлении водяного пара, то есть транспирацией растения. Таким образом поток энергии является единственной надежной "валютой" как в экономике, который впоследствии превращается к другим формам энергии организмов. То есть органическое вещество, создаваемое автотрофными растениями, почти полностью потребляется гетеротрофными организмами. Гетеротрофными организмами называются те организмы, которые способны питаться готовыми органическими веществами и неспособные синтезировать органические вещества из неорганических. Ими являются растительноядные и плотоядные животные, соответственно питающихся растениями и животными. Таким образом, часть этих организмов поедает живое органическое вещество, другая часть, состоящая в
значительной мере из микроорганизмов, питается отмирающими частями автотрофных растений. Сравнительно небольшая часть из общей продукции органического вещества при помощи организмами-разрушителями превращается в минеральное вещество. Помимо этих, некоторые организмы (бактерии, грибы) синтезируют органическое вещество из неорганических за счет энергии окисления аммиака, сероводорода и других веществ в воде и почве. Их называют хемотрофами (то есть, участвующей в хемиосинтезе организмов). Таким образом, почти вся итоговая продукция автотрофных растений поступают в различные трофические уровни (пищевые цепи). Последние создают как бы простую структурную основу, осуществляющие определенную связь от одних организмов к другим. То есть поток энергии протекает через все трофические уровни живых организмов, как своеобразная химическая энергия.

Количество энергии, получаемой в процессе ее потока на каждом трофическом уровне, уменьшается по мере перехода энергии от одного уровня на другой по пищевой цепи. Зеленые растения являются первичным продуцентом образуют наиболее продуктивный трофический уровень. Менее продуктивны растительноядные животные, еще менее - плотоядные. Таким образом продуктивность каждого трофического уровня ограничивается продуктивностью уровня, непосредственно ему предшествующего. Поскольку растения и животные расходуют часть энергии на поддержание своего существования, все меньше и меньше энергии передается в результате процессов роста и размножения каждого из вышележащих трофических уровней. В частности, от 30% до 70% энергии света, ассимилированной растением расходуется им самим на поддержание своего существования и на процессы биосинтеза. Растительноядные и плотоядные животные ведут более активный образ жизни, чем растения, и расходуют еще большую часть ассимилированной ими энергии. В результате продуктивность каждого трофического уровня обычно составляет 10-20% предыдущего. Она выражается уменьшением биомассы и численности организмов на каждом трофическом уровне. Именно такие закономерности во многом определяют суммарные величины биомассы различных организмов. Например, при современной численности человечества (более 5 млрд.) биомassa людей составляет примерно 0,2·10^9 т. Считая, что каждый человек расходу-
ет ежедневно в среднем около 2,5 \times 10^3 ккал энергии, то суммарное потребление энергии людьми составляет 1,8 \times 10^15 ккал/град. Такая величина примерно соответствует современной продуктивности сельскохозяйственного производства стран мира.

В целом в трофических цепях человек занимает одно из последних мест, потребляя как первичную продукцию автотрофных растений, так и биомассу, создаваемую многими растительноядными и плотоядными животными. Потребляя все большую часть первичной биологической продукции, человек наряду с этим расходует также их года в год возрастающий объем энергии.

Таким образом поток энергии исходящий из Солнца непрерывен. Он является линейным незамкнутым процессом. В то же время он считается необходимым условием для другого замкнутого процесса - круговорота веществ в природе, особенностях в биосфере.

5.2. Круговороты веществ в природе.

Взаимодействие компонентов, образующих Земли (географической оболочки) и их целостностью осуществляется путем обмена веществ (круговорота). Элементами круговорота веществ в природе являются: направленные процессы последовательного преобразования, разложения и деструкции синтезированных ранее соединений под влиянием абиогенных или биогенных воздействий среды, постоянное или периодическое образование простейших минеральных и органоорганических компонентов на газообразном, жидким или твердом состоянии. Они играют как бы роль исходных компонентов для новых очередных синтетических циклов круговорота веществ, процессы протока энергии и синтеза новых соединений, а также процессы переноса, перераспределения и выноса энергии, сопровождающиеся выносом и перемещением синтезированных соединений.

В природе протекают как абиогенные, так и биологические циклы круговорота веществ. Ненарушенные циклы носят почти замкнутый характер, поэтому степень повторяющегося воспроизводства циклов в природе очень велика и, вероятно, достигает 90-98%. Благодаря этому поддерживается известное постоянство состава, количества и концентрации компонентов, вовлеченных в круговорот.

Выделяются два основных круговорота веществ: большой (геологический) и малый (биологический).

52
Большой круговорот в природе длится сотни тысяч или миллионы лет. Он заключается в том, что горные породы подвергаются разрушению, выветриванию, а продукты выветривания, в том числе растворимые в воде питательные вещества, сносятся потоками воды в Мировой океан. Здесь они образуют морские напластования и лишь частично возвращаются на сушу с осадками, с извлеченными человеком из воды организмами. Крупные медленные геотекто-нические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу, и процесс начинается вновь.

Малый круговорот, являясь частью большого, происходит на уровне экосистемы и частично на биоценозе живых организмов. Сущность ее заключается в том, что питательные вещества почвы, вода, углерод акумулируются в веществе растений, расходуются на построение тела и жизненные процессы как их самих, так и организмов - консументов. Продукты распада органического вещества почвенной микрофлорой и мезофауной (бактерии, грибы, черви, моллюски, насекомые и другие) вновь разлагаются до минеральных компонентов, опять-таки доступных растениям и вновь вовлекаемых ими в поток веществ.

Таким образом многократное участие вещества в процессах, протекающих между компонентами природы называются круговоротом веществ. А круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии химических реакций некоторыми учеными называется биохимический цикл круговорота веществ в природе.

При круговороте веществ в природе особое значение имеет круговорот воды, кислорода, углекислорода, азота и фосфора.

5.3. Круговорот воды.

Круговорот воды в природе называется циркуляция воды на Земле, происходящая по условной схеме: выпадение атмосферных осадков, поверхностный и подземный сток, инфильтрация, испарение, перенос водяного пара в атмосфере, его конденсация, повторное выпадение атмосферных осадков. То есть в процессе круговорота воды она мо-
жет переходить из одного агрегатного состояния в другое (Рис. 3).

Важную роль в круговороте воды (биологическом) имеет процесс транспирации. Испарение воды надземными частями растений создает подъемную силу, способствующую тому, что из почвы по сосудам всасывается почвенный раствор, обеспечивающий растения как водой, так и минеральными солями. Например, для синтезирования 1 кг сухого органического вещества растение транспирает около 400 л воды. Из этого нетрудно представить, что какое огромное количество воды извлекается всеми растениями из почвы и вовлекается в биологический круговорот.

Извлекаемая из почвы влага в парообразном состоянии попадает в атмосферу, затем, охлаждаясь, конденсируется и вновь в виде осадков возвращается в почву или океан. Зеленые растения ежегодно испаряют 16×10^{-12} т. и разлагают 13×10^{-9} т. воды из общего запаса ее в биосфере $1,5\times10^{-18}$ т. Формально, чтобы вся вода Земли прошла через живые организмы потребовалось бы 2 млн. лет. Однако свободная и особенно пресная вода совершает оборот через живые организмы на значительно более короткий период.
5.4. Круговорот кислорода

Круговорот кислорода (свободного) это образование кислорода в результате фотосинтеза растений и потребление его в ходе дыхания, реакция окисления (в том числе сжигания топлива) и других химических преобразований. Кислород входит во все жизненно важные молекулы. В среднем каждый четвертый атом живого вещества является атомом кислорода. Свободный кислород поддерживает жизнь, но и сам он является продуктом жизнедеятельности. Поэтому почти весь кислород атмосферы имеет биологическое происхождение (Рис. 4).

Круговорот кислорода связан с его проникновением в биосферу или выводением из нее как в составе двуокиси углерода (CO₂), так и в виде воды (H₂O), а также молекулярного (свободного) кислорода (O₂) и кислорода находящиеся на органических веществах. Поэтому баланс кислорода должен удовлетворять одновременно и балансом каждой из форм, в которой он входит в биосферу. Круговорот кислорода происходит отдельно на океанах и континентальных условиях.

На океанах круговорот кислорода происходит следующим образом: 1 - цикл это фотосинтез и переход созданного первичного органического вещества к гетеротрофным организмом. При этом из водного раствора в фотосинтез приходит 102,4 млрд. т. кислорода в составе воды и 102,4
млрд. т. в составе двуокиси углерода, поглощается 47,3 млрд. т. свободного кислорода, расходуемого на дыхание и аэробные процессы. Таким образом в первый цикл поступает 252,0 млрд. т. кислорода. Он расходуется на дыхание, полимеризацию, возвращается в океан и другие в общем объеме 252,0 млрд. т.

2-ой цикл - потребление гетеротрофными организмами. При этом приходная и расходная часть кислорода составляет 84,2 млрд. т.

3-ий цикл - распад и растворение органического вещества. Поступает в объеме 17,3 млрд. т. расходуется из них 17,1 млрд. т. кислорода. В объеме 0,2 млрд. т. остается в составе гумуса, выносимого с континента.

На континентальных условиях круговорот кислорода также осуществляется в 3-х циклах. 1-й цикл - фотосинтез и расходование созданной им органической массы. Приход кислорода из атмосферы в составе двуокиси углерода - 204,3 млрд. т. Расходная часть состоит из: транспирации, в процессе которой испаряется 119,2 млрд. т, ухода в атмосферу кислорода, отщепленного от молекул воды - 204,3 млрд. т. и передачи во 2-ой цикл 85,1 млрд. т. кислорода в составе клетчатки.

2-ой цикл получает из первоначального о 85,1 млрд. т. кислорода в составе органического вещества и 58,4 млрд. т. свободного кислорода, расходуемого в процессе дыхания. При этом расход состоит из 24,3 млрд. т. кислорода в составе воды и 58,4 млрд. т. кислорода в составе двуокиси углерода. Оставшиеся 60,8 млрд. т. кислород в составе органического вещества переходят в 3-й цикл.

3-й цикл получает из второй 60,8 млрд. т. кислорода органического вещества и 145,9 млрд. т. свободного кислорода из атмосферы. Расходуется на сгорание органического вещества почв с выделением 60,8 млрд. т. кислорода в составе воды и 145,9 млрд. т. кислорода в составе двуокиси углерода пополняющего атмосферу.

Таким образом, в круговороте кислорода в океане участвует 354,5 млрд. т. кислорода ежегодно, а в континентальном - 758 млрд. т., то есть в 2,15 раза больше. При этом следует отметить, что, почти весь кислород атмосферы проходит через живое вещество примерно за 2000 лет. А двуокись углерода, выдыхаемая живыми организмами, уходит в атмосферу и вновь фиксируется растительными клетками примерно за 700 лет.
В настоящее время общее количество свободного кислорода в атмосфере - 1,17×10^15 т. накопилось за все время существования зеленой растительности. При этом свободный кислород образуется со скоростью 1,55×10^9 т./год, а расходуется за год 216×10^10 т., то есть расход больше чем приход.

5.5. Круговорот углерода

Круговорот углерода - это процесс освобождения и связывания двуокиси углерода (CO₂), включая ее растворение в воде океанов, идущий практически по двум циклам - океаническому и континентальному, объединение между которыми происходит через атмосферную углекислоту. Единственным источником углерода, используемого автофотическими растениями для синтеза органического вещества, служит двуокись углерода, входящая в состав атмосферы или находящаяся в растворенном состоянии в воде (Рис. 5).

Круговорот углерода осуществляется в двух различных обстановках - океанический и материковый.

В океанической обстановке 38,4 млрд. т. углерода ежегодно изымается из водного раствора и уходит на синтез живого вещества. Из них 11,9 млрд. т. в процессе дыхания фитопланктона возвращается вновь в раствор; 0,9 млрд. т. переходит в осадок и 24,9 млрд. т. расходуется на зоопланк-
тон и зообентос. За счет размножения органического вещес- ства данного осадка в водный раствор возвращает 1,7 млрд. т. углерода. При поддержании этого равновесия происходит задержка углерода в отдельных звеньях цикла: 1,9 млрд. т. 7а 18 дней в фитопланктоне; 35,6 млрд. т. на 13,9 лет зоопланктоне и 2000 млрд. т. на 3000 лет в составе органического вещества, растворенного в океанической воде.

В континентальном круговороте на синтез органического вещества наземной растительности ежегодно затрачивается 76,7 млрд. т. углерода. Из них 21,9 млрд. т. возвращается в атмосферу в процессе дыхания, а 54,8 млрд. т. переходит в гумус почв. Постепенно это органическое вещество разлагается аэробными и анаэробными и возвращает атмосфере 54,6 млрд. т. углерода в год в виде двукиси углерода, а 0,2 млрд. т. выносится в Мировой океан. Таким образом из круговоротов в наземной растительности задерживается в среднем на 40 лет 1068 млрд. т., а в почве примерно на 300-700 лет задерживается 1700 млрд. т. углерода.

5.6. Круговорот азота

Круговорот азота – это фиксация азота в виде солей, доступных для питания растений и освобождение его при денитрификации. Азот атмосферы, как инертный газ, недоступен живыми организмами при дыхании, хотя она имеет в очень большом количестве в воздухе. Он имеет огромное значение в жизненных процессах, а следовательно, и в круговороте веществ. Азот усваивают лишь азотфиксирующие бактерии и сине-зеленые водоросли, превращающие его в нитраты. Их усваивают растения для построения белковых соединений. Азотфиксирующие организмы ежегодно улавливают 5,4★10^10 т. азота (Рис. 6).

5.7. Круговорот фосфора.

Минеральный фосфор является редким элементом в биосфере. В земной коре его содержание не превышает 1%. Основными источниками неорганического фосфора являются изверженные или осадочные породы. Неорганический фосфор из пород земной коры вовлекается в циркуляцию вышелочиванием и растворением в континентальных водах. На суше неорганический фосфор поглощается растениями и используется для синтеза органических веществ. Последние потребляются растительноядными животными. Затем органические фосфаты вместе с трупами, отходами и экскрементами живых организмов
возвращаются в землю. Далее подвергаются переработке микроорганизмами (бактериями), фосфаты возвращаются в почву и снова используются растениями. То есть опять, вновь включаются в круговорот природы.

В водоемы фосфор приносится текучими водами в виде фосфатов, которые обеспечивают существование фитопланктона и всех зависящих от него пищевых цепей. При этом ежегодный вынос фосфора в Мировой океан оценивается в $1,4 \times 10^7$ т, скорость обратного переноса фосфора из океана на сушу птицами и с рыбопродуктами составляет значительно меньшую величину, примерно 10^5 т./год.

Таким образом в природе происходит непрерывная циркуляция веществ, косных (неживых) ее элементов не дающих энергии. Они (азот, углерод, вода, кислород, фосфор и другие) многократно обращаются между живыми и неживыми системами. То есть один и тот же атом материи может быть использован вновь и вновь. Следовательно, в природе имеет место круговорот веществ и односторонний поток энергии, который переносится по трофическим уровням живых организмов.
Вопросы и упражнения

1. Какова роль солнечной радиации на процессе потока энергии в природе?
2. Объясните основные каналы потока энергии в природе.
3. Значение круговорота веществ в природе.
4. Охарактеризуйте круговорот воды в природе.
5. Охарактеризуйте круговорот кислорода в природе.
6. Охарактеризуйте круговорот углерода в природе.
7. Охарактеризуйте круговорот азота в природе.
8. Охарактеризуйте круговорот фосфора в природе.

6. УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВЫХ ОРГАНИЗМОВ В БИОСФЕРЕ

Биосфера является огромной и чрезвычайно сложной экологической системой, где биологический круговорот работает в определенном и относительно постоянном режиме. Такая стабильность сложилась на основе высокого уровня организации живых организмов, для каждого из которых характерны специфическое взаимоотношение со средой. Поэтому, живущие в биосфере организмы различаются на уровнях: популяций, биоценоз (сообществ) и экосистем. Причем для каждого из уровней свойственно определенное соотношение и взаимосвязь между самими организмами и с окружающей их средой обитания.

6.1. Популяция.

Популяцией в экологии называются совокупность организмов одного вида (особей), населяющих определенное пространство (участок территории). Слово "популяция" происходит от латинского "популус" - народ, население. Поэтому популяцию с экологической точки зрения, можно определить как население одного вида организмов на какой-либо территории. Члены одной популяции оказывают друг на друга не меньшее воздействие, чем физические факторы среды или другие обитающие совместно виды организмов. Популяция, как групповое объединение обладает рядом специфических свойств, которые присущи каждой отдельно взятой особи (вида). То есть групповые особенности являются основной характеристикой популяции. К ним относятся: 1) численность - общее количество особей (видов) на выделяемой территории; 2) плотность популяции - среднее число особей на единицу площади или обь
ема занимаемого популяцией пространства. Плотность популяции можно выразить также через массу членов популяции в единице пространства; 3) рождаемость - число новых особей, проявившихся за единицу времени в результате размножения; 4) смертность - показатель, отражающий количество погибших в популяции особей за определенный отрезок времени; 5) прирост популяции - разница между рождаемостью и смертностью; прирост может быть как положительным, так и отрицательным; 6) темп роста - средний прирост за единицу времени.

Популяции свойственна определенная организация. Распределение особей по территории, соотношения групп по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают структуру популяции. Она формируется, с одной стороны, на основе общих биологических свойств вида, а с другой стороны - под влиянием абиотических факторов среды и популяций других видов. Структура популяций в целом имеет приспособительный характер. Разные популяции одного вида обладают как сходными особенностями структуры, так и отличительными, характеризующими специфику экологических условий в местах их обитания.

При этом занимаемое популяцией пространство (участок) предоставляет ей средства к жизни. Каждая территория может прокормить лишь определенное число особей. Естественно, что полнота использования имеющихся ресурсов зависит не только от общей численности популяции, но и от размещения особей в пространстве. Для популяции характерны следующие формы существования особей (вида): одиночный образ жизни (характерен на определенных стадиях жизненного цикла); семейный образ жизни; колонии (групповые поселения оседлых животных); стаи (временные объединения животных, которые проявляют биологически полезную организованность действий); стада (более длительные и постоянные объединения животных по сравнению со стаями). В целом структура популяции, ее численность и динамика численности определяются экологической нишей данного вида и конкретно соответствием условий местообитания. Требованиям слагающих популяцию организмов. Поэтому, прямо или косвенно влияя на животный и растительный мир, человек всегда воздейстует на популяции, меняет их параметры и структуру, зачастую нарушая их соответствие реальным режимом эко-
логических факторов. Она в ряде случаев приведет к гибе-
ли популяции.

6.2. Биоценоз.

Сообщество (группировка) несколько взаимосвязанных
видов организмов, живущие (развитые) на каком-либо
участке суши называется биоценозом. Оно исходит от ла-
тинского слова "биос" - жизнь, "ценоза" - общий. Приспо-
собленность членов биоценоза к совместной жизни выра-
жается в определенном сходстве требований к важнейшим
абиотическим условиям среды и закономерных отношениях
друг с другом. В природе масштобы, биоценотических
группировок организмов очень различны, от сообществ
подушек лишайников на стволах деревьев до населения
цельных ландшафтов: лесов, степей, пустынь и других. Таким
образом, термин "биоценоз" в современной экологической
литературе чаще всего употребляются применительно к
населению территориальных участков, которые на суще
выделяют по относительно однородной растительности.
При этом имеется в виду вся совокупность живых существ -
растений, животных, микроорганизмов, приспособленных к
совместному обитанию на данной территории. К важней-
шим особенностям биоценоза относятся следующие: 1) биоценозы всегда возникают, складываются из готовых
частей, имеющихся в окружающей среде. Этим способом
их возникновения отличаются от формирования отдельного
организма, особи (виды), которое происходит путем постеп-
енного дифференцирования зачатков; 2) части биоценоза
заменяемые. То есть один вид может занять место другого
со сходными экологическими требованиями, без ущерба
для всей системы; 3) Биоценоз существует в основном за
счет уравновешивания противоположно направленные сил;
4) биоценоз основан на количественной регуляции
численности одних видов другими; 5) предельные размеры
организма ограничены его внутренней, наследственной
программой, а размеры биоценоза определяются внешни-
ми причинами; 6) биоценоз часто имеет расплывчатые гра-
ницы, иногда неуловимо переходя одно в другое.

Единство и целостностью в структуре биоценоза
обеспечивается следующими 4 типами межвидовых отно-
шений: трофические, топические, форические и фаб-
рические.
Трофические связи возникают, когда один вид орга-низма питается другим - либо живыми особями, либо их мертвыми остатками, либо продуктами жизнедеятельности.

Топические связи характеризуют любое, физическое или химическое, изменение условий обитания одного вида в результате жизнедеятельности другого. Эти связи крайне разнообразны. Например, внутренний паразитизм или ком-менсализм организмов.

Форические связи - это участие одного вида в рас-пространении другого. То есть перенос живых семян, спор. пыльцы растений называют зоохорией, перенос других, более мелких животных - форезией.

Фабрические связи - это такой вид биологических от-ношений, в которые вступает вид, использующий для своих сооружений (фабрикации) продукты выделения. либо мертвые остатки. либо даже живых особей другого вида.

Топические и трофические связи составляют основу существования биоценоза. Именно эти типы отношений удерживают друг возле друга организмы разных видов, объединяя их в достаточно стабильные сообщества разных масштабов. В целом каждый биоценоз имеет определен-ную структуру, видовой состав и территорию, ему свой-ственны определенный тип обмен веществ. Он также пред-ставляет собой исторически сложившийся комплекс ор-ганизмов и является частью общего природного комплекса - экосистемы.

6.3. Экосистема.

Любое сообщество живых организмов и его среды обитания, образующие единую функциональную систему или комплекс называется экосистемой. При этом сообще-ства организмов в экосистеме связаны с неорганической средой теснейшими материально-энергетическими связя-ми. То есть растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофные организмы живут за счет автотрофных, но и также нуждаются в по-ступлении таких неорганических соединений, как кислород и вода. В масштабе экосистемы происходит возврат био-генных элементов в среду течения жизни организмов (в результате дыхания, экскреции, дефекации), а также пос-ле их смерти в результате разложения трупов и раститель-ных остатков. Таким образом сообщество в рамках экоси-стемы образует с неорганической средой определенную
систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот. Термин “экосистема” была предложена в 1935 году професс. А.Тенсли, который подчеркивал, что при таком подходе неорганические и органические факторы выступают как равнopravné компоненты. В результате этого не отделяются организмы от конкретной окружающей их среды.

Близкое понятие “экосистемы” было предложено академиком В.Н.Сукачевым, которое было названо “биогеоценозом”. В последнем по мнению В.Н.Сукачева происходит круговорот веществ, потоки энергии к определенным участкам суши. Примером экосистем или биогеоценоза могут быть луг, лес и другие.

Экосистема является относительно устойчивой во времени и термодинамически открытой в отношении притока и оттока вещества и энергии. Она имеет вход и выход энергии и биогенных веществ в атмосферу. Экосистемы сложились в процессе длительной эволюции, они являются сложенными, устойчивыми механизмами, способными путем саморегулирования противостоять как изменениям в среде, так и изменению в численности организмов. Причем все взаимодействия компонентов экосистемы основаны на конечном счете на обмене веществом и энергией между ними. Основным источником энергии в экосистемах служит Солнце. При этом количество солнечной энергии, поступающей в экосистемы, ничтожна по сравнению с общим энергетическим бюджетом Земли. Всего около 0,1% энергии, получаемой от Солнца, связывается в процессе фотосинтеза. Однако за счет этой энергии может синтезироваться несколько тысяч граммов сухого органического вещества на 1 кв. м в год.

Более половины энергии, связанной при фотосинтезе, тут же расходуется в процессе дыхания самих растений в экосистеме. Часть же ее переносится через посредство ряда организмов по пищевым (трофическим) цепям экосистемы. В экосистемах организмов, пища которых извлекается из растений через посредство тех же ступеней, принадлежат к одному и тому же трофическому уровню. Следовательно, зеленые растения занимают первый трофический уровень (называется продуцентами); животные (растительноядные) размещаются на втором уровне; животные (плотоядные) относятся к третьему уровню. В целом пищевые цепи в пределах экосистемы основываются на ее
функционировании, а не на видовом составе животных и растений как таковым. При этом перенос энергии с одного трофического уровня на другой значительная часть ее деградирует в тепло. То есть чем короче пищевая цепь или чем ближе данный организм к началу пищевой цепи, тем больше доступна для него пищевая энергия.

В системной взаимосвязи в экосистеме принимает активное участие круговороты веществ (особенно биофильтрных). Она в целом сходна или идентична биологическим круговоротом веществ.

Экосистемная организация жизни является одним из необходимых условий ее существования. Запасы биогенных элементов, из которых строят тела живых организмов, на Земле в целом и в каждом конкретном участке на ее поверхности небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходиимое для продолжения жизни. Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Таким образом, функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы - древнейшее свойство жизни.

Вопросы и упражнения

1. Понятия об уровня организации живых организмов в биосфере.

2. Охарактеризуйте популяционный уровень организации организмов.

3. Особенности биоценозного уровня организации организмов.

4. Охарактеризуйте экосистемный уровень организации организмов.

7. ЧЕЛОВЕК И СРЕДА ЕГО ОБИТАНИЯ

7.1. Экологические особенности эволюции человека (происхождение и становление).

Предположение о происхождении человека от обезьянподобных предков высказывалось уже в XVIII. Одним из сторонников этой гипотезы был И.Кант, далее Ж.Б.Ламарк и Ч.Дарвин. Впоследствии данные палеонтологических исследований подтвердили точку зрения этих ученых об африканском происхождении человека. Самым первоначальным предком человека были австралопитеки, которые суще-
ствовали в интервале времени от нескольких миллионов до нескольких сотен тысяч лет жили представители вида Homo человек, которые во многих отношениях занимали промежуточное положение между австралопитеками и человеком. Исследованиями последних лет установлено, что первые представители рода Homo, возможно, появились примерно 1 млн. лет тому назад.

Современный человек (Homo sapiens) возник примерно в интервале 100-40 тысяч лет тому назад. Большую часть времени существования современного человека охватывает первая из созданных им культурных - культура верхнего палеолита. В это время экономической основой жизни человеческого общества была охота на крупных животных. Культура верхнего палеолита закончилась экологическим кризисом, охватившим громадные территории и связанным с уничтожением охотниками верхнего палеолита животных. В истории биосферы возникновение таких кризисов было весьма необычным явлением, поскольку в экологических системах, как правило, поддерживается регулировка численности организмов, входящих в определенные цепи питания, которые исключают возможность быстрого вымирания отдельных видов растений и животных. Нарушение этой регулировки свидетельствовало о том, что возникновение современного человека было определенным рубежом, перейдя который человек перестал подчиняться действию биологических закономерностей, определяющих численность популяций животных.

Истребление крупных животных, по-видимому, привело к сокращению численности населения в ряде обширных районов вплоть до того времени, когда охота и собирание полезных растений начали заменяться скотоводством и земледелием (около 10 тыс. лет тому назад). Таким образом, период, в течение которого человек производил потребляемую им пищу, составлять лишь около 1/4 общей продолжительности его существования.

Еще гораздо короче время развития технической цивилизации, занимающее долю процента от общей длительности истории человека, и время научно-технической революции, которое не превосходит сотых долей процента от этой истории.

При этом одна из трудностей механизма эволюции человека была отмечена еще Ч.Дарвином, "Самое большое затруднение, возникающее перед нами, когда мы пришли к этому выводу о происхождении человека, это - высокий
уровень наших умственных способностей и нравственных качеств*.

Согласно учениям Дарвина естественный отбор обычно сохраняет изменения организмов, полезных для их жизнедеятельности и используемых в ходе их существования. Она во многом связана способностями человека к умственной деятельности и использовании этих способностей на ранней стадии эволюции человека. С экологической точки зрения мозг современного человека мог возникнуть в результате не только предадаптации, но и также наличием особых факторов, которые привели к качественному отличию человека от всех животных. В соответствии с последней точки зрения, по результатам последних исследований экологов следует отметить, что на эволюцию человека определенное влияние оказали изменения климата, происходившие примерно 2 млн. лет тому назад. Именно в это время развивалось похолодание в умеренных и высоких широтах. Оно привело к значительным изменениям климата на всех континентах Земли. Поэтому весь вероятно, что эти колебания климата ускорили эволюцию человека, так же как эволюцию многих других живых организмов.

Одна из причин такого быстрого развития центральной нервной системы, возможно, заключалась, в критическом положении, в котором оказались предки человека в тропическом поясе, в связи с заметным изменением климата Земли. В результате менялась система атмосферной циркуляции, причем пояс высокого давления перемещался в более низкие широты. Так как в пределах этого пояса выпадает мало атмосферных осадков, в обширных тропических районах Земли изменились условия увлажнения. Оно привело к смене тропических лесов в ряде областей саваннами и полупустынями. Поэтому в условиях открытой местности, где возможность укрытия на деревьях часто отсутствовало, австролопитеки были почти беззащитны при нападениях даже не очень крупных представителей многочисленных хищников африканских саванн. Наряду с этим исчезновение многих съедобных растений, которыми они питались в тропических лесах, значительно затрудняло их обеспечение растительной пищей.

Главными факторами, которые могли обеспечить выживание австролопитеков, были наличие у них сравнительно развитого головного мозга и способность к прямохождению, полностью освободившая их руки. При этом австра-
лопитеки находились в условиях исключительно жесткого естественного отбора, которые впоследствии их привело к высоким темпам эволюции в условиях низкой численности популяции этих существ. В дальнейшем умственные способности австралопитеков расширило использование ими различных предметов в качестве оружия и сделало возможным переходом к изготовлению орудий труда. Громадное значение при этом имела необходимость коллективных действий австралопитеков при их самозащите и нападении на других животных. Из коллективных действий затем возникли элементы социальной организации, которые привели к развитию нравственных понятий, определяющих поведение индивидуума в коллективе. Значение трудового процесса, развитие языка и социальных отношений в эволюции человека было выяснено в известном исследовании Ф. Энгельса. Ф. Энгельс при этом особое внимание обратил на важную роль перехода предков человека к животной пище, что значительно ускорило физическое развитие человека. Палеонтологические данные свидетельствуют, что некоторые линии австралопитеков развивались в направлении достижения гигантских размеров. Это значительно уменьшало давление естественного отбора на эволюцию нервной системы и приводило к утрате навыков использования орудий. Соответствующие линии австралопитеков вели к эволюционным тупикам и вымиранию их представителей.

Наряду с такими реверсивными линиями существовали линии предков человека, для которых было характерно прогрессивное развитие центральной нервной системы. При этом развитие последней было неравномерным. В частности, оно ускорялось в эпохи усиления давления естественного отбора на популяции предков человека. Для становления современного человека определенный вклад внесли охота на крупных животных и защита от хищников. Исходя из этого следует отметить, что эволюция человека ускорялась в районах, где охота на крупных животных была главным источником его питания. Такие условия имели место, в частности, в обширных безлесных областях, привыкавших к ледяным покровам. Поэтому возникновение современного человека могло произойти в экологических условиях, предъявлявших очень высокие требования к его умственной деятельности как для успешной борьбы с крупными и опасными животными, так, возможно, и для победы в конкуренции с родственными приматами. В дальнейшем

68
по мере развития материальной культуры, облегчавшей борьбу человека за существование, высвобождались громадные резервы умственной деятельности. Эти резервы при наличии стимулов, создаваемых сложными условиями внешней среды, могли использоваться для дальнейшего подъема материальной культуры. Таким образом, ускорялось развитие, что на определенной стали делало возможным возникновение элементов первых цивилизаций. Основное значение в этом процессе имело развитие социальных отношений в человеческом обществе.

Указанный прогресс был очень неравномерен в производстве и времени. В тех случаях, когда условия среды создавали большую нагрузку для человеческого общества, имело место высокий уровень использования потенциальных умственных способностей человека. При гораздо более частых сравнительно благоприятных условиях внешней среды этот уровень значительно снижается.

7.2. Источник воздействия человеческого общества на природу.

До недавнего времени преобладала точка зрения, что воздействие человека на окружающую природу начало проявляться в больших масштабах в основном в последние десятилетия, когда резко усилилось техническое развитие, начала быстро возрастать численность населения на нашей планете.

Исследования последних лет показали, что уже тысячи лет назад стихийная деятельность человека приводила к крупным изменениям природной среды, которые в отдельных случаях ставили под угрозу дальнейшее существование человеческого общества. Первый случай такого рода было во время развития культуры верхнего палеолита в Европе, Азии и Америке. Экономической основой этой культуры была охота на крупных животных, в которой использовались орудия, позволяющие добывать также диких животных, как мамонт и шерстистый носорог. При этом важным фактором воздействия человека на окружающую природу был огонь, с применением которого уничтожена растительность на больших пространствах. Лесные и степные пожары издавна широко применялись как средство охоты на крупных животных. Поэтому пожары на больших территориях приводили к хищническому уничтожению диких животных и разрушению природных экосистем.
В эпоху неолита, когда основой хозяйственной деятельности стали скотоводство и земледелие, выжигание растительного покрова приобрело громадные масштабы. Оно применялось для расширения пастбищ за счет лесных участков и в особенности для подсечно-огневого земледелия, основанного на вырубке участков леса и сжигании срубленных деревьев. Широкое применение выжигания растительности привело к резким изменениям природных условий значительной части территории, включая флору, фауну, почвы и других. Большое влияние на естественный растительный покров многих областей имел выпас сельскохоizzайственных животных, который часто проводился без учета возможностей восстановления растительного покрова. Особенно чрезмерный выпас скота уничтожал растительность сухих степей и саванн, которые затем часто приобретали черты полупустынь и пустынь. Все это привело к возникновению первых зачатков антропогенных изменений природы в окрестностях крупных долговременных поселений (истребление определенных видов животных, пирогенные территории) и т.п.).

В период первобытнообщинного строя постепенное сокращение численности крупных животных повысило интерес тогдашних охотников - человека к мелким и средним. С этим также связано появление определенных охотничьих предметов (крючок для рыбы, лука и стрел, ловушек, капканов). В некоторых людях неолита выработана определенная практика представления о рациональных принципах использования природных ресурсов (основанная в какой-то мере на знании экологии животных). Так как от этих полостью зависело процветание первобытной общины. То есть были определенные "священные", как бы заповедные угодья, которые сохранились до настоящего времени урошица манси, ненцев и хантов (место размножения важнейших промысловых животных). При этом существенным, с точки зрения усиления воздействия человека на природу, явилось приучение стадных животных и выведение культурных растений. То есть со своим сознательным творчеством человека избавил себя от голода и таким путем получил возможность к резкому увеличению своей численности и заселению всей суши.

Зародившееся в первобытных общинах направление использование природы (земледелие и скотоводство) успешно всего развивалось в зоне смешанных лесов и лесостепи (богатые почвы, оптимальная влажность, про-
должительный вегетационный период, в степях (кочевое скотоводство), а также на заливаемых в половодье землях долин крупных рек. С широким использованием подсечно-огневой системы земледелия очень сильно изменяло среду: нарушалась структура почвы, возникала эрозия, мелели реки, менялся видовой состав животных и растений. Но в условиях избытка земельных угодий она имела положительное значение для человека. Таким образом незначительные темпы использования ресурсов в тех или иных районах Земли обеспечивали определенную стабильность взаимоотношений первобытных людей с природой.

Во время рабовладельческого общества разделение труда и развитие техники повысили производительность и суммарный выход продукции. В то же время незаинтересованность работы в результатах своего труда и в сохранении условий, обеспечивающих его производительность, привела к определенной деградации в принципах использования природных ресурсов.

Грабительские войны приводили к экономическому нецелесообразным перемещениям населения слабых государств, которые вели к разрушению сложившихся хозяйственных отношений. Поэтому именно рабовладельческие цивилизации превращали обширные пространства земли в пустыни. Последствия этого процесса ощущаются до сих пор. Например, в Греции в настоящее время сохранилось только 2% первоначального гумусового слоя почвы и только 20% земель, относимых к культурным, пригодным к возделыванию.

В системе ведения хозяйства большинство методы применяющихся при общинном строе, было унаследовано феодальным крестьянством (в почву возвращалось все, что брали из нее). Однако разделение людей на подчиненных производителей и господствующих потребителей исключало разумное использование территории. Последняя не являлась собственностью крестьян. В то же время для феодального общества характерны частные мероприятия по охране природы - наделов земли, которые находились в личной собственности и которые феодал стремился не только сохранить для себя, но и передать наследнику. Охота была той областью, где феодал наиболее тесно соприкасался с природой, поэтому сохранению охотничьих угодий и дичи уделялось особое внимание. Исходя из этого было создано немало заповедников. Благодаря последних до наших дней сохранились европейский зубр, благород-
ный олень, лани, серны другие исчезающие и редкие животные.

Возросшие технические возможности воздействия на природу, капиталистический закон максимальной прибыли в целом обусловили самую хищническую эксплуатацию природных ресурсов, которую когда-либо знал человечество. Более расширенная эксплуатация в целом способствовала получению максимальной прибыли и определенным образом препятствовали рациональному использованию ресурсов природы, а также предопределяли конъюнктурный подход к использованию ее. В хозяйственный круговорот начали ускорено вовлекаться "вторичные" ресурсы, не связанные с удовлетворением первичных, пищевых потребностей: минеральные и лесные. Это определялось развитием кораблестроения, широчайшим распространением металлических орудий труда, военной техники и другие. Начали очень быстро формироваться и обособляться технические системы (машины, сложные механизмы, автоматы) и как своеобразные сообщества (цеха, заводы, фабрики, комбинаты). Они разрастались все быстрее, требуя при этом специфического "питания": определенных минералов и горных пород. Таким образом, в капитализме человек в своей хозяйственной деятельности освоил почти все доступные и известные ему виды ресурсов как возобновимых, так и невозобновимых. В некоторых странах, например в Японии, в настоящее время почти все возобновимые природные ресурсы (вода, лес, земля) используются почти полностью.

7.3. Научно-технический прогресс и его последствия.

Научно-технический прогресс (НТП) представляет собой процесс глубоких качественных и количественных изменений различных сторон жизни общества. Развитие науки и техники - важнейшее условие движения общества вперед.

Качественные изменения в науке и производстве связаны с научно-технической революцией (НТР), начавшейся в середине XX века. Именно направленностью и результатом НТР зависят экономический рост, благосостояния людей той или иной страны.

В условиях НТР значительной степени усложнились взаимоотношения человеческого общества с природой. В частности человек получил возможность влиять на ход ес-
тестенных процессов. Добывая полезные ископаемые, он изымает вещества из почвы и грунта; загрязняя промышленными выбросами воздух, внедряет в его состав новые компоненты, забирая воду на орошение, осушая болота, меняет водный баланс; сжигая топливо влияет на энергетический баланс Земли.

НТР создала огромные возможности для покорения сил природы, а вместе с тем для ее загрязнения и разрушения. Промышленный прогресс сопровождается поступлением в биосферу огромное количество загрязнений, которые могут нарушить природное равновесие и угрожать здоровью людей. Поэтому в свое время В.И. Вернадским отмечено, что производственная деятельность человека приобрела масштабы, сравнимые с геологическими преобразованиями. Иначе говоря НТР в настоящее время дает возможность со все уменьшающимся азартом труда вовлекать в производство огромные массы природных ресурсов. Только за один XIX век человечество извлекло из недр Земли и освободило из естественных связей более 22 тыс. т свинца, 11 тыс. т цинка, 10 тыс. т серебра, 11 тыс. т золота, 28 тыс. т алюминия и других. В XX веке использование всех полезных ископаемых возросло во много раз и стремительно продолжает увеличиваться. В настоящее время человек эксплуатирует более 55% суши, использует около 13% речных вод, скорость сведения лесов достигает 18 млн. га в год. В результате застройки, горных работ, опустынивания и заселения теряется от 50 до 70 тыс. кв. км земель в год. При строительных и горных работах перемещается более 4 тыс. куб. км/год породы, извлекается из недр Земли ежегодно 100 млрд. т руды, сжигается 7 млрд. т условного топлива, выплавляется более 800 млн. т различных металлов, рассеивается на полях свыше 500 млн. т минеральных удобрений и более 4 млн. т ядохимикатов. По данным всемирной организации здравоохранения (ВОЗ), в практике в настоящее время используется до 500 тыс. химических соединений. При этом около 40 тыс. из них обладают вредными для человека свойствами. В 12 тыс. токсичны. Таким образом, в результате воздействия человека на природу коренным образом меняется облик нашей планеты. То, что нынче совершается на поверхности Земли и за ее пределами, не имело ничего подобного в длительной естественной истории ее развития. При этом разносторонняя и могучая деятельность человека на фоне всего прошлого человечества представляется фантастической и приобретает
ет масштаб в геологических процессах. Поэтому в эпоху современной НТР чрезвычайно острой стала проблема нарушения экологического равновесия, выражающегося в ухудшении качества окружающей среды в результате загрязнения ее производственными отходами. Постоянно возрастающее их количество угрожает самоочищательной функции биосферы, нарушает экологическое равновесие, а в конечном счете угрожает неблагоприятными последствиями для человека через НТП на биосферу, сводится к четырем главным формам: а) изменение структуры земной поверхности (рассеяния степей, вырубка лесов, мелиорация, создание искусственных озер и морей и другие изменения режима поверхностных вод и т.д.); б) изменение состава биосферы, круговорота и баланса слагающих ее веществ (измельчение ископаемых, создание отвалов, выброс различных веществ в атмосферу и в водные объекты, изменение влагооборота); в) изменение энергетического, в частности, теплового баланса отдельных районов земного шара и всей планеты; г) изменения, вносимые в биоту (совокупность живых организмов) в результате истребления некоторых видов, создание новых пород животных и сортов растений, перемещение их на новые места обитания.

Таким образом, в эпоху НТР человек в результате доступных технологических возможностей оперирует силами и энергией, соизмеримыми или близкими к силам природы, а нарушение естественных процессов в биосфере приобретает глобальный характер. Недооценка последствий таких нарушений чревата кризисом взаимоотношений человека с окружающей природной средой.

7.4. Современные масштабы и формы воздействия человеческого общества на процессы круговорота веществ в природе.

Как правило, биосфера существует, многократно используя одни и те же атомы, особенно так называемых биофильных элементов, из которого состоит жидкое вещество. Человек же использует вещество планеты весьма неэффективно с образование огромного количества отходов. При этом в сферу хозяйственной деятельности включаются элементы практически всей таблицы Менделеева, а также синтезированные человеком соединения: пластмассы, пестициды, радионуклиды и т.д. В результате происходит обогащение биосферы несвойственными ей соединениями, то есть, нарушается естественное соотно-
шение химических элементов. Чтобы обеспечить одного человека предметами существования, каждый год на Земле извлекается более 20 т сырья, которые в последующем рассеиваются в биосфере. При этом радикально изменяет эволюционно сформировавшиеся биохимические циклы круговороты веществ. Если дело пойдет такими же темпами и дальше, все вещества (элементы) образующие планеты может превратиться в отходы хозяйственной деятельности человеческой популяции.

Таким образом, в настоящее время ускоряется пространственная миграция химических элементов, перемещаемых с продукцией промышленности и сельского хозяйства. В отдельных местах, главным образом в городских и горнорудных районах, создаются большие концентрации отдельных элементов и соединений в несвойственных природе сочетаниях. Это относится прежде всего к железу и его соединениям, нефти, синтетическим материалам. В больших количествах поступающих на поверхность Земли, и вызывающих нарушение химического баланса природной среды. Такое нарушение химического равновесия в природе возникает из-за совершенства технологических процессов, высоких потерь сырья при добыче и транспортировке, а также за счет рассеяния материалов при их износе. Когда меняются удобрения, пестициды, различные дегтергенты. Происходит "преднамеренное" рассеивание в природной среде целого ряда элементов и соединений. При этом естественные процессы самоочищения почвы, воды и воздуха, игравшие в недалеком прошлом основную роль в оздоровлении окружающей среды, нарушаются и не могут обеспечить обезвреживание среды.

Таким образом сложившиеся в биосфере определенные соотношения между химическими элементами (содержание в окружающей среде и в живом веществе водорода, кислорода, углерода, азота, кальция, серы, фосфора, калия) резко нарушаются огромным количеством элементов, потребляемых в современной промышленности и в сельском хозяйстве. Техногенные поступления отдельных элементов и соединений в 10-100 раз превышают их естественное поступление при вулканизме и выветривании. Особенно велико вовлечение человеком в биосферу, таких элементов, как Na, Cl, Fe, Ti, B, Cu, Zn, Ba в количествах сотен тысяч и десятков миллионов тонн ежегодно. При этом огромное влияние на круговороты основных биофильных элементов оказали такие виды антропогенного воздействия.
стия, как уничтожение на огромных пространствах лесов, распашка степей и прерий, систематическое выжигание саванн. Поэтому в настоящее время антропогенный твердый сток и золовый вынос достигают 10 млрд. т/год, что приближается по значению к величине общей глобальной денудации, составляющей 23-25 млрд. т/год.

Рассмотрим изменение круговорота основных биофильных элементов. В процессе хозяйственной деятельности ежегодно создается 15-25*10^{-9} т двуокиси углерода, что более чем в 100-200 раз превышает первоначальные поступления (0.15*10^{-9} т/год). Нормально в процессе биогеохимического цикла ежегодно создается около 267*10^{-9} т. двуокиси углерода (дыхание растений, микроорганизмов, человека и животных, гниение и другие окислительные процессы). Таким образом, хозяйственная эмиссия двуокиси углерода составляет в настоящее время от 6 до 10% по отношению к ежегодному нормальному приходу двуокиси углерода. Такая тенденция имеет к дальнейшему увеличению до 30-40*10^{-9} т/год, что превысит 10%-ный уровень биогенного поступления CO_2.

В настоящее время при сжигании топлива, на металлургическую и химическую промышленность, коррозию металлов и окисление отходов ежегодно расходуется 10-20*10^{-9}т. кислорода. Если учесть, что в процессе фотосинтеза ежегодно образуется 120-190*10^{-9} т. кислорода, то его антропогенный расход составляет 10-16% биогенного образования. Наибольшее количество кислорода расходуется при сжигании топлива. Так, при сжигании 1 т угля потребляется годовая норма десяти человек в кислороде, а всего при сжигании 8 млрд. т у/год расходуется около 13 млрд. т свободного кислорода, причем ежегодно эта величина возрастает на 6%. Поэтому как не велико содержание кислорода в атмосфере (15*10^{-14} т, а при 5-6%-ном ежегодном приросте сжигаемого топлива через 165 лет доля свободного кислорода могла бы понизиться до критического для человека предела - до 17 объемных процентов.

Хозяйственная деятельность человека оказывает значительное влияние на круговорот азота. Промышленная фиксация азота считается одной из самых сильных форм вмешательства человека в природный круговорот. Основным источником "добавок" азота к природному круговороту является современное сельское хозяйство, широко исполь-
зующее азотные удобрения. При этом мировая промышленность дает ежегодно около 32 млн. т. фиксированного азота, а ближайшие 20 лет это количество увеличится до 130 млн. т. Поэтому промышленная фиксация азота в процессе производства удобрений - пример активного вмешательства человека в природные процессы круговорота вещества. В связи с массовым производством искусственных азотных удобрений может возникнуть дисбаланс между количеством газообразного азота и образующегося из органических соединений азота и возвращающегося в атмосферу, и азота, поступающего из атмосферы в процессе естественной фиксации.

Нарушение природного круговорота фосфора происходит в результате следующих видов хозяйственной активности человека: мобилизации фосфора из минеральных удобрений и шлаков и использования в быту и промышленности многочисленных препаратов содержащих фосфор. При этом производство фосфорных удобрений в нашу эпоху непрерывно растет, следуя за ростом азотных удобрений. Объем ежегодного выпуска фосфорных минеральных удобрений составляет 18-20 млн. т.

Помимо вышеотмеченных наблюдается большое техногенное поступление металлов в среду, значительно превышающие естественные. Они привели к тому, что во многих районах земного шара возникли мощные техногенные потоки этих веществ между взаимодействующими компонентами биосферы. Существует три механизма антропогенного проникновения в среду металлов - с атмосферными аэрозолями, со сточными водами и вносимыми в почву пестицидами. В частности, в настоящее время выплавлено около 20 млрд. т. железа, мировой металллофонд (в сооружениях, машинах, механизмах) составляет 6 млрд. т., следовательно, 14 млрд. т. железа рассеяны в природной среде. При этом основным источником поступления металлов является сжигание топлива.

В целом на современном этапе хозяйственная деятельность человека охватывает все звенья круговорота и вносит количественные и качественные изменения в круговорот веществ, поставив под угрозу его бесперебойное функционирование и нормальные условия существования самого человека. (Схема 1).

В человеческом обществе в условиях научно-технического прогресса в настоящее время происходит поистине гигантские изменения природной среды. То есть
человеком совершается все новые и новые пути перемещения энергии и вещества в биосфере, в значительной мере нарушив природное равновесие. В частности эффект человеческой деятельности возрастает быстро и в абсолютной мере, и в расчете на душу населения и вполне может быть в настоящее время поставлен в один ряд с природными процессами.

В самом деле, в природе разрушение (демутация) гранитных скал происходит со скоростью 1 м за 6 тыс. лет, а человек с помощью направленных взрывов изменяет рельеф, прокладывает русло каналов, профилирует дороги, террасирует склоны и нивелирует стройплощадки в несколько тысяч раз быстрее. За один только год перемещается при перепашке полей, строительных и вскрытии работах свыше 4 тыс. куб. км почвы и грунта, забирается на хозяйственно-бытовые нужды 12% речного стока.

При этом количество техники увеличивается вдвое быстрее, чем численность населения. Застроенные земли занимают сейчас более 150 млн. га, а к 2100 году их площадь возрастет до 350-400 млн. га. Полностью урбанизированная поверхность, где дождевая вода не просачивается в почву, составляет 50 млн. га, то есть соответствует площади Франции. В крупнейших промышленных районах мира различными инженерными сооружениями занято более половины освоенной территории. А жилищное индустриальное строительство, горные разработки расширяются во многих случаях за счет пахотных земель, которые в свою очередь наступают на лесные.

Быстрые темпы и возможности преобразования человеком природы Земли дают основания для оптимистического представления о будущем развитии человечества в гармоническом взаимодействии с окружающей средой. Однако неконтролируемое в общепланетарном масштабе использование природной среды может перешагнуть порог ее самозащиты. В частности, нарастание техногенных выбросов, загрязняющих атмосферу, землю, океан может превысить скорость самоочищения биосферы.

Изменения природной среды не должны выходить за определенные границы, иначе они могут поставить под угрозу сложившиеся взаимосвязи, присущие биосфере как системе, находящейся в состоянии динамического равновесия. В этих условиях совершенно необходимо гораздо большее, чем до сих пор, понимание законов развития и потенциальных возможностей природы, сознание единства
природы и человечества. Иначе говоря, основным принципом стратегии человека при решении проблем антропогенного воздействия на среду должна быть соизмеримость и масштабов человеческой деятельности с потенциальной способностью природных и антропогенных экосистем ликвидировать ее неблагоприятные последствия.

Форма воздействия общества и природы

- Экономическая
 - Использование природы
 - Эколого-экономическая
 - Рациональное использование
- Экологическая
 - Охрана природы
 - Заповедная охрана
 - Оздоровление окружающей среды

Охрана природы
- Рациональное использование природных ресурсов
- Защита окружающей среды

до XX века
- XX в. до 60-х гг.
- Последовка 60-е гг.
- Программы 60-70-е гг.
- Реализация 70-80-е гг.

СХЕМА 1.
Вопросы и упражнения

1. Какова была эволюция человека?
2. Охарактеризуйте историю воздействия человеческого общества на природу.
3. Роль научно-технического прогресса в развитии человеческого общества.
4. Основные последствия научно-технического прогресса на природу Земли.
5. Каковы формы и масштабы воздействия общества на современные процессы круговорота веществ в природе?

8. ПРИРОДНЫЕ РЕСУРСЫ, ИХ РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ И СВЯЗАННЫЕ С НИМИ ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ.

8.1. Понятие о природных условиях и природных ресурсах.

Природные условия и природные ресурсы различаются, хотя границы между ними являются сравнительно условными. В частности природные условия, являясь средообразующей категорией, создают условия существования человека и возможность ведения его производственной деятельности. К природным условиям относятся солнечное излучение, внутреннее тепло Земли, географическое положение, рельеф, климат, осадки и многие другие. Таким образом, природными условиями является совокупность географического положения территории и различных компонентов географической среды. При этом следует отметить, что на определенной ступени развития производительных сил природные условия становятся ресурсами. Например, солнечная радиация, ветер, морские приливы и многие другие. В целом природные условия оказывают непосредственное влияние на размещение производства, расселения населения и многих форм человеческой деятельности.

Природные ресурсы также являлись компонентами природы, которые на данном уровне развития производительных сил используются и могут использоваться в качестве средств производства и предметов потребления. По своей материальной форме это тела и силы природы, генезис, свойства и размещение которых обусловлены природными
закономерностями. По своему экономическому содержанию это потребительные стоимости, полезность которых определяется уровнем изученности, технической возможностью, экономической и социальной целесообразностью использования. То есть природные ресурсы - это средства к существованию, которые человек черпает из кладовой природы и без которых невозможна его хозяйственная деятельность. Природные ресурсы - категория историческая, так как ее важностью и значением изменяется потребности и возможности общества, развитием науки и техники. Например, на начальных ступенях человеческой культуры решающее значение имело естественное богатство средствами жизни - плодородие почвы, обилие рыбы в водах и другие. На более высоких ступенях общества - богатство средствами труда - судоходные реки, лес, металлы, уголь и другие. В эпоху научно-технической революции первостепенное значение приобрели руды цветных металлов и энергетические ресурсы. Природные ресурсы не могут существовать и использоваться вне природных условий. Причем для возникновения и развития определенных ресурсов необходимы определенные природные условия. В целом природные ресурсы имеют способность служить человеку и представляют сложную совокупность материальных элементов и процессов, которые находятся в постоянном развитии во времени и в пространстве. Наконец природные ресурсы являются точкой соприкосновения человеческого общества и природы, средой приложения его разума и сил.

Природные ресурсы с эколого-экономической точки зрения делятся на исчерпаемые и неисчерпаемые. В свою очередь исчерпаемые ресурсы подразделяются на невозобновимые и возобновимые (Схема 2).

К невозобновимым природным ресурсам относятся те, которые абсолютно не восстанавливаются и восстанавливаются в сотни тысяч раз медленнее, чем идет их использование. К первым принадлежат каменный уголь, нефть и большинство других полезных ископаемых; ко вторым - торфяники, многие осадочные породы. Использование этих ресурсов неминуемо ведет к их истощению.

К возобновимым природным ресурсам принадлежат почва, растительность, животный мир, а также некоторые минеральные ресурсы, например, соли осаждающиеся в озерах и морских лагунах. Эти ресурсы по мере использования постоянно восстанавливаются. Однако для сохране-
ния их способности к восстановлению нужны определенные естественные условия. Нарушение этих условий задерживает или вовсе прекращает процесс самовосстановления, что следует учитывать при использовании возобновимых природных ресурсов. При этом следует отметить, что возобновимые природные ресурсы под влиянием деятельности человека могут стать невозобновимыми. Это относится к полностью истребленным видам животных и растений, к утраченным в результате эрозии почвам и т.д.

СХЕМА 2. Классификация природных ресурсов с точки зрения их исчерпаемости
Неисчерпаемые природные ресурсы включают ресурсы водные, климатические и космические. Водные ресурсы на нашей планете очень велики. Поэтому общие ресурсы ее остаются неизменными и неисчерпаемыми. Но практически неисчерпаемы воды лишь Мирового океана, а запасы пресной воды исчерпаемы. Так как она используется из года в год в огромном объеме.

Климатические ресурсы включают атмосферный воздух, энергию ветра. При этом следует отметить, что в промышленных районах атмосферный воздух "качественно" истощается путем загрязнения.

К космическим ресурсам относятся солнечная радиация, энергия морских приливов. Самим по себе эти ресурсы неисчерпаемы. Но в промышленных городах солнечная радиация сильно изменена и уменьшена из-за задымленности воздуха.

В целом состояние исчерпаемых и неисчерпаемых природных ресурсов во многих случаях зависит от отношения к ним человека, точнее масштабом и тенденцией ее хозяйственной деятельности.

8.2. Энергетические ресурсы и связанные с ним экологические проблемы.

Энергетические ресурсы это любые источники механической, химической и физической энергии. С экологической точки зрения их можно классифицировать на возобновимые и невозобновимые. К невозобновимым относятся уголь, нефть, горючий сланец, природный газ, а также так называемые легкие элементы (водород, гелий, литий), ядерное топливо; к возобновимым - энергия процессов фотосинтеза, энергия прямого использования солнечных лучей, гидроэнергия, энергия приливов и волн, ветровая энергия, энергия процессов испарения и выпадения осадков, геотермальная, тепловая энергия, основанная на разности температур между атмосферой и поверхностью суши и воды.

Запасы урана, доступные к извлечению из недр, оцениваются 66,16 млн. т. В воде морей и океанов содержится 4 млрд. т. урана, но добыча его из воды в 5 раз дороже, чем из руды. Потенциальные ресурсы ядерного топлива по тепловому эквиваленту значительно превосходят суммарные ресурсы всех видов органического топлива. Так, литий, который может быть использован для управляемого синтеза в морской воде, содержитя (в пересчете на условное
топливо) 8x10^{17} т, а дейтерия - 6x10^{20} т. Однако эти ресурсы еще недоступны для использования. Потребность в уране в настоящее время составляет 135 тыс. т.

В настоящее время основным энергетическим ресурсом является уголь. Их разведанные запасы в мире 609 млрд. т. Мировой запас нефти 840 млрд. т. условного топлива, из них 10% - достоверные и 90% - вероятные запасы. Запасы природного газа оцениваются в 300-500 трлн. куб. м.

Потребление горючих энергоресурсов в мире непрерывно повышается. В частности она была 1900-1925 гг. с 30 млрд. тут (тонна условного топлива); 1925-1950 гг. - 50 млрд. тут., 1950-1975 гг. - 95 млрд. тут., 1975-2000 гг. - 300-450 млрд. тут. В расчете на 1 человека потребление энергии за период 1990-2000 гг. увеличится в 5 раз. А потребность в энергии будет расти, сейчас в среднем на 1 человека приходится в Японии 1,5-5 т., в США - около 7 т., а в развивающихся странах 0,15-0,3 т. в нефтяном эквиваленте. По подсчетам ученых установлено, о том что если сохраняется нынешний темп добычи, то к 2050 году практические все экономически рентабельные запасы горючих ископаемых будут исчерпаны. Особенно это касается нефти и газа. Уже сейчас некоторые страны испытывают острый недостаток нефти.

Есть виды энергии, которые издавна использовались человеком: энергия ветра, сила тяжести масс воды в реках, зарегулированных плотинами, приливные гидроэлектростанции. Эти источники энергии практически бесконечны. Недостаток их использования в неравномерность распределения по поверхности земного шара и неритмичность их действия во времени.

Энергия воды издавна применялась человеком при строительстве систем орошения, водяных мельниц, а позднее при сооружении ГЭС. В частности в 1966 г. использование гидроресурсов, обеспечило 6% мировых потребностей энергии, в 1980 г. - 5, а в 2010 году обеспечит 2-2,5%. Снижение потребления энергии гидроресурсов связана с неблагоприятным воздействием ГЭС и водохранилищ на природную среду.

В настоящее время во многих странах мира активно ведутся поиски новых источников энергии и новых способов ее производства. Например, намечаются пути использования солнечной радиации, геотермальной энергии, энергии приливов и отливов, ветра, моря. При этом по про-
гнозу к 2020 г. эти источники заменят около 2,5 млрд. т. топлива, их доля в производстве электроэнергии и теплоты составит 8%.

Использование источников возобновляемой энергии вызвано экологическими проблемами (табл. 1).

На земную поверхность в течение года поступает солнечное излучение, эквивалентное 178 тыс. ГВт лет (что примерно в 15 тыс. раз больше энергии, потребляемой человечеством).

Однако 30% этой энергии отражается обратно в космическое пространство, 50% - поглощается, 20% - идет на поддержание геологического цикла, 0,06% - расходуется на фотосинтез. Из всей получаемой человеком энергией 18% приходится на восстанавливаемые источники (включая электроэнергию).

Солнце - источник энергии очень большой мощности. 22 дня солнечного сияния по суммарной мощности, приходящей на Землю, равны всем запасам органического топлива на Земле. Но практическое использование солнечной энергии лимитируется уровнем развития инженерно-технических средств улавливания; аккумулирования преобразования и использования солнечных лучей.

<table>
<thead>
<tr>
<th>Первичный вид энергии</th>
<th>Источник энергии</th>
<th>Мировые ресурсы 10^{15} кВт. г/год</th>
</tr>
</thead>
<tbody>
<tr>
<td>Механическая</td>
<td>Сток рек</td>
<td>0,028</td>
</tr>
<tr>
<td></td>
<td>Волны</td>
<td>0,005-0,05</td>
</tr>
<tr>
<td></td>
<td>Приливы и отливы</td>
<td>0,09</td>
</tr>
<tr>
<td></td>
<td>Ветер</td>
<td>0,5-5,2</td>
</tr>
<tr>
<td>Тепловая</td>
<td>Градиент температур:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>воды морей и океанов</td>
<td>0,1-1,0</td>
</tr>
<tr>
<td></td>
<td>воздуха</td>
<td>0,001-0,01</td>
</tr>
<tr>
<td></td>
<td>недр земли (вулканов)</td>
<td>0,05-0,2</td>
</tr>
<tr>
<td>Лучистая</td>
<td>Солнечное излучение:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>по поверхности земли</td>
<td>200-280</td>
</tr>
<tr>
<td></td>
<td>полная энергия</td>
<td>1570</td>
</tr>
<tr>
<td>Химическая</td>
<td>Растения и торф</td>
<td>10</td>
</tr>
</tbody>
</table>

Ветер - также один из старых источников энергии. Он представляет собой движение масси воздуха, образующееся в результате разницы температур в различных местах. Сила ветра возрастает с высотой. Лучшие условия для работы
ветрой станции обеспечиваются при скорости ветра 10-14 м/с.

Перспективно использование энергии моря, связанное с различием температуры водных слоев. Нижние слои оставляются холодными, а верхние нагреваются солнечной энергией. Разница температур между слоями 15-20 градусов может быть использована для производства электрической энергии. Подсчитано, что количество энергии, которую можно получить от преобразования тепловой энергии океана, в 300 раз превышает современный объем мирового использования всех видов и эквивалентно потреблению 18 млрд. т. нефти в год.

Новей направление использования энергии морей и океанов это разработка приливных электростанций (ПЭС). Предполагается, что энергия одного цикла прилив-отлив составляет 8x10^{12} кВт. Это в 100 раз превышает количество энергии, получаемой от гидроэлектростанций мира.

Ресурсы геотермальной энергии очень велики. По приближенным подсчетам они эквивалентны 100 млн. т. условного топлива в год. Сейчас эти ресурсы используются мало, так как для получения водяного пара с высокой температурой и давлением необходимо бурить скважины на большую глубину. В некоторых районах земного шара (Исландия, США, Япония) имеется доступ к водяному пару с температурой 200-400 градусов С. Такой пар можно использовать для получения электроэнергии.

Таким образом потребность в энергии является одним из основных жизненных источников повседневных потребностей человека. Энергия нужна не только для нормальной деятельности современного сложно организованного человеческого общества. То есть со словом "энергия" у каждого связывается прежде всего тепло, свет и движение транспортных средств, а также повседневная пищевая (продовольственная) потребность человека. Например, для поддержания жизни человеку требуется примерно 3000 килокалорий пищи в сутки. Это около четырех киловаттчасов электроэнергии.

Энергия является одной из важнейших потребностей производства. Решение любой задачи экономического или технического развития, любого аспекта проблемы экологической безопасности немыслимо без затрат энергии и энергоресурсов. Именно с этой точки зрения проблема энергии и использования энергоресурсов стала все чаще рассматриваться как в связи с прогнозами развития
человечества на предстоящие 50-100 лет. Поэтому стало совершенно очевидным, что если человечество не обеспечит себя достаточным количеством энергии, то и прогнозы развития и планы сохранения окружающей среды окажутся почти бесполезными.

Определенные пути решения энергетической проблемы человечества связана со следующими обстоятельствами: а) проблему энергии и энергетических ресурсов нельзя рассматривать в отрыве от общей проблемы экологической безопасности, перспективы научно-технического прогресса и технологического развития; б) сама проблема энергии должна рассматриваться как совокупность системных категорий, к которым относятся - наличие, размеры и доступность запасов энергоисточников, а также возможность использования человеком так называемых "нетрадиционных" источников энергии; в) экологические требования неизбежно будут заставлять человека производить все более и более "чистую энергию", не оказывающую на качество окружающей среды; г) международное сотрудничество стран в целях решения проблемы энергии и энергетических ресурсов.

8.3. Земельные ресурсы, их сельскохозяйственное использование и связанные с ними экологические проблемы.

Почва является основой всех материальных благ, главное богатство, от которого зависит существование человека. Почва - рыхлый поверхностный слой земной коры, образовавшийся в условиях длительного тесного контакта атмосферы, литосферы и биосферы под воздействием физических, химических и биологических процессов. Особенно велика роль в образовании почвы разнообразных живых организмов, способствующих развитию основного свойства почвы - плодородия. Плодородие - это способность почвы обеспечивать растения необходимым количеством питательных элементов, воды, воздуха. Почвы покрывают преобладающую часть поверхности суши, за исключением территорий, занятых ледниками, вечными снегами, барханами, скалами, каменистыми россыпями и других. Из общей площади суши (14800 млн. га) обрабатываемые земли (пашни) составляет 1450 млн. га. Иначе говоря, общая сельскохозяйственная освоенность суши в настоящее время приближается к 28-30%. Обрабатываемые почвы мира в расчете на душу населения состав-
ляют около 0,5 га. При этом наиболее полно используют под обработку почвы стран умеренного климата - Европы и США.

Современное состояние почвенного покрова определяется в первую очередь деятельностью человеческого общества. Эта деятельность выступает на первое место среди факторов почвообразования с момента вовлечения целинных земель в культуру. При этом пути и способы воздействия человека на почву многообразны и зависят от уровня развития производительных сил человеческого общества. Обрабатываемые почвы представляют не только результат сложных естественных процессов, но и в известном смысле продукт многовекового труда человека, в частности используя растительность, человек тем самым оказывает влияние на почву. Вместе с урожаем он изымает из почвы значительное количество органических и минеральных веществ, тем самым обедняя ее. Так, например, с клубнями картофеля при урожае в 136 ц. с 1 гектара уходит из почвы 48,2 кг азота, 19 кг фосфора и 86 кг калия. В то же время, обрабатывающая почву, внося в нее удобрения, применяя целенаправленный севооборот, человек повышает ее плодородие, добивается высоких урожаев.

Воздействие человека на почву осуществляется не только в процессе ее обработки. Существенные изменения почвы происходят под влиянием вырубки лесов, выпас скота, изменения распределения действий человека приводят к повышению плодородия и других качеств почвы. К ним относятся: правильная обработка почвы, удобрение, осушение, орошение, защита от разрушения (эрозии); регулирование выпаса скота и другие мероприятия.

К особо опасным последствиям отрицательного воздействия человека на почву следует отнести эрозию почвы, загрязнение химическими веществами, засоление, заболевание и многие другие. Ущерб, наносимый всем этим мировому фонду земельных ресурсов, принят в настоящее время угрожающие размеры. При этом уменьшение площади почв идет в тысячи раз быстрее, чем их образование.

Под эрозией почвы (лат. erosio - разъединение) понимают многообразные процессы разрушения и сноса почвенного покрова потоками воды или ветром. С последними различают водную эрозию и ветровую (дефляцию) эрозию.

Эрозия почв всегда существовала в природе как естественный процесс, скорость которого того же порядка, что
и скорость процесса почвообразования. Она называется естественной геологической эрозией. Наряду с этим имеет место так называемая ускоренная или разрушительная эрозия. Она возникает под влиянием деятельности человека. При ускоренной эрозии потери компонентов почвы не компенсируются и почва частично или даже полностью теряет свое плодородие. При этом процессы разрушения почвы могут проходить сотни и тысячи раз быстрее, чем при естественной эрозии.

Толщина верхнего плодородного слоя почвы, содержащего гумус, во многих типах почвы редко превышает 20 см. На его образование природа затратила не менее 2-7 тыс. лет. При ускоренной эрозии полное разрушение этого слоя может произойти за 10-30 лет, а нередко он смывается всего лишь за один ливень или сдувается за одну пыльную бурю.

В результате эрозии к настоящему времени на нашей планете безвозвратно потеряно 50 млн. га плодородных земель. Ежедневно теряется 3200 га, и с каждым годом эта цифра увеличивается. Ускоренная эрозия является следствием непродуманного использования почв и вызывается следующими основными причинами: бесконтрольной вырубкой лесов, неумеренным выпасом скота, неправильной пахотой на склонах, неправильными методами земледелия.

Эффективную роль в борьбе с эрозией играет введение почвозащитных полевых и лугопастбищных севооборотов- многолетние травы, занятые пары, уменьшение площади пропашных культур и другие. Тем самым сокращается поверхностный сток воды и возможность смысла почвы. Большое значение в борьбе с эрозией имеет облесение оврагов, песков и сильно эродированных склонов, создание лесонасаждений и лесов хозяйственного значения.

Бурное развитие химизации всех отраслей народного хозяйства и быта в последние годы резко увеличивало масштабы загрязнения почвы различными химическими веществами и соединениями. Весьма отрицательно на почвах сказывается неумеренное применение пестицидов (гербицидов, дефолиантов). Установлено, что устойчивые пестициды, играя полезную роль в защите растений и животных от болезней, сорняков, вредителей, вместе с тем оказывают резко отрицательное влияние на численность и активность почвенной фауны и микроорганизмов. Остатки пестицидов или продукты их превращения поступают в виде примесей в природные воды, в пищу и часто оказывают-
ся очень вредными для человека. С целью предотвращения загрязнения почвы химическими элементами проводятся усиленные работы ученых над изучением биологических, химических способов их обезвреживания. При этом важно создавать и применять препараты только разлагающиеся, порядка недель и месяцев. Хотя имеются обнадеживающие данные в практике новых быстро разлагающих препаратов. Однако проблема в целом еще далека от разрешения.

Отравляющее влияние на почву оказывают отходы промышленного производства - газы металлических заводов, выхлопные продукты автомашин, шахтные кислоты сернистые воды, отходы нефтяных промыслов, пыль цементных заводов и пустой породы, выброшенной на поверхность в районе угольных копий и рудных месторождений. Особенно интенсивным загрязнение почвы бывает в окрестностях металлургических и химических предприятий. Основные пути предотвращения их связана с исключением вредных отходов, остатки и загрязнения, попадающие в почву.

Засоление почв может происходить самыми различными способами. Одним из них является неумеренный, бессистемный полив при отсутствии дренажа. Засоление почв имеет значительные масштабы и представляет опасность для поливного земледелия. Явление засоление почв имеет широкое распространение и наблюдается во многих странах орошаемого земледелия Азии, Африки и Америки. Ежегодно в разных странах гибнут 200-300 тыс. га поливных земель от засоления и заболеваний. Для предотвращения засоления земель нужно проведение дренажных работ, промывание засоленных почв и другие.

С экономической точки зрения снижение плодородия во многом связано с субъективными факторами, прежде всего со своеобразной фетишзацией (преувеличением) научно-технического прогресса, возможностей созданных средств производства в сельском хозяйстве. Вера в то, что техника, удобрения, пестициды могут бесконечно увеличивать урожайность, привела к застою в развитии агрокультур, игнорированию природных особенностей земли. На практике уменьшение плодородия вызывалось многими причинами: исчерпанием традиционных земледельческих технологий, недостатками в агротехнике (уменьшение пара, господство многокультуры, нарушение севооборотов), недоучетом в НТП в сельском хозяйстве природоохранных факторов. Иначе говоря, сохранившиеся во многих странах
ориентация на воспроизводство только экономического плодородия может привести к крайне неблагоприятным экологическим и экономическим последствиям. Об этом говорит 20-30-летний опыт некоторых стран мира. У них сначала был рост урожайности, а затем ее стабилизация или снижение происходили при значительном росте применения искусственных средств производства и одновременной растрате капитальных запасов почвенного плодородия, сопровождающейся деградацией земли. Таким образом, попытки компенсировать снижение естественного плодородия за счет роста искусственного плодородия малоэффективны. Поэтому сформировавшийся природоемкий, "техногенный" тип развития сельского хозяйства наряду с экономическими ограничениями является в перспективе для многих стран "тупиковым".

В настоящее время во многих развитых странах мира происходит скорейшая переориентация сельского хозяйства с техногенных приоритетов на экологическое. Только на этой основе можно добиться переориентации сложившегося ресурсоемкого, природоемкого типа развития сельского хозяйства на ресурсосберегающий, экологический. То есть с экологизацией сельского хозяйства, обеспечивающей естественного плодородия как основы роста производства сельскохозяйственной продукции. В связи с этим необходимо изменить приоритеты в распределении капитальных вложений в направлении усиления природохозяйственной роли затрат. Последняя связана с проведением противозарожающих мероприятий, применение в основном органических удобрений, минимизация воздействия на землю, биологически и интегрированные системы защиты растений и многие другие. Эти виды улучшения земли являются "мягкими", они не вносят резких изменений в экологический баланс агроэкосистем, а наоборот, способствуют наращиванию плодородия земли.

8.4. Минерально-сырьевые ресурсы и экологические проблемы при их добыве и использовании.

Минеральные ресурсы относятся к категории невозобновимых, то есть общие запасы их по мере использования уменьшаются. Невозобновимость минеральных ресурсов имеет в некотором смысле относительный характер, так как их создание происходит и сейчас в недрах Земли настолько медленно. Поэтому по соотношению с темпами их добычи
и продолжительность человеческой жизни их относят к невозобновимым ресурсам.

В целом минеральные ресурсы имеют для народного хозяйства огромное значение. Одни полезные ископаемые (руды различных металлов) служат сырьем для изготовления промышленной продукции; другие (горючие ископаемые, руды радиоактивных элементов) - используются как источник энергии; многие горные породы применяются как строительный материал. Таким образом горнодобывающая промышленность занимает ведущее положение в мировой экономике. Добыча минеральных ресурсов нарастае убыстряющимися темпами и определяется ростом потребностей общества. Если население Земли с 1950 по 1980 г. увеличилось на 505, то потребление угля возросло за это время в 2 раза, железной руды - в 3 раза, нефти и газа - почти в 6 раз. А в настоящее время нарастающие масштабы добычи минеральных ресурсов достигли таких размеров, что ее результаты уже не уступают по производимым последствиям геологическим процессам, происходящим на Земле.

Поэтому добыча минеральных ресурсов в огромных масштабах, возрастающая из года в год в связи с научно-техническим прогрессом, создала проблему так называемого "минерального голода". По расчетам ученых и специалистов, общие запасы доступных для добычи горючих минеральных ресурсов составляют 7000-12500 млрд. тут (тонна условного топлива), из них 5000-11000 млрд. тут угля, 800-1200 млрд. тут жидкого углеводородов, 600-800 млрд. тут природного газа. Предполагается, что этих запасов минерального топлива человечеству хватит на 100-150 лет.

Развитие человечества тесно связано с производством металлов. К настоящему времени человек выплавил не менее 20 млрд. т. железа. Черные и цветные металлы в течение последних 100 лет являлись одним из главных показателей уровня развития промышленности. В связи с огромным объемом использования металлов, кульминационная точка мирового производства стала достигнут к 2080 году, когда будет выплавлено около 5 млрд. т. металла. При этом следует отметить, что мировые геологические запасы железных руд достигнут 3-365 трлн. т. А общие мировые запасы оцениваются в 400 млрд. т. Эти запасы обеспечивают мировую потребность в железных рудах (с учетом современного темпа освоения) на 200-300 лет.
Мировое использование марганцевых, вольфрамовых, молибденовых руд, хромитов и никеля также возрастает быстрыми темпами. А их запасы обеспечивают потребность в них на ближайшие годы (от 30 до 60 лет).

По мнению ученых основной причиной истощения запасов минеральных ресурсов является чрезмерная даже, хищническая эксплуатация их, а также потери при добыче, обогащении и дальнейшей обработке. При этом наибольший объем истощения запасов минеральных ресурсов наблюдается на легко доступных крупных месторождениях с высоким качеством сырья. Например, в настоящее время при добыче теряется больше половины запасов калийных солей, около 10% руд - свинца и цинка. Особенно велики потери при подземном способе добычи угля (20-45%), руд цветных и черных металлов (15-25%), горно-химического сырья (20-60%). Наблюдаются значительные потери при транспортировке минерального сырья к перерабатывающим заводам.

С учетом вышеуказанного перед человечеством стоит крупная экологическая проблема, связанная с нехваткой минеральных ресурсов для возрастающих темпов промышленного производства.

Основной путь охраны минеральных ресурсов является: экономное использование, предполагающее не снижение темпов добычи сырья, а разведку новых запасов и максимизацию производства продукции на единицу добытого, а также снижение потерь и расхищений полезных ископаемых при добыче, обогащении и обработке, переход на вторичное сырье. Современная техника и технология добычи минеральных ресурсов вполне позволяют предотвратить большую часть потерь. Так, потери ресурсов металлов в отдельных случаях обусловлены тем, что используются лишь часть содержащегося в ней металла, а остальное идет в отвалы. То есть необходимо комплексное использование минерального ресурса, предусматривающее более полное извлечение из него ценных побочных компонентов. Например, при обогащении медных руд около 1/3 меди не попадает в концентрат и оказывается в отвалах. Помимо этого имеющиеся в руде ценные попутные металлы - серебро, цинк, свинец, золото, молибден и другие теряются.

Проблему охраны минеральных ресурсов нельзя ограничивать только непосредственной охраной минеральных ресурсов. То есть при разработке месторождений полезных ископаемых также нарушается и изменяется вся экосисте-
ма или район добычи. Например, на каменноугольных месторождениях на 1 кв. км разведываемой площади закладывают до 20 скважин. Через такие скважины нередко выходят на поверхность глубинные воды; таким образом истощаются подземные горизонты, а на поверхности почва заболевается и становится негодной для пользования.

Для удовлетворения потребности каждого жителя Земли, ежегодно добываются в объеме 100 млрд. т. различных минеральные ресурсы, из которых лишь 1/10 часть дает готовую продукцию. Все остальное идет в отходы, которые занимают огромные площади. То есть с последним обра- зуются так называемые "техногенные ландшафты". Их площадь в настоящее время на Земле превышает 10 млн. га. Особенно велика площадь территорий, нарушенных горными разработками в США, ФРГ и других развитых странах. Так, в США только открытыми горными разработками нарушено 2 млн. га земель. В таких территориях происходит энергичная перестройка поверхности, в результате изменяется почвенно-растительный покров, водный режим и другие свойства экосистемы.

Быстрый рост масштабов горных разработок, сопровождающихся разрушением сельскохозяйственных и лесных земель и загрязнением среды, особенно остро ставит вопрос о проведении рекультивации земель.

Рекультивация земель связана комплексом мероприятий, направленных на восстановление продуктивности нарушенных земель, а также на улучшение окружающей среды. Таким образом цель рекультивации - восстановление продуктивности нарушенных промышленностью территорий и возвращение их в разные виды использования. Она предполагает проведение комплекса инженерных, горно-технических, мелиоративных, сельскохозяйственных и лесохозяйственных работ.

Объекты рекультивации весьма многообразны. Это могут быть отвалы и карьерные выемки открытых разработок, различных разрезов и рудников где имеется терриконки, хвостохранилища и другие. Рекультивация земель осуществляется в несколько последовательных этапов. Во время первого, подготовительного этапа проводится обследование и типизация нарушенных территорий, изучение специфики условий на подлежащие рекультивации. Во втором этапе осуществляется горно-техническая или инженерная подготовка территории к различным видам дальнейшей рекультивации. Она включает целый комплекс инженерных
работ: планировка поверхности, создание отвалов оптимальной структуры и параметров, урегулирование водного режима, различные мелиоративные мероприятия и другие. Третий этап — биологическая рекультивация и переход к целевому использованию рекультивируемых территорий. На этом этапе проводятся работы, направленные на окончательное восстановление плодородия и биологической продуктивности нарушенных земель, создание сельскохозяйственных и лесохозяйственных угодий и т.д.

Существует два основных вида биологической рекультивации — сельскохозяйственная и лесная. Сельскохозяйственная культивация проводится в районах с высокой плотностью сельскохозяйственного населения, там, где земледелие имеет большое хозяйственное значение. При этом основной целью сельскохозяйственной рекультивации является восстановление плодородия почв для дальнейшего выращивания культур.

Лесная рекультивация применяется чаще, так как она требует меньше затрат и может осуществляться на токсичные грунтах и в неблагоприятных условиях рельефа.

Наряду с указанными видами рекультивации на месте старых карьеров иногда проводится водная рекультивация. Она преследует следующие задачи: создание резервов промышленных вод для различных нужд, создание резервов промышленных вод для различных нужд, создание резервов питьевой воды, создание рекреационных центров и зон.

8.5. Атмосферный воздух, его загрязнения и связанные с ним экологические проблемы.

Современное соотношение газов в атмосфере Земли образовалось в результате естественной эволюции биосферы. До недавнего времени (100-150 лет назад) в ее составе происходили медленные изменения. В целом запасы воздуха (свыше 5x10^15 т) породила убежденность в ненасыщаемости воздушного бассейна. Но современные размеры вмешательства человека в атмосферные процессы (изъятие газов технические вопросы и т.п.) также изменились большими величинами. Например, ежегодно сжигается около 1x10^15 т. кислорода. Поэтому сокращение запасов кислорода уже становится в некоторых районах ощутимым. Она уменьшается из-за сокращения зеленого покрова на Земле (вырубки лесов, отчуждения земель под строительство, транспортные магистрали и т.п.). С другой сторо-
ны загрязнение вод Мирового океана нефтью, остатками ДДТ, ртутью, хлоридами и многими другими веществами уничтожается зелеными водорослями. А последними вырабатываются почти половина поступающие в атмосферу кислорода.

Другой аспект проблемы кислорода — быстро нарастающее его расходование. Кислород в большом объеме потребляется на транспорте и промышленности. Например, 1 легковой автомобиль за 1 тыс. км. пробега сжигает годовую норму кислорода одного человека. На час полета современному авиалайнеру требуется часовая норма кислорода около 200 тыс. человек. В связи с этим в настоящее время естественный баланс между продуцированием и потреблением кислорода существенно нарушен: на сгорание разнообразного топлива требуется, по разным оценкам, от 10 до 25% производимого зелеными растениями кислорода. Если в ближайшие годы основным энергетическим ресурсом остается ископаемое горючее, то весь объем продуцируемого кислорода будет сжигаться. То есть тогда не будет естественного пополнение атмосферы кислородом. В настоящее время ежегодный объем уменьшение кислорода составляет 1×10⁹ т.

(Промышленность и транспорт не только сжигают кислород, но и вырабатывают в атмосферу соответствующие количества углекислого газа (более 20 млрд. т. ежегодно). За последние 100 лет количество CO₂ в атмосфере Земли возросло на 20%. В целом проблема загрязнения атмосферы возникала вместе с появлением промышленности и транспорта, работающих на каменном угле, а затем на нефтяном. Быстрый и повсеместный рост промышленности и транспорта привел к такому увеличению объема и токсичности выбросов, которые уже не могут быть "растворены" в атмосфере до безвредных для природной среды и человека концентраций. Общий современный уровень техногенного загрязнения атмосферы достигает порядка 1 млрд. т. аэрозолей и газовых выбросов и 300-500 млн. т. пыли. Содержание загрязнителей в атмосфере над городом примерно в 15 раз выше, чем в сельской местности. С учетом этих обстоятельств на Земле немало мест, где загрязнение воздуха создает угрозу нормальному функционированию экосистем и здоровью человека.

Главными источниками загрязнения атмосферы являются промышленные, транспортные и бытовые выбросы. В результате сгорания топлив в топках промышленных пред-
приятий и тепловых электростанций вместе с газами выделяются и механические загрязнители - разного размера несгоревшие частицы, пыль, зола, сажа, при этом главным химическим загрязнителем атмосферы является сернистый газ (SO₂). Она быстро распространяется в воздухе на значительные расстояния. Металлургические заводы выделяют угарный газ, оксиды железа, меди и других металлов. Алюминиевая промышленность загрязняет атмосферу и местность вокруг заводов токсичными фтористыми соединениями.

Под воздействием интенсивного солнечного облучения поступающие от промышленных и транспортных источников вещества могут вступать в реакцию друг с другом, образуя высокотоксичные соединения. Это явление называется фотохимическим смогом, где имеются опасные соединения для живых организмов озона, формальдегида и других. Такой фотохимический смог характерен в течение года для города Лос-Анджелеса и многих крупных городов мира.

Основными загрязняющими веществами выхлопных газов автомобилей являются: оксид углерода, оксид азота, бензопирин и другие различные углеводороды. Около 300 млн. автомобилей в мире ежегодно выбрасывают в атмосферу нашей планеты примерно 800 тыс. т. оксида азота и почти 1 тыс. т. свинца. Причем подавляющее большинство из 200 компонентов выхлопных газов автомобилей угнетающе действует на организм человека.

Самое опасное загрязнение атмосферы и всей окружающей среды является радиоактивное. В настоящее время фон искусственной радиоактивности, вызванной испытаниями ядерного оружия, достиг угрожающего уровня.

Чтобы защитить людей от возможных малых доз загрязнений во многих странах мира установлена верхние пределы загрязнения. Их называют ПДК и ПДВ. Предельно-допустимой концентрацией (ПДК) является норматив, где имеются количество (объем) твердых вредных веществ в окружающей среде, не влияющих на здоровье человека. А предельно-допустимым выбросом (ПДВ) является норматив, где имеются уровень или объем газообразных вредных веществ в окружающей среде, не влияющие на здоровье человека. Таким образом, этими нормами допускается определенная концентрация загрязнителя, при которой он еще не становится токсичным, то есть не оказывает на человека ни прямого, ни косвенного вредного воздействия,
не влияет на состояние его здоровья, на самочувствие и даже настроение. Например, для наиболее распространенного загрязнителя сернистого газа - в США приняты ПДК 4,4 мг/куб. м, ФРГ - 0,75 мг/куб. м, а в нашей Республике только 0,05 мг/куб. м.

Для растений наиболее ядовиты сернистый газ, фтористый водород, озон, хлор, свинец, ртуть, мышьяк и некоторые другие вещества. Причем, степень загрязнения растительного покрова зависит от его видового состава. Например, при концентрации сернистого ангидрида 0,01-0,02 части на 1 млн. большинство лишайников погибают. Животные поражаются как непосредственно находящимися в атмосфере загрязнителями, так и косвенно, когда загрязняющие вещества попадают в организм со съедаемыми растениями.

Длительное время единственным решением проблемы загрязнения атмосферного воздуха была так называемая естественная способность атмосферы к самоочищению. При этом механические частицы и газы рассеивались воздушными потоками, осаждались или выпадали на землю с дождями и снегом, а также нейтрализовались, вступая в реакцию с природными соединениями. Однако способность окружающей среды к самоочищению бесконечна. Так как, объемы и скорости современных промышленных, бытовых и транспортных выбросов в крупных городах и промышленных центрах нередко превосходят природные возможности к их утилизации и обезвреживанию.

Мероприятия по сохранению экологически безопасного состояния атмосферы подразделяются на следующие 3 группы. К первой группе относятся мероприятия по снижению валового количества загрязнителей, поступающих в атмосферу. Это улучшение качества топлива, в частности снижение содержания серы в жидком топливе, обогащение твердого топлива для его более полного сгорания, использование присадок к топливу, действующих как катализаторы и обеспечивающих его более быстрое сгорание. Сюда же относятся совершенствование технологических процессов, включая разработку замкнутых циклов, без выделения вредных веществ в атмосферу.

Вторая группа включает мероприятия по защите атмосферы путем рассасивания, обработки и нейтрализации вредных выбросов. Среди них основными являются следующие: сооружение на промышленных предприятиях тепловых электростанциях сверхвысоких труб (300 м и более) с по-
мощью которых увеличивается ореол рассеивания аэрозолей и снижение их концентрации у источника загрязнения; строительство всевозможных очистных сооружений (фильтры, пылеулавливатели); бактериальное разложение загрязнителей и многие другие.

Третья группа мероприятий предполагает предотвращение загрязнения атмосферы путем рационального, дисперсного размещения "грязных" предприятий - источников вредных выбросов с учетом природной обстановки и потенциальной возможности загрязнения воздуха.

Серьезной с экологической точки зрения проблемой остается автомобильный транспорт. В настоящее время во многих развитых странах мира ведутся интенсивные и многообещающие исследования и разработки, направленные на снижение и в конечном счете полную ликвидацию загрязнения воздуха выхлопными газами автомобильных двигателей.

Фундаментальное решение экологических проблем загрязнения атмосферы это переход на новые принципы производственного процесса - безотходная технология. Внедрения безотходной или малоотходной технологии связана со сложными технологическими процессами и большим объемом капиталовложений.

Каждодневная система экологически безопасного состояния атмосферы связана службой контроля или мониторинга окружающей среды.

8.6. Водные ресурсы, их загрязнения и вытекающие из них экологические проблемы.

Вода - самое распространенное неорганическое соединение, "самый важный минерал" на Земле. Мировые запасы воды слагаются из жидкой (соленая и пресная), твердой (пресная) и газообразной (также пресная) воды. Запасы эти значительны. По последним данным ученых объем Мирового океана составляет 1338 млн. куб. км, то есть 96,5% всей воды на Земле. По долю ледниковых покровов Арктики и Антарктики падает 24 млн. куб. км, что составляет 69% всех земных пресных вод. В руслах всех рек мира при среднем уровне воды одновременно содержится 2120 куб. км, за год они выносят в океан 45 тыс. куб. км. воды. В озерных водоемах сосредоточено 176,4 тыс. куб. км, в атмосфере в виде водяного пара - 12900 куб. км. Объем подземных вод равен 23,4 млн. куб. км. Вода есть и в живых организмах, ее ориентировочный объем - 1120 куб.
км. Приведенные данные характеризуют общие запасы воды Земли. Однако воды, пригодные для всех видов использования - пресные воды рек и озер - составляют ничтожную часть общих запасов. Причем они распределены по земному шару крайне неравномерно.

На протяжении длительного исторического периода человек в полной мере удовлетворял все свои потребности в пресной воде и не ощущал в ней недостатка. Но в связи с быстрым ростом населения и его производственной деятельностью потребность в воде значительно возросла. В настоящее время она достигла таких масштабов, что во многих местах планеты и особенно в развитых промышленных районах возникла острая проблема нехватки пресной воды.

Особенно много расходуется пресной воды на промышленные нужды. Достаточно сказать, что для выплавки 1 т. чугуна и переработки его в сталь и прокат нужно 300 куб. м. воды, 1 т. меди - 500 куб. м., для производства 1 т. никеля - 4000 куб. м. воды, 1 т. синтетического каучука и искусственных тканей - 2100-2500 куб. м.

Для современной техники характерен рост старых и возникновение новых производств, потребляющих большое количество воды. Крупные заводы, фабрики, электростанции "выпивают" целые реки воды. Огромное количество воды расходуется на земледелие. Установлено, что для производства 1 кг растительной массы разные растения в различных условиях расходуют на транспирацию от 150-200 до 800-1000 куб. м. воды. Только в странах СНГ ежегодно расходуется на транспирацию растений примерно 3500 куб. км. воды, что составляет 1/3 годового количества осадков. Поэтому недостаток пресной воды имеет место уже сейчас во многих странах мира. В частности острый недостаток воды ощущается в Нью-Йорке, Мехико, Гонконге и многих других крупных городах мира. На привозной воде живет целая страна Алжир. В целом недостаток воды в настоящее время испытывают 1/3 населения Земли. Поэтому вода превращается в самое драгоценное сырье, заменить которое другим видом сырья невозможно. Даже футуристы утверждают, что будущие войны между государствами могут возникнуть в борьбе за пресную воду.

Проблема недостатка пресной воды возникла по трем основным причинам: 1) интенсивное увеличение потребностей в воде в связи с быстрым ростом народонаселения планеты и развитием отраслей деятельности, требующих
огромных затрат водных ресурсов; 2) потери воды вследствие сокращения водоносности рек и других причин; 3) загрязнение водоемов промышленными и бытовыми стоками. В настоящее время человечество потребляет на хозяйственно-бытовые нужды 12% речного стока. Мировое производство ежегодно потребляет в химически различных видах создаваемой производством продукции. При этом темпы роста водопотребления составляют 5-6% за последние 5 лет, а по отдельным странам достигают 10-12%. В целом суммарный водозабор на земном шаре оценивается в настоящее время в 3300-3520 куб км/год, составляя на много меньше 1000 куб. м/год на душу населения. По расчетам ученых к 2100 году человечество может исчерпать все запасы пресных вод на Земле.

Потери пресной воды происходят в основном с вырубкой лесов, распашкой лугов, осушением пойменный болот и многих других. Они вызывают с одной стороны усиление поверхностного стока и увеличение стекающей в море воды, а с другой — сокращение уровня грунтовых вод, питания реки и поддерживающих их водосносность. По этой причине во многих странах сильно сокращаются запасы подземных вод. В США например, с 1910 по 1990 года ее запасы уменьшились с 500 до 50 млрд. куб. м.

8.7. Ресурсы растительного и животного мира, экологические проблемы при их использовании.

Велика роль растений в жизни человека; они создают необходимую среду существования, служат источником разнообразных пищевых ресурсов, строительного материала и, наконец, предметом эстетического наслаждения. Являясь самовосстанавливающимся ресурсом, раститель-
ность часто не может реализовать эту способность вследствие изменений условий размножения, роста и развития под прямым и косвенным воздействием человека. Поэтому некоторые виды растений могут стать редкими, исчезнуть на определенном участке или на всей планете.

Из всех растительных ресурсов Земли самое важное значение в жизни природы и человека имеют леса. Они больше всего пострадали от хозяйственной деятельности и раньше всего стали объектом охраны. Леса занимают около 1/3 поверхности суши земного шара. Общая площадь леса на земном шаре составляет 4 млрд. 230 млн. га. Значение леса огромно. Ее древесина является универсальным сырьем, из которого изготавливается свыше 15-20 тыс. изделий и продуктов. При этом особенно большое экономическое значение имеют породы с мягкой древесиной, из них изготавливают 75% всех пиломатериалов. За последние годы древесина нашла широкое применение в химической промышленности. Перечень продукции, получаемой при химической переработке древесины, сучьев, хвои, коры поистине неисчерпаем. В последние годы все большее внимание уделяется санитарно-гигиенической, бальнеологической и рекреационной роли лесов. Некоторые из этих функций стали настолько важны, что в ряде районов мира они отодвинули на второй план значение лесных земель как поставщиков древесины.

Эксплуатационный запас лесов земного шара составляет 121 млрд. куб. метров, из которых на долю хвойных, наиболее интенсивно используемых в лесном хозяйстве, приходится в объеме 76 млрд. куб. метров. Во всех лесах мира ежегодно прирастает 5,5 млрд. куб. метров. А объем ежегодных вырубок в настоящее время составляет более 4 млрд. куб. метров древесины. По подсчетам специалистов к 2050 году объем ежегодных вырубок лесов в мировом масштабе достигнет более 7 млрд. куб. метров. Это значительно превысит годовой прирост древесины во всех лесах нашей планеты.

В настоящее время в отдельных районах мира (Амазонка, Центральная Африка, Юго-Восточная Азия) леса уничтожаются настолько быстрыми темпами, что площади вырубок значительно превышают объемы посадки и посева леса. За последние 300 лет площади лесов сократились вдвое. К настоящему времени в зоне смешанных и широко-листенных лесов сведено 40-50% их первоначальной площади, в зоне средиземноморских субтропических лесов...
4. Охарактеризуйте минеральные ресурсы и экологические проблемы их добычи.
5. Расскажите о роли атмосферного воздуха, ее загрязнении и путях решения этой проблемы.
6. Охарактеризуйте значение водных ресурсов, их загрязнение и связанные с ними экологические проблемы.
7. Важность ресурсов растительного и животного мира, причина охраны редких и исчезающих видов.
8. Расскажите об охраняемых территория (заповедниках, национальных природных парках, заказниках, памятниках природы).

9. МЕДИЦИНСКИЕ АСПЕКТЫ ЭКОЛОГИИ

9.1. Окружающая среда и здоровье человека.

Первобытный человек всецело находился во власти природы, каждое изменение природной среды отзывалось на его здоровье и самочувствии. Он дрожал от холода, если понижалась температура, голодал, если не было плодов или исчезала дичь, ранил себе ноги, когда приходилось идти по острым камням или по колючей траве. Человек не умел лечиться и умирал от ран или инфекции, если организм не в силах был справиться с ними сам. Защитой ему служила только выносливость, закалка, то, что в настоящее время называют "адаптивной приспособляемостью". То есть человеческий организм во многом был связан со всеми компонентами биосферы - растениями, насекомыми, микроорганизмами. Он входил в великий круговорот природы и следовал ее закона. Как и организмы других животных, он подчинялся суточным и сезонным ритмам, реагировал на сезонные изменения температуры, на интенсивность солнечного излучения. Иначе говоря, жизнь человека невозможна без окружающей внешней среды, без природы. При этом человеку как живому организму, как биологическому виду присущ обмен веществ с окружающей средой, который является основным условием существования любого живого вещества. В этом аспекте жизнь, точнее здоровье человека связана с определенным способом существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей средой. Причем с прекращением этого обмена веществ прекращается и жизнь.
Человек как живое вещество и человеческий род как совокупность индивидов подчинены определенным законам экосистемы и биосферы. При этом специфика экосистемы "человек - окружающая среда" определяется не только присущими ей физическими и биологическими факторами. С экологической точки зрения она формируется также другими качественно новыми социально-экономическими условиями. То есть человек в отличие от животных и растений является не только биологическим, но и социальным явлением. В этом смысле жизнедеятельность (здоровое существование) человека регламентируется не только биологическим, но и социально-экономическими факторами. То есть на здоровье современного человека оказывают большое влияние так называемые природные и социально-экономические "отрицательные" очаги и источники.

9.2. Влияние загрязнения атмосферы на здоровье человека и эколого-гигиенические нормы их использования.

Все вещества, загрязняющие атмосферу в большей или меньшей степени оказывают отрицательное влияние на здоровье человека. Эти вещества попадают в организм человека преимущественно через систему дыхания. Органы дыхания страдают от загрязнения непосредственно, поскольку около 50% частиц примеси радиусом 0,01-0,1 мкм, проникающие в легкие, оседают в них. Проникающие в организм частицы вызывают токсический эффект, так как они по своей химической или физической природе являются токсичными (ядовитыми).

Статистический анализ позволил достаточно надежно установить зависимость между уровнем загрязнения и такими заболеваниями, как поражение верхних дыхательных путей, сердечная недостаточность, бронхиты, астма, пневмония, эмфизема, легких, а также болезни глаз. К основным загрязняющим веществам атмосферы, влияющим на здоровье человека относятся: окись углерода, диоксид серы и серный ангидрид, окиси азота и некоторые другие вещества.

Концентрация оксида углерода (CO), превышающая предельно допустимые нормы, приводит к физиологическим изменениям в организме человека, а концентрация более 750 млн. - к смерти. Это объясняется тем, что CO является исключительно агрессивным газом, легко соединяющимся с гемоглобином. Причем степень воздействия
оксида углерода на организм зависит не только от его концентрации, но и от времени пребывания человека в загазованном СО воздухе. Оксид углерода - очень стабильное вещество; время его жизни в атмосфере составляет 2-4 месяца.

Диоксид серы (SO) и серный ангидрид (SO) в комбинации со взвешенными частицами и влагой оказывают наиболее вредное воздействие на человека. Диоксид серы является бесцветным и негорючим газом, запах которого начинает ощущаться при его концентрации в воздухе 0,3-1,0 млн., а при концентрации свыше 3 млн. SO имеет острый раздражающий запах. Диоксид серы в смеси с твердыми частицами и серной кислотой уже при среднегодовом содержании 0,04-0,09 млн. и концентрации дыма 150-200 мкг/м приводит к увеличению симптомов затрудненного дыхания и болезней легких. А при среднесуточном содержании SO 0,2-0,5 млн. и 500-700 мкг/м концентрации дыма наблюдается резкое увеличение числа больных и смертельных исходов.

Оксида азота (прежде всего, ядовитый диоксид азота NO), соединяющийся при участии ультрафиолетовой солнечной радиации с углеводородами. Они также образуют пероксисилецетилнитрат (ПАН) и другие фотохимические окислители. К последним относятся: пероксибензоилнитрат (ПБН), озон (O), перекись водорода (НО), диоксид азота. Они все являются основными составляющими, так называемого, фотохимического смога, повторяемость которого велика в сильно загрязненных городах (Лос-Анджелес, Чикаго, Нью-Йорк и других). Все окислители, в первую очередь ПАН и ПБН, сильно раздражают и вызывают воспаление глаз, а в комбинации с озоном раздражают носоглотку, приводят к спазмам грудной клетки. А при высокой концентрации (свыше 3-4 мг/м) вызывают сильный кашель и ослабляют возможность на чем-либо сосредоточиться.

Некоторые другие загрязняющие воздушные вещества (асбест, бериллий, пыли ртути) вызывают у человека различные грудной клетки, кожи, центральной нервной системы, почек и т.д.

Чтобы предотвратить вредное влияние загрязняющих веществ в атмосфере на здоровье человека во многих странах мира разработаны эколого-гиенические нормы предельно допустимых концентраций (ПДК). При этом следует отметить, что допустимой может быть признана только такая концентрация того или иного вещества в атмосферном воз-
духе, которая не оказывает на человека прямого или косвенного вредного и неприятного действия, не снижает его работоспособность, не влияет на самочувствие и настроение. Основной физической характеристикой примесей атмосферы является концентрация - масса (мг) вещества в единице объема (м) воздуха при нормальных условиях. Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест регламентированы определенными списками. Для территории нашей республики они выглядят следующим образом (таблица 2).

Табл. 2. Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест.

<table>
<thead>
<tr>
<th>ВЕЩЕСТВА</th>
<th>ПДК мг/м</th>
<th>максимальная разовая</th>
<th>среднесуточная</th>
</tr>
</thead>
<tbody>
<tr>
<td>Азот диоксид</td>
<td>0,085</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>Азота оксид</td>
<td>0,6</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Аммиак</td>
<td>0,2</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>Ацетон</td>
<td>0,35</td>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>Бензопирен</td>
<td>-</td>
<td>0,1 мкг/</td>
<td></td>
</tr>
<tr>
<td>Бензин</td>
<td>5</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>Бензол</td>
<td>1,5</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Бром</td>
<td>-</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>Ванадия оксид</td>
<td>-</td>
<td>0,002</td>
<td></td>
</tr>
<tr>
<td>Железа оксид</td>
<td>-</td>
<td>0,04</td>
<td></td>
</tr>
<tr>
<td>Кислота серная</td>
<td>0,3</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Кобальт</td>
<td>-</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Магния оксид</td>
<td>0,4</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Меди оксид</td>
<td>-</td>
<td>0,002</td>
<td></td>
</tr>
<tr>
<td>Мышьяк</td>
<td>-</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Никель</td>
<td>-</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>Озон</td>
<td>0,01</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Олово</td>
<td>-</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Пыль неорганическая</td>
<td>0,15</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Ртуть</td>
<td>-</td>
<td>0,0003</td>
<td></td>
</tr>
<tr>
<td>Сажа</td>
<td>0,15</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Свинец</td>
<td>-</td>
<td>0,0017</td>
<td></td>
</tr>
<tr>
<td>Сероводород</td>
<td>0,008</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Сероуглерод</td>
<td>0,03</td>
<td>0,005</td>
<td></td>
</tr>
<tr>
<td>Углерода оксид</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Фенол</td>
<td>0,01</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Формальдегид</td>
<td>0,035</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>Фтор</td>
<td>0,03</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>Хром</td>
<td>0,0015</td>
<td>0,0015</td>
<td></td>
</tr>
<tr>
<td>Цинка оксид</td>
<td>-</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

9.3. Влияние загрязнения воды на здоровье человека и эколого-гигиенические нормы их потребления.

Современный уровень индустрии, рост населения в городах и промышленных центрах, благоустройство сельских населенных пунктов приводит не только к увеличению потребления воды для бытовых и производственных нужд, но и увеличению сточных вод. Производственные и бытовые отходы содержат множество разнообразных веществ, от которых природные запасы воды не способны очищаться. Загрязнение водоемов оказалось опасным для здоровья людей. То есть вода способна не только поддерживать жизнь и здоровье, но и приносить несчастье в виде различных болезней. Ранее всего ее связь с распространением заболеваний стала очевидной в отношении холеры. В истории человечества первая водная холерная эпидемия была отмечена в Лондоне в 1854 г. Другая вспыхнула в 1892 г. в Гамбурге, жители которого пользовались плохо устроенным водопроводом. Заболело 18000 человек, умерло около 9000. В последствии водная эпидемия холеры и других болезней были и в других городах и странах.

В наши дни появились специфические заболевания, преимущественно в развитых странах, возникающие от загрязнения окружающей среды. В Японии возникла новая болезнь, вызванная загрязнением водоема в Минамата - города с населением 50 тыс. человек на западном побережье острова Кюсо. У заболевших рыбаков нарушалась речь, резко ухудшилось зрение, паралич сковывал мышцы ног и рук. Исследования, проведенные учеными, показали, что заболевание вызвано ртутным отравлением. В данном случае отравленная ртутью рыба стала источником страданий местного населения, так как ртуть является одним из наиболее опасных и стойких загрязнителей воды. Таким образом, "болезнь Минамата" будет долгие годы сопровождать население этого района и передаваться по наследству. Помимо вышеназванного, в Японии появилась и
другая болезнь "итай-итай" - результаты отравления кадмия. Среди заболевших этой болезнью смертность достигла 50%. Такие болезни вызваны главным образом отравлением воды различными химическими веществами долгие годы.

Таким образом, загрязнение воды, которую люди употребляют для питья также опасно, как и загрязненная вода является разносчиком желудочно-кишечных и специфических заболеваний, таких как "итай-итай", вызванных загрязнением отравленными веществами водной среды.

Для того, чтобы обезопасить население от водных инфекций, различных заболеваний во многих странах мира разработаны специальные эколого-гигиенические нормы для питьевой воды. Эколого-гигиенические нормы ПДК химических веществ в воде является их максимальной концентрацией, которая влияет прямо или косвенно на состояние здоровья настоящего и будущего поколений человека при воздействии на организм. То есть ПДК загрязняющих веществ несут важнейшую функцию стандарта качества воды, призванного обеспечить здоровье населения и регламентировать возможность сброса загрязняющих веществ в водную среду. Понятие о ПДК базируется на концепции пороговости действия химических веществ. Она постулирует, что для каждого вещества, вызывающего те или иные неблагоприятные эффекты в организме, существует и могут быть найдены дозы (концентрации), при которых изменения даже наиболее чувствительных показателей функций организма будут минимальными (пороговыми). При более низких дозах (концентрациях) вещество не оказывает вредного воздействия и его присутствие в водной среде в количестве, не превышающем эти концентрации, можно считать безопасными.

Эколого-гигиенические нормы ПДК предусматривают вредность загрязняющих веществ в водной среде по следующим признакам: санитарно-токсикологический (чувствительность живых организмов к действию вредных веществ), органический (окраска, запах, привкус воды) и общесанитарный (интенсивность БПК, процессов минерализации азотосодержащих веществ, развития и отмирания сапрофитной микрофлоры). По каждому из признаков вредности находят пороговую (недействующую) концентрацию. Наименьшая из них с соответствующим признаком вредности принимается как ПДК. Для водных объектов нашей республики разработаны следующие эколого-
гигиенические нормы некоторых вредных веществ (мг/л) (таблица 3).

<table>
<thead>
<tr>
<th>Загрязняющие вещества</th>
<th>Эколого-санитарные нормы ПДК</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Лимитирующий показатель вредности</td>
</tr>
<tr>
<td>Аммиак</td>
<td>общесанитарный</td>
</tr>
<tr>
<td>Ацетон</td>
<td>общесанитарный</td>
</tr>
<tr>
<td>Бензол</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Берилий</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Бром</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Барий</td>
<td>органолептический</td>
</tr>
<tr>
<td>Ванадий</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Гексахлоран</td>
<td>органолептический</td>
</tr>
<tr>
<td>ДДТ</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Железо</td>
<td>Органолептический</td>
</tr>
<tr>
<td>Кадмий</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Кобальт</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Керосин</td>
<td>органолептический</td>
</tr>
<tr>
<td>Карбофос</td>
<td>органолептический</td>
</tr>
<tr>
<td>Медь</td>
<td>органолептический</td>
</tr>
<tr>
<td>Мышьяк</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Молибден</td>
<td>общесанитарный</td>
</tr>
<tr>
<td>Нитраты</td>
<td>общесанитарный</td>
</tr>
<tr>
<td>Нефть</td>
<td>органолептический</td>
</tr>
<tr>
<td>Никель</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Ртуть</td>
<td>общесанитарный</td>
</tr>
<tr>
<td>Свинец</td>
<td>общесанитарный</td>
</tr>
<tr>
<td>Сурьма</td>
<td>общесанитарный</td>
</tr>
<tr>
<td>Селен</td>
<td>общесанитарный</td>
</tr>
<tr>
<td>Стронций</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Сероуглерод</td>
<td>органолептический</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Фенол</td>
<td>органолептический</td>
</tr>
<tr>
<td>Формальдегид</td>
<td>общесанитарный</td>
</tr>
<tr>
<td>Фтор</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Хром</td>
<td>органолептический</td>
</tr>
<tr>
<td>Цианиды</td>
<td>санитарно-токсикологический</td>
</tr>
<tr>
<td>Цинк</td>
<td>общесанитарный</td>
</tr>
</tbody>
</table>

Таким образом, эколого-гигиенические нормы ПДК позволяют отличать уровни загрязнения, прямо или косвенно влияющие на санитарные условия водопользования и здоровье населения. От уровней загрязнения воды зависит не только здоровье населения, но и народнохозяйственные интересы общества в целом.

9.4. Почва и пестициды, их влияние на здоровье человека.

Почва является средой обитания многочисленных низших животных и микроорганизмов, в том числе бактерий, грибов, вирусов. Большинство почвенных микроорганизмов-сапрофаги; они живут и размножаются в почве и не приносят вреда животным организмам, вместе с тем, в почве обитают постоянно или временно, так называемые, патогенные (от греч. "Pathos" - страдание + "Qenos" - рождение) - болезненпротивные микроорганизмы, возбудители таких опасных инфекционных болезней, как сибирская язва, газовая гангрена, столбняк, ботулизм и другие. Возбудители этих болезней в отдельной почве способны оставаться жизнеспособными многие десятилетия.

Заращение человека через загрязненную почву может наступить при самых разных обстоятельствах: непосредственно при обработке, почвы, уборке урожая, строительнных работах и т.п. К числу наиболее опасных болезней человека относятся сибирская язва. Ее возбудителем является сибиреязвенная палочка. Попадая с мочной и испражнениями больных животных в почву, она образует вокруг себя спору и в таком состоянии может сохраняться годами. Человек заражается сибирской язвой, как правило, при контакте с больными или павшими животными (при уходе за ними, убое, снятии шкур и т.п.), через продукты и сырье, полученные от больных животных (мясо, шерсть, шкуры), а также при непосредственном соприкосновении с
почвой. Из числа временных микроорганизмов, обитающих в почве, большую группу составляют возбудители кишечных инфекций (брюшного тифа, холеры, дисентерии), бруцеллеза, чумы, туляремии, коклюша и других болезней. Особенно велика роль почвы в распространении гельминтозов - группы паразитарных (инвазийных) болезней, вызываемых внедрением в организм человека червей-паразитов - гельминтов. Огромное значение имеет наличие микроэлементов в организме человека. В частности, недостаток или избыток микроэлементов в почве приводит к недостатку или избытку их не только травоядных, но и плотоядных животных, а также в организме человека. Это влечет за собой ослабление или усиление синтеза биологически активных веществ, в состав которых входят микроэлементы, нарушение процесса промежуточного обмена веществ - возникновение заболеваний. Заболевания, связанные с недостатком или избытком микроэлементов, получили название эндемических (от греч. "ende"-"mos" - местный). Например, в бывшей СССР были бедные йодом (западные области Украины), кобальтом и медью (Прибалтийские республики) области. Недостаток йода служит причиной возникновения зобной болезни.

Почва обладает способностью накапливать радиоактивные вещества, поступающие в нее с радиоактивными отходами ядерных, энергетических и других реакторов, с атмосферными радиоактивными осадками после ядерных испытаний.

К числу химических соединений, загрязняющих почву, относятся и канцерогенные вещества - канцерогены. В настоящее время под канцерогенными подразумевают химические, физические и биологические вещества, которые играют существенную роль в возникновении опухолевых заболеваний у людей.

Возрастающее производство и применение пестицидов неизбежно сопровождается их рассеиванием и накоплением. В почву пестициды поступают с протравленными семенами, с поверхностным стоком и органическими удобрениями, в целом, пестициды, обладая, высокой биологической активностью, способны отрицательно воздействовать на организм человека. Поступая тем или другим путем в организм человека, пестициды могут вызывать отравления. При отравлении хлороорганическими пестицидами обычно поражаются внутренние органы (печень, почки), а также нервная система. Наиболее высокотоксичными и
стойкими пестицидами являются: гексахлоран, ДДТ, тиофос, метилэтилтиофос, метафос, карбофос, хлорофос. Пестициды создают потенциальную опасность возникновения патологических изменений в организме человека. При сохранении здоровья населения в первую очередь учитывается правильное применение пестицидов, должны соблюдаться конкретные меры, обеспечивающие достаточную безопасность для человека.

В связи с интенсивным и всевозрастающим загрязнением химическими веществами почвы разработаны эколого-гигиенические нормы ПДК некоторых вредных веществ. При нормировании вредных веществ в почве учитывается не только та опасность, которую представляет почва при непосредственном контакте с ней, но главным образом последствия вторичного загрязнения контактирующей с почвой среды. В таблице 4 приведены ПДК химических веществ в почве.

<table>
<thead>
<tr>
<th>Табл. 4.</th>
<th>ПДК, мг/кг почвы</th>
</tr>
</thead>
<tbody>
<tr>
<td>ВЕЩЕСТВО</td>
<td>ПДК, мг/кг почвы</td>
</tr>
<tr>
<td>Гексахлоран</td>
<td>1</td>
</tr>
<tr>
<td>ДДТ</td>
<td>0,5</td>
</tr>
<tr>
<td>Карбарили</td>
<td>0,05</td>
</tr>
<tr>
<td>Хлорофос</td>
<td>0,5</td>
</tr>
<tr>
<td>Линдон</td>
<td>1</td>
</tr>
<tr>
<td>Карбофос</td>
<td>2</td>
</tr>
<tr>
<td>Полихлоркамфен</td>
<td>0,5</td>
</tr>
<tr>
<td>Полихлорпинен</td>
<td>0,5</td>
</tr>
<tr>
<td>Прометрин</td>
<td>0,5</td>
</tr>
<tr>
<td>Хлоралит</td>
<td>0,05</td>
</tr>
</tbody>
</table>

9.5. Радиоактивное загрязнение и ее влияние на здоровье человека.

Радиационные загрязнения имеют существенное отличие от других. Некоторые химические элементы радиоактивны: их самопроизвольный распад и превращение в элементы с другими порядковыми номерами сопровождается излучением. При распаде радиоактивного вещества его масса с течением времени уменьшается. Теоретически вся масса радиоактивного элемента исчезает за бесконечно большое время. Время, по истечении которого масса уменьшается вдвое, называется периодом полураспада.
Для разных радиоактивных веществ период полураспада изменяется в широких пределах: от нескольких часов до нескольких миллиардов лет. При этом наибольшую опасность представляют радиоактивные вещества с периодом полураспада от нескольких недель до нескольких лет. То есть этого времени достаточно для проникновения таких веществ в организм человека. Она распространяется по пищевой цепи (от растений и животных далее к человеку). Радиоактивные вещества с продуктами питания поступают в организм человека и могут накапливаться в таком количестве, которое способно нанести вред здоровью человека. С полураспадом радиоактивных веществ образуются радиоактивные нуклиды. Последняя состоит из ядра, являющегося нестабильным относительно ядерных превращений, сопровождающихся испусканием заряженные частицы (альфа-частицы, бета-частицы и коротковолнового электромагнитного излучения (гамма-излучение)). Именно эти частицы и излучения, попадая в организм человека, разрушают клетки, вследствие чего возникают соматические (в том числе и лучевая болезнь) и генетические (повреждение клеток, принимающих участие в процессе размножения) явления. При этом следует отметить, что никакие воздействия - ни химические, ни температура, ни давление - не могут изменить одной из основных характеристик радиоактивного ядра - период полураспада.

Излучение радиоактивных веществ в целом оказывает следующее воздействие на организм: а) ослабляет облученный организм, замедляет рост, снижает иммунитет организма и сопротивляемость к инфекциям; б) уменьшает продолжительность жизни, сокращает показатели естественного прироста из-за временной или полной стерилизации; в) различными способами поражает гены, последствия которого проявляются во втором или третьем поколениях; г) оказывает кумулятивное (накапливающееся) воздействие, вызывая необратимые эффекты.

Тяжесть последствий облучения зависит от количества поглощенной организмом энергии (радиации), излученной радиоактивным веществом. Единицей этой энергии служит 1 рад. Это доза облучения, при котором 1 г живого веса поглощает 10 Дж энергии.

Установлено, что при дозе, превышающей 1000 рад, человек погибает; при дозе 700 и 200 рад - смертельный исход отмечается в 90 и 10% случаях соответственно; в случае дозы 100 рад - человек выживает, однако
значительно возрастает вероятность заболевания раком, а также полной стерилизации.

Главными источниками радиоактивного загрязнения были взрывы атомных и водородных бомб, радиоактивные примеси атомной промышленности и атомных реакторов в мире. В частности, ежегодное количество отходов атомной промышленности США в ближайшее время достигнет 4250 т. (что эквивалентно массе отходов в объеме, образуемых при взрыве 8 млн. бомб типа сброшенной на Хиросиму), а в России к настоящему времени образовались около 90 тыс. куб. метров упаренных жидк и более 60 тыс. куб. метров твердых радиоактивных отходов. Из-за последних в настоящее время на территории бывшей СССР 4 млн. кв. км. площадей непригодны для проживания, вследствие повышенного уровня радиации. Наглядным тому примером служит авария на Чернобыльской АЭС, которая по своим масштабам, не имеет себе равных в мире. Если при взрыве атомной бомбы над Хиросимой выделилось 1,1 кг продуктов деления полураспада радиоактивных веществ, то в результате катастрофы на Чернобыльской АЭС она была от 8 до 15 т.

Цель — сохранение здоровья человека от радиоактивного загрязнения остается наиболее острым проблемой в мире. Прежде всего необходимо установление предельно допустимых норм ионизирующей радиации. Она основывается на следующих требованиях: доза не должна превышать удвоенного среднего значения дозы облучения, которому человек подвергается в естественной среде. И в заключение следует отметить, что авария на Чернобыльской АЭС показала, что ядерный способ получения электроэнергии возможен лишь в случае принципиального исключения аварий с выбросом в окружающую среду радиоактивных нуклидов крайне отрицательно влияющих на здоровье человека.

9.6. Санитарно-гигиенический контроль за уровнем загрязнения окружающей среды.

Санитарные службы многих стран мира играют большую роль в сокращении экологической безопасности природы, отдельных районов земного шара.

Основная функция санитарных служб определяется соответствующими законами и законодательными актами страны. В частности, в нашей Республике функция государственного санитарного надзора определяется "Основами
законодательства Кыргызской Республики о здравоохранении", "Положением о Государственном санитарном надзоре", утвержденными Постановлением совета Министров Кыргызской Республики (схема 3).

Государственный стандартный надзор в Кыргызской Республике осуществляется органами и учреждениями санитарно-эпидемиологической службы Министерства здравоохранения. В их обязанности входит предупредительный и текущий санитарный надзор за чистотой атмосферного воздуха, водной среды, почвы и других компонентов как один из важнейших элементов экологической безопасности окружающей среды. При этом большое значение для санитарно-гигиенической охраны воздуха, водных источников, почвы имеет выявление источников их загрязнения, учет проектируемых, строящихся и реконструируемых объектов, которые могут загрязнять атмосферу, воду, почву. Вместе с тем осуществляется контроль за разработкой и реализацией мероприятий, касающихся размещения экологически "грязных" предприятий и санитарно-запретных зон. При этом запрещается ввод в эксплуатацию новых и реконструируемых предприятий, цехов, которые не обеспечены устройствами, предотвращающими загрязнение воздушного бассейна. Органы санитарно-эпидемиологической службы имеют право запретить эксплуатацию действующих экологически "грязных" предприятий, цехов, как необеспечивающих эффективную очистку и обезвреживание выбросов загрязненных выбросов.

В ходе текущего санитарного надзора изучается экологически целесообразная технология промышленных предприятий, определяется состав и количество выбросов, являются источник загрязнения, осуществляется их учет и паспортизация, учитывая существующие очистные сооружения. Органами санитарно-эпидемиологической службы постоянно разрабатываются, уточняются и составляются эколого-гигиенические нормы ПДК и ПДВ, загрязняющих веществ атмосферного воздуха, водной среды и почвы.

Норматив предельно допустимого уровня радиационного воздействия на окружающую среду, продукты питания устанавливаются органами санитарно-эпидемиологического надзора в величинах, которые не представляют опасности для здоровья человека, его генетического фонда.
Шум, вибрация, негативное влияние магнитных полей и другие вредные воздействия относятся к видам так называемого акустического загрязнения окружающей человека среды. Объектом воздействия ее становятся прежде всего человек, его здоровье, трудоспособность. Превышение допустимых норм физических воздействий вызывает болезненные реакции, снижает умственную и физическую трудоспособность, приводит к серьезным нервным, рако-
вым, сердечно-сосудистым и психическим заболеваниям. Предельно допустимый уровень (ПДУ) их устанавливают органы здравоохранения.

При этом большое значение имеет проведение лабораторного контроля за состоянием атмосферного воздуха, водной среды и почвы. Санинтарно-эпидемиологические станции на стационарных точках определяют масштабы и время загрязнения атмосферного воздуха, качественное состояние загрязненных вод, а также степени загрязнения вредными веществами почвенного покрова. Они также ведут наблюдения на территории промышленных предприятий и вокруг них, изучают зональное распространение выбросов вредных веществ, осваивают и внедряют в практику новые методы определения различных ПДК и ПДВ вредных химических веществ. Санинтарно-гигиенические органы обобщают результаты лабораторного исследования загрязнения атмосферы, водной среды, почвы для использования их в практической работе, издают ежемесячные и ежегодные бюллетени о состоянии воздушной и водной среды населенных мест.

Вопросы и упражнения

1. Значение окружающей среды для здоровья человека.
2. Расскажите влияние загрязнения атмосферы для здоровья человека, эколого-гигиенические нормы ПДК вредных веществ и их значение.
3. Охарактеризуйте влияние загрязненных вод на здоровье человека. Эколого-гигиенические нормы ПДК вредных веществ и их значение.
4. Расскажите о роли и влиянии почвы и пестицидов на здоровье человека.
5. Роль радиоактивного загрязнения на здоровье человека и пути их предотвращения.
6. Объясните важность и необходимость санинтарно-гигиенического контроля за уровнем масштабы загрязнения окружающей среды.
10. ЭКОНОМИЧЕСКИЕ АСПЕКТЫ ЭКОЛОГИИ

10.1. Размещение производства и сохранение экологической безопасности Среды.

Рациональное, комплексное и экологически целесообразное использование минеральных ресурсов, максимальное сокращение его потерь при добыче и последующей переработке является важнейшей эколого-экономической проблемой современности. Она главным образом способствует снижению материалоемкости. Так как в настоящее время снижение материалоемкости на наиболее современных предприятиях многих стран мира носит, как правило, комплексный характер, когда одновременно происходит снижение и ресурсоемкости, и топливоемкости, и энергоемкости производства готовой продукции. Последняя касается в первую очередь, по ресурсам природного происхождения. Для того чтобы превратить снижение материалоемкости в реальный фактор ускорения, необходим масштабный переход к комплексным отраслям, которые в будущем обеспечат глобальный ресурсосберегающий процесс в технологии использования ресурсов сырья, топлива и энергии в масштабах всей страны.

Комплексные использования ресурсов позволяет интенсифицировать так и вновь вводимых, увеличивать выпуска традиционных видов промышленной продукции и осваивать новые виды, сокращать сроки окупаемости затрат, а главное, уменьшать давление со стороны производства на экосистему. С другой стороны комплексное использование добываемого сырья дает возможность вовлечь в промышленную переработку имеющееся весьма значительные запасы относительно бедного минерального сырья, а также огромное количество накопившихся отвалов. Она соответствует задаче охраны окружающей среды.

Комплексная переработка полезных ископаемых сочетается с внедрением в производство прогрессивных технологий (бездоменной металлургии, безотходной переработки руд и концентратов) с распространением экономических методов разработки месторождений и промышленной переработки отходов производства. Такие мероприятия по комплексному использованию минеральных ресурсов дают значительных экономический и экологический эффект. То есть комплексный подход к из-
влечению компонентов является единственным выходом в
подход к извлечению компонентов является единственным
выходом в том случае, когда в месторождении присутству-
ют много ценных компонентов, каждого из которых в от-
дельности недостаточно для промышленного освоения.

Большое значение в экономном использовании природ-
ных ресурсов имеет месторасположение вновь строящихся
предприятий. В зависимости от наличия ресурсов, их объе-
mов и количества, а также уровня общественного развития
определяются объемы производства и его территориальное
размещение. В размещении производства по территории
любой страны в настоящее время важную роль играют такие
факторы, как природные условия и природные ресурсы. В
частности последние создают саму возможность деятель-
ности человека, а природные ресурсы являются элементами
производства.

В целом для реализации программы по комплексному
использованию минерально-сырьевых ресурсов и опти-
мальному размещению производства территории любой
странны и в целях экологической безопасности среды от
загрязнения отходами должны предусматриваться комби-
нированные мероприятия. То есть одни предприятия долж-
ны использовать первичные ресурсы, а другие - отходы от
их переработки. Например, при размещении химического
производства учитывается взаимодействие сырьевых, топ-
ливо-энергетических, водных, транспортных и трудовых
факторов. Существуют три группы химических производств
по признаку размещения: а) химические производства,
связанные с добычей горно-химического сырья (сернистые,
коксовые газы), или производства, отличающиеся высоким
удельным весом сырья на единицу продукции(сода), раз-
мещаются как правило, в сырьевых районах; б) произвед-
ства, требующие много энергии и воды (производство хи-
мических волокон, нитей, синтетический каучук, фосфора),
целесообразно размещать в районах, сочетающих топливно-
энергетические, водные и сырьевые ресурсы; в) произво-
дства нетранспортабельной продукции (смольы, пласт-
массы, шины) а также производства, имеющие небольшой
удельный вес сырья на единицу продукции (фосфорные
удобрения) размещают в районах потребления. При реше-
нии проблем размещения производства какой-либо регио-
на необходимо учитывать экономические, транспортные,
социальные, и другие аспекты с учетом экологической без-
опасности их, которые могли бы ухудшить состояние окру-
жающей среды. Причем следует учитывать эколого-
природные особенности того или иного района.

10.2. Влияние промышленных предприятий на
окружающую среду.

Современные промышленные производства, особенно
предприятия по производству черных металлов: коксохи-
мическое, доменное, сталелитейное, прокатное и другие яв-
ляются источниками загрязнений атмосферы, водоемов и
почвы. Все металлургические, химические и другие пред-
приятия, являются источниками загрязнений пылью, серой
и других. На долю предприятий горной металлургии прихо-
дится 15-20% общих загрязнений атмосферы промышлен-
ностью. В частности 1 миллион тонн годовой производи-
тельности завода черной металлургии выделяет 350 т/сутки
пыли, 200 т/сутки сернистого ангидрида, 400 т/сутки окси-
да углерода, 42 т/сутки оксидов азота. На металлург-
гических предприятиях России образуется ежегодно около
3 млн. т. отходов, их утилизируется и обезвреживается
всего 34%.

Очень большой объем выброса вредных веществ на
атмосферу осуществляют энергетические предприятия
(ТЭС, ТЭЦ, ГРЭС и другие). Продукты сгорания, выбрасы-
ваемые в атмосферу, содержат оксиды азота, углерода,
серы, углеводороды, пары воды и другие вещества в твер-
дом, жидком и газообразном состояниях.

Значительное влияние на экологическую безопасность
среды оказывают машиностроительные предприятия
(особенно оборонные). Ими загрязняются воздушные про-
странства - с выбросами газов, парообразных веществ,
дымов, аэрозолей, пыли; поверхностных водоисточников -
со сточными водами, утечка жидких продуктов или полу-
продуктов; почвы - с накоплением твердых отходов, выпа-
дение токсичных веществ из загрязненного воздуха,
сточных вод.

Гальваническое производство в машиностроении яв-
ляется один из наиболее крупных источников образования
сточных вод. При этом объем сточных вод оборонных про-
изводств составляет 30-50% общего объема сточных вод
машиностроительных предприятий. Основными загрязните-
лями сточных вод гальванических производств является
ионы тяжелых металлов, неорганических кислот, и ще-
лочей, цианиды, повсеместно-активные вещества. В сбросах
сточных вод данных производств Российской Федераций.

124
ции содержится 50 тыс. тяжелых металлов, 100 тыс. т. кислот и щелочей.

Основными загрязнителями красильных производств машиностроительных предприятий является лакокрасочные материалы и их составляющие: синтетические смолы, органические растворители, пластификаторы, катализаторы и инициаторы пленкообразования, неорганических пигментов.

Наиболее экологически опасными загрязнителями, образующимися в литейном производстве, является оксид и диоксид серы и оксиды азота, а также твердые вещества, входящие в состав литейных форм. Также опасными загрязнителями при металлообработке являются индустриальные масла, металлическая пыль и другие.

Твердые отходы машиностроительного производства также содержат таких загрязняющих веществ: стружки, опилки, древесины, пластмасс, шлаки, золы, шламы, осадки и пыль.

На предприятиях машиностроения отходы составляют 260 кг на 1 т металла, иногда эти отходы составляют 50% массы обрабатываемых заготовок металлических изделий. Иначе говоря, в машиностроении на 1 млн. т. потребляемых горных металлов безвозвратные потери металла, исчисляемые в тыс. т., составляют 5,4 - при обдирке, шлифовке, распилю и других видах обработки; 2,1 - при ковке, горячей штамповке и термической обработке; 14 - плавлении металла; 15,2 за счет неполного сброса отходов.

Обычно твердые отходы машиностроительного предприятия составляют: шлак, окалина, зола - 40000 т/год; горелая формовочная земля - 3800 т/год; шламы, флюсы - 600 т/год; абразивы - 0,4-48 т/год; древесные отходы - 100-1500 т/год; пластмассы - 780 т/год; бумага, картон - 2,6-12 т/год; мусор - 140-20000 т/год.

Проблема минимизации экологического ущерба в условиях промышленного производства и в том числе в машиностроительных военно-ориентированных отраслях может в принципе решаться в двух направлениях за счет: а) повышение эффективности существующих методов очистки промышленных выбросов в окружающую среду (сточные воды, отработавшие газы, дымы и другие взвешенные частицы), ликвидации (переработки) твердых отходов; б) внедрения новых альтернативных технологий (экологически чистых, безотходных).
На практике во многих развитых странах прослеживаются в последнее время тенденция сочетания этих направлений в едином комплексном подходе к решению экологических проблем. Вопросы сокращения опасных выбросов в окружающую среду реализуются на всех стадиях производства — от подготовки сырья, выпуска полупродуктов до конечных этапов технологического процесса, вплоть до ликвидации (обезвреживания, утилизации) отходов.

Экологическая безопасность атмосферы, водной среды и почвы, минимизация выбросов загрязняющих веществ может быть обеспечена применением методов обезвреживания (удаления) загрязнителей или использование безопасных технологий. К ним относятся: отстаивание, фильтрация, коагуляция, адсорбция, нейтрализация, восстановление, флотация и другие.

10.3. Отходы производства и их экологические пути обезвреживания.

В настоящее время во многих странах мира (особенно на развитых) образовались огромный объем промышленных, коммунально бытовых и других отходов. Особенно от экологической точки зрения опасно, что часть отходов токсична, наносит прямой вред как человеку, так и окружающей его природе. Например, из 52 металлов (периодической системы Д.И. Менделеева), имеющих хозяйственное значение, около 20 относятся к разряду токсичных. Источниками их являются: вредные выбросы в окружающую среду, связанные с деятельностью человека, а также раз превышает их поступление от природных источников. Концентрируются отходы вокруг индустриальных центров, а следовательно, в районах с высокой плотностью населения. Промышленностью к настоящему времени выпущено при примерно 60 тыс. наименований химических веществ, не встречающихся в природе. Причем влияние некоторых из них как на саму природу, так и на человека еще не изучено.

Увеличение массы отходов требует возрастающих затрат на их обезвреживание, захоронение и все больших площадей, выделяемых для этих целей.

Доля твердых и органических отходов в общем объеме составляет примерно половину. Масса их растет. К ним относятся шлаки, зола, другие вредные вещества, а также бытовой мусор. Так, на предприятиях Министерства черной металлургии России в настоящее время накоплено около
500 млн. т. шлаков. Ежегодно они увеличиваются на 50 млн.
т. А затраты на содержание шлаковых отвалов составляют
более 30 млн. долларов в год. Тепловые электростанции
бывшей СССР накопили около 1 млрд. метр/куб шлаков и
золы, на которые расходовались до 1990 года ежегодно
130-150 млн. рублей. Под отвалами занято 18 тыс. га цен-
ных земель.

На странах СНГ ежегодно требуется вывозить более 40
млн. т. твердых бытовых отходов, образующихся в городах.
Городские свалки мусора занимают на странах СНГ 14 тыс.
га. Они расположены вокруг городских поселений. С эколо-
го-экономической точки зрения эти земли могут использо-
ваться с гораздо большей пользой для общества. Причем
практикуемое сжигание мусора на подобных свалках при-
водит к загрязнению атмосферы густонаселенных районов.

Многие годы данная проблема традиционно решалась
двойным способом. С одной стороны, путем применения
новых в техническом отношении методов добычи и пере-
работки сырья, повышения отдачи от эксплуатируемых мес-
торождений. С другой стороны, путем улавливания вредных
выбросов, их очистки, а также утилизации, отходов,
частично повторно используемых в производстве, и
частично уничтожаемых при помощи сжигания, захоронения
и т.п.

Дальнейший прогресс в этой области связан с посте-
пенным переходом к полностью безотходным замкнутым
циклам производства, в рамках которых можно будет ре-
шить задачу полной переработки сырья и ликвидации ее
вредных последствий. Здесь речь идет о создании безот-
ходных технологий, исключающих в принципе образование
вредных выбросов и позволяющих наиболее полно
(комплексно) применять имеющееся сырье. При этом прин-
цип безотходности должен быть распространен на все эта-
пы движения природных ресурсов: добычу, транспортиров-
ку, переработку сырья и потребление готового продукта из
него. Следует отметить, что создание безотходных техно-
логий является сложной технико-экономической задачей.
Нередко именно экономические показатели накладывают
ограничения на внедрение достижений научно-технического
прогресса, так как безотходная технология при су-
ществующих подходах к оценке целесообразности ее при-
менения не всегда оказывается эффективной.

Таким образом, решение проблемы природопользова-
ния с сохранением экологической безопасности среды за-
висит в настоящее время от совокупности взаимосвязанных мероприятий, которые должны быть направлены на повышение эффективности добычи, переработки и потребления природно-сырьевых ресурсов при одновременном относительно уменьшении нагрузки на природу и предотвращении ее загрязнения.

10.4. Экологические рычаги регулирования производственной деятельности предприятий: экологический паспорт, экологическая лицензия, оценка экологического риска аварий.

Экологический паспорт предприятия - это комплексный документ, который содержит характеристики взаимоотношений предприятия с окружающей средой. Она содержит общие сведения о предприятии, используемом сырье, описание технологических схем выработки основных видов продукции, схем очистки сточных вод и аэровыбросов, их характеристики после очистки, данные о твердых и других отходах, а также сведения о наличии в мире технологий, обеспечивающих достижение наилучших удельных показателей по охране природы; вторая часть паспорта содержит перечень планируемых мероприятий, направленных на снижение нагрузки на окружающую среду, с указанием сроков, объемов затрат, удельных и общих объемов выбросов вредных веществ до и после осуществления каждого мероприятия.

Экологический паспорт отражает несколько принципиальных моментов: а) переход от изучения следствий (состояния окружающей среды) и детальному дифференцированному анализу причин (ситуация по каждому в отдельности и группам родственных предприятий); б) переход от рассмотрения общего выброса к удельным показателям, относимым к единице производимой продукции к сопоставляемым с наилучшими показателями, достигнутыми в мире.

Программа мероприятий экологического паспорта направлена на снижение нагрузки на окружающую среду с указанием сроков реализации, объемов необходимых затрат, достигаемых снижений выбросов и их концентрации, снижении ущерба окружающей среде. Большое значение на экологическом паспорте имеют показатели влияния предприятия на состояние окружающей среды. К ним относятся следующие: 1) Экологичность выпускаемой продукции (доля продукции с улучшенными экологическими пока-
зателями; выпуск экологически чистой продукции); 2) Влияние на вредные ресурсы (объемы забираемой воды по различным источникам; использование воды на производственные цели; объемы воды, переданной другим предприятиям и организациям; концентрация вредных веществ в загрязненных сточных водах; степень очистки сточных вод; изменение объемов и качества сточных вод); 3) Влияние на воздушные ресурсы (объем используемого атмосферного воздуха; количества вредных веществ по видам и источникам; количество вредных веществ, поступающих на очистные сооружения, доля улавливаемых и обезвреживаемых вредных веществ от общего количества отходящих вредных веществ; количество вредных веществ, поступающих в атмосферу после очистки по видам; изменение объемов и количества выбросов вредных веществ в атмосферу по сравнению с предшествующим периодом); 4) Влияние на материальные ресурсы и отходы производства (объем утилизируемых вредных веществ, извлеченных из сточных вод; объем утилизируемых вредных веществ, извлеченных из отходящих газов; количество образующихся твердых отходов; количество утилизированных твердых отходов; количество твердых отходов, подлежащих захоронению; степень извлечения основных компонентов из минерального сырья); 5) Влияние на земельные ресурсы (коэффициент застройки-отношения площади, занятой под здания и сооружения, к общей площади предприятия; объем продукции предприятия, выпускаемой с 1 га земли; доля площади, занятой под отходы производства; доля площади, занимаемой санитарно-защитной зоной; площадь рекультивируемых земельных участков).

В качестве показателей организационно-технического уровня природоохранный деятельности предприятия можно выделить: 1) Оснащенность источников загрязнения очистными устройствами (количество источников вредных выбросов; количество неорганизованных источников вредных выбросов); 2) Пропускная способность имеющихся очистных сооружений (количество и мощность технологического оборудования, функционирование которого сопровождается выделением определенных видов загрязнений; доля определенного вида загрязнений, образующихся при производстве единицы основной продукции); 3) прогрессивность применяемого очистного оборудования (коэффициент полезного действия применяемого очистного оборудования; доля очистного оборудования с высоким
коэффициентом полезного действия); 4) Контроль за функционированием очистного оборудования (уровень обеспеченности очистного оборудования контрольно-измерительной аппаратурой, доля прогрессивных приборов в общем количестве применяемых контрольно-измерительных приборов); 5) Рациональность существующей организационной структуры природоохранных мероприятий (наличие природоохранных служб и отделов; оперативность руководства природоохранных служб и отделов при принятии решений; информационная обеспеченность; степень экономической самостоятельности природоохранных служб и отделов).

Помимо вышегаденных, на экологическом паспорте предприятий имеются частные показатели: доля капитальных затрат на природоохранные мероприятия в общем объеме текущих затрат предприятия; доля затрат на охрану и рациональное использование водных ресурсов в общем объеме затрат на природоохранные мероприятия; доля затрат на уничтожение и обезвреживание твердых и жидких отходов в общем объеме затрат на природоохранные мероприятия; доля затрат на разработку и внедрение прогрессивных технологий (малоотходных, безотходных, бессточных и т.п.).

Дополнением к механизму нормативных расчетов является рыночный механизм продажи прав на изменение окружающей среды. Эти права могут продаваться государственным органам предприятиям и другим предприятием другому. Система "торговли правами" может быть эффективно использована при выдаче разрешений на размещение новых предприятий на территории с напряженной экологической обстановкой. Таким образом документ, которые закрепляют получение прав, является лицензией. В сфере экологической деятельности применяют лицензии на право выбросов в окружающую среду и на право разработки месторождения природных ресурсов.

Экологическая лицензия на выбросы является ценной бумагой, которая дает права на выбросы конкретного загрязняющего вещества на конкретный промежуток времени. Общее количество экологической лицензии предприятия должно соответствовать фактическому уровню совокупных выбросов, использование экологической лицензии вместо налогов позволяет систему государственного регулирования перевести в систему рыночного управления, рынок экологической лицензии, определяя их цены, управ-
ляет интересами предприятий по инвестиции и составу продукции.

Концепция об экологической лицензии разрабатывалась и совершенствуются Агентством по охране окружающей среды США. Там с 1979 года экологическая лицензия стала реальным механизмом регулирования. Основные составляющие механизма экологической лицензии: политика "облака", политика компенсаций, выпуск банковских обязательств. Первая позволяет экологическим органам оценивать экологическое влияние фирмы только в целом, внутри себя фирма свободно распределяет выбросы между источниками. Расчетное перераспределение осуществляется по каждому из загрязненных веществ отдельно.

Политика компенсаций определяет правила экологического роста в регионах. Новая фирма желающая открыть новые предприятия, должна выкупить право на эмиссию каждого из загрязняющих веществ и других фирм данного региона. При этом продавцы обязаны сократить выбросы.

Банковские обязательства предусматривают возможность накопления лицензий на выбросы. Если фирма отпускала свои выбросы ниже уровня, предусмотренного стандартом, то на разницу она получает аккредитив, который можно положить в специальный банк. Это облегчает поиск продавцов потенциальным покупателям лицензий.

Торговля квотами на загрязнение является наиболее гибким из всех известных методов экономического регулирования качества природной среды. Она позволяет сочетать экологические требования с устремлением к экономическому росту, деловой активности, внедрению достижений научно-технического прогресса.

Дополнением к экологической лицензии является страхование экологической неопределенности. Денежная сумма страхователя условно депонируется на счете страховой фирмы. Если компания в течение оговоренного срока не причинила ущерба окружающей среде, то ее платежи возвращаются с выплатой процента. В противном случае ликвидация последствий ущерба происходит за счет страховой фирмы.

В целом экономические механизмы охраны окружающей природной среды представлена по следующей форме (схема 4).
СХЕМА 4

<table>
<thead>
<tr>
<th>Экономический механизм охраны окружающей природной среды</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кадастры природных ресурсов</td>
</tr>
<tr>
<td>Плата за ресурсы</td>
</tr>
<tr>
<td>Источники средств</td>
</tr>
<tr>
<td>Кредитование</td>
</tr>
<tr>
<td>Материальное поощрение</td>
</tr>
<tr>
<td>Повышение норм амортизации природоохранительных фондов</td>
</tr>
<tr>
<td>Обязательное</td>
</tr>
</tbody>
</table>

Насыщение производства и сфера услуг современной техникой резко повысило число происходящих техногенных катастроф. Из всех крупнейших промышленных аварий в мире примерно 56% произошло в течение последних десятилетий, в том числе 1/3 в последние 15 лет. Одновременно с этим увеличились разрушительные последствия аварий. В частности при аварии на АЭС в Уиндсейле (Великобритания) погибло 13 человек, при заражении площади в 500 тыс. км. кв., прямой ущерб от аварии на "Три Майл Айленд" (США, 1979 г.) составил 1 млрд. долларов, при аварии на Чернобыльской АЭС погибло 30 человек, эвакуировано 115 тыс. человек, 17 млн. человек попали в зону заражения.
Для выбора адекватных мер предупреждения аварий необходима степень и масштабы экологического риска и их появления. Оценка вероятности экологической опасности необходима для мест хранения промышленных отходов химических и металлургических предприятий. Нормативные формализованные методики оценки экологического риска необходимы при проектировании, строительстве, выборе способов транспортировки, энергообеспечения и технологии производства.

Оценка экологического риска аварии необходима постоянно, так как она зависит не только от проектных параметров, но и от текущей ситуации, а главное, от сочетания управленческих действий, параметров осуществления процесса, состояния оборудования и персонала, внешних условий. Предупреждение аварии возможно при постоянном контроле за процессом и прогнозировании экологического риска.

Причинами многих технологических катастроф в настоящее время является: а) существование источников риска (высокое давление, высокая температура, плотины, взрывоопасность, легковоспламеняемость, радиация, ядовитые вещества); б) действие факторов риска (взрыв, радиационное воздействие, обработка токсичными веществами, мощные потоки воды, перевозка опасных грузов); в) ошибка обслуживающего персонала; г) конструктивные ошибки в изготовлении и размещении оборудования; д) искажение информации при совместных действиях людей.

Разнообразие предприятий делает практически невозможным унификацию оценки экологического риска. Поэтому в основе так называемой формализованной оценки экологического риска лежит экспертная таблица локальных рисков. В данной таблице имеется две группы оценок: а) оценка риска по параметрам процесса; б) оценка риска по ситуациям.

Первая группа оценок экологического риска формируется экспертами как вероятность аварии по интервалам значений параметров технологического режима: скорость давления, температура, расстояние, масса, вибрация и т.д.

Вторая группа оценок экологического риска формируется экспертами как вероятность аварии по комбинации значений нескольких параметров технологического процесса. Набор этих ситуаций обычно составляется и разрабатывается на базе имитационного исследования и моделирования.
Вопросы и упражнения.
1. Какова связь с размещением производства и сохранением экологической безопасности среды?
2. В чем заключается влияние промышленных предприятий на окружающую среду?
3. Охарактеризуйте эколого-экономические пути обезвреживания отходов производства.
4. Значения экологического паспорта предприятия.
5. Роль экологической лицензии в сохранении экологической безопасности среды.
6. Понятие об оценке экологического риска аварий.

11. ПРАВОВЫЕ АСПЕКТЫ ЭКОЛОГИИ И УПРАВЛЕНИЯ ЗА СОХРАНЕНИЕМ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ОКРУЖАЮЩЕЙ СРЕДЫ.

11.1. Правовые основы сохранения экологической безопасности окружающей среды и населения.

Правовая база охраны окружающей среды, экологически безопасное использование природных ресурсов во многих странах мира имеет обширный и разноплановый характер. Конституция (Основной закон) любой страны определяет права и обязанности граждан, должностных лиц, органов власти и управления в области сохранения экологической безопасности окружающей среды. Под правовой основой сохранения экологической безопасности окружающей среды понимается совокупность норм, регулирующих общественные (экологические) отношения в сфере взаимодействия общества и природы. При этом одним из проявлений правовой основы сохранения экологической безопасности окружающей среды является экологическое право. Под последним подразумевается совокупность норм, регулирующих общественные (экологические) отношения в сфере взаимодействия общества и природы в интересах сохранения и рационального использования окружающей природной среды для настоящего и будущего поколений. Более конкретно и подробно правовые меры по охране атмосферы, воды, почвы, растительного мира, охраняемых территорий предусмотрены Законом по охране природы той или иной страны. В частности, такой Закон об охране природы (комплексной) была принята Жогорку Ке-
нешем Кыргызской Республике в 1991 г. Данный Закон определяет регулирование отношений в сфере взаимодействия общества и природы в целях сохранения природных богатств и экологенной среды обитания человека, предотвращения экологически вредного воздействия хозяйственной и другой деятельности, оздоровления и улучшения качества окружающей природной среды, укрепления законности правопорядка в интересах настоящего и будущего поколений.

В качестве объектов охраны природы приняты: естественные экологические системы и озоновый слой атмосферы, земля, ее недра, поверхностные и подземные воды, атмосферный воздух, леса и иная растительность, животных мир, микроорганизмы, генетический фонд, природные ландшафты. Особой охране подлежат государственные природные заповедники, природные заказники, национальные природные парки, памятники природы, редкие, находящиеся под угрозой исчезновения, виды растений и животных и места их обитания. Таким образом, согласно закону об охране природы все организации, деятельность которых влияет на атмосферный воздух или водный режим, почву или растительность обязаны проводить мероприятия по их улучшению, использовать их в соответствии с установленными нормами, по мере необходимости сооружать очистные устройства, не допускать загрязнения и засорения их вредными веществами. Законом запрещается ввод в эксплуатацию экологически "грязных" предприятий без выполнения мероприятий по очистке и обезвреживанию вредных веществ. Ниже дается в общем виде экологоправовые приоритеты и императивы (схема 5).

Одним из центральных вопросов закона об охране природы является охрана атмосферного воздуха и водных источников. С целью их эффективной охраны в законе указывается, что борьбу против загрязнения и истощения следует вести всеми доступными в современных условиях мерами и средствами. Законом определяются права и обязанности предприятий, использующих ресурсы воды и воздуха, устанавливается порядок размещения, проектирования, строительства и ввода в эксплуатацию новых и реконструированных предприятий, а также других объектов, влияющих на состояние воды и атмосферного воздуха.
Другим важным моментом закона об охране природы является запрет на применение приемов и методов, способствующих развитию водной ветровой эрозии почв, за- солению, заболеванию почв и других форм утраты плодородия почв. В данном законе большое внимание уделено охране лесов и других видов растений. В частности, закон запрещает вырубку лесов и других видов растений. В частности, закон запрещает вырубку лесов, которые имеют почвозащитную, полезащитную, водоохранныю, водорегулирующую роль, а также леса на склонах гор, защитных, санитарных лесов вокруг населенных пунктов, городов.
Согласно этому закону охране от истребления и вымирания также подлежат редкие и исчезающие виды животных. При этом запрещается истребление непромысловых диких животных, если они не приносят вреда хозяйству или здоровью населения.

В большинстве статей закона и законодательных актах и нормах об охране природы нашей Республики наиболее распространенными являются меры административной ответственности - штрафы, предупреждения, запреты (временное закрытие предприятий или производств, запреты на пользование природными ресурсами). Общими недостатками существующей системы административных мер, особенно штрафов, являются следующие: недостаточно четко определен перечень нарушений для привлечения к административной ответственности; различные виды нарушений и ответственности за них содержатся в многочисленных актах; размер штрафов не способствует выполнению ими стимулирующей функции; применяются штрафы в основном по отношению к руководящим работникам, а не к непосредственным виновникам нарушений.

В целом правовые аспекты охраны природы должны основываться на: 1) определении объектов правовой охраны; 2) установлении обязанностей, мер предупреждения, запретов; 3) контроле; 4) ответственности.

С целью улучшения и совершенствования природоохраннытельного законодательства нашей республики и стран СНГ разрабатываются новые статьи и нормативы с учетом социально-экономических изменений.

11.2. Экологическая экспертиза проектов и ее значение.

Современный подход к проблемам окружающей среды предусматривает переход от мер по ликвидации отрицательных последствий хозяйственного воздействия на природу к мероприятиям превентивного характера, то есть, предупреждающим его отрицательное воздействие. Поэтому перед человечеством стоит важнейшая задача, связанная с преодолением расхождений между своими способностями преобразовывать природу и возможностями прогнозировать последствия своих действий. Она определяется при помощи проведения экологической экспертизы проектов сооружаемых объектов или предприятий. Оценка воздействий на среду жизни, природные ресурсы и здоровье людей комплекса хозяйственных работ в масштабах из-
бранным региона называется экологической экспертизой. В данном случае экологическая экспертиза проектов хозяйственного развития выступает важнейшим инструментом интеграции экологических требований с процессами планирования и принятия решений. Под термином и понятием экологической экспертизы понимаются экологическое обоснование проектов в соответствии с определенными методологическими требованиями, и государственный контроль за качеством проработки природоохранных вопросов в проектах хозяйственного развития. В странах Западной Европы, США, Японии и других эквивалентом понятия экологическая экспертиза является термин "оценка воздействия на среду".

В Кыргызской Республике и в других странах СНГ государственная экологическая экспертиза организуется и осуществляется в соответствии с Законом об охране природы. Она проводится с целью проверки соответствия хозяйственной или иной деятельности требованиям экологической безопасности общества.

Государственная экологическая экспертиза осуществляется на принципах обязательности ее проведения, научной обоснованности и законности ее выводов, независимости и неведомственности в организации и проведении, широкой гласности и участия общественности (схема 6). Государственной экологической экспертизе подлежат: а) предплановые материалы, проекты генеральных планов застройки (развития) городов и территорий, в том числе территорий свободных экономических зон и территорий с особым режимом природопользования и ведения хозяйственной деятельности; б) технико-экономические обоснования и проекты на строительство, реконструкцию, развитие, техническое перевооружение, ликвидацию предприятий, объектов, зданий и сооружений независимо от их сметной стоимости и принадлежности; в) проекты комплексных схем охраны и использования земельных, водных, лесных и других природных ресурсов; г) материалы комплексного экологического обследования участков территорий для последующего придания им правового статуса особо охраняемого природного объекта, зоны экологического бедства или зоны чрезвычайной экологической ситуации, иной особо охраняемой природной зоны, а также программы по реабилитации данных территорий; д) материалы, обосновывающие экологические требования к новой технике, технологиям, материалам и веществам, ока-
зывающим воздействие на состояние окружающей природной среды, в том числе, закупаемым за рубежом; е) материалы по созданию совместных с иностранными фирмами предприятий, деятельность которых связана с использованием природных ресурсов; ж) материалы экологических обоснований лицензий и сертификатов; з) проекты нормативно-технической и инструктивно-методической документации в части охраны окружающей природной среды и рационального использования природных ресурсов.

Государственная экологическая экспертиза проводится: а) экспертными комиссиями, образованными Министерством охраны окружающей среды и природных ресурсов Кыргызской Республики совместно с органами Министерства здравоохранения Кыргызской Республики и ее главным санитарно-эпидемиологическим управлением, а также другими заинтересованными министерствами и ведомствами. Министерство охраны окружающей среды и природных ресурсов Кыргызской Республики и его подразделения на местах могут привлекать на договорной основе предприятия, учреждения, организации и отдельных экспертов для проведения государственной экологической экспертизы, заключения которых должны быть учтены в заключении экспертной комиссии. Председатель и члены экспертной комиссии несут ответственность за свои заключения в соответствии с законодательством Кыргызской Республики. Выводы экспертной комиссии могут быть обжалованы в суде или арбитражном суде.

Экспертиза материалов, представленных на государственную экологическую экспертизу, завершается составлением заключения экспертной комиссии, в котором должна быть дана оценка и сделаны выводы о реализации объекта экологической экспертизы. Положительное заключение экспертной комиссии является одним из обязательных документов для открытия финансирования и кредитования реализации объекта экологической экспертизы. В случае вынесения экспертной комиссией отрицательного заключения материалы по объекту экспертизы могут быть доработаны в соответствии с изложенными в заключении замечаниями и предложениями экспертной комиссии и представлены на повторное рассмотрение.
Экологическая экспертиза проектов является обязательным звеном общей экспертизы проектов. Она представляет собой определение вероятных экологических последствий строительства данного предприятия в сравнении с желательным и допустимым состоянием среды жизни людей. В данном случае предполагается, что предприятие...
не должно сверхнормативно воздействовать на среду жиз-ни людей и препятствовать функционированию близлежащих предприятий, нарушая через окружающую из среду ход технологических процессов.

При проведении экологической экспертизы необходимо учитывать период воздействия предприятия на окружающую среду и совокупность экологических нормативов.

Экологическая экспертиза проектов предполагает оценку долговременного воздействия предприятия на природные ресурсы, природные условия, факторы дальнейшего развития хозяйства и условия жизни людей. Необходимо учитывать время, на которое рассчитано функционирование эксплуатируемого объекта. Объект может оказаться приточным и экологически выгодным в настоящий момент, но быть убыточным и экологически неоправданным в более длительном интервале времени. Например, гидроэлектростанция, воздвигаемая на срок не меньше 100 лет и занимающая большую площадь водохранилища, при изобретении других, более компактных энергоисточников, станет убыточной, и демонстрировать гидроэлектростанцию практически невозможно или во всяком случае дорого. Поэтому экологическая экспертиза должна быть перспективной и учитывать расходы на демонтаж объекта по истечении срока его эксплуатации.

По итогам экологической экспертизы проекта составляют декларация воздействия на окружающую среду. В ней должны быть указаны все вредные последствия осуществления данного предложения; экономическая и экологическая оценка альтернатив; взаимосвязь между локальным использованием природной среды и увеличением ее продуктивности в перспективе; необратимый ущерб. Декларация должна быть доступна широкой общественности.

Финансирование работ по проведение государственной экологической экспертизы проводится за счет средств: республиканского бюджета Кыргызской Республики по объектам, строящимся за счет бюджетных средств; заказчиков объектов, которые строятся предприятиями, учреждениями, организациями за счет собственных средств, иностранных инвестиций, кредитов, средств юридических лиц и граждан.
11.3 Органы управления за сохранением экологической безопасности окружающей среды.

В настоящее время общее руководство за сохранением экологической безопасности окружающей среды (охрана природы) осуществляют высшие органы государственной власти стран мира - президенты и парламенты. В частности, в нашей республике - Законодательная палата Жогорку Кенеша Кыргызской Республики, в Российской Федерации - Федеральное Собрание. Они обеспечивают осуществление единой социально-экономической и экологической политики, определяют общие мероприятия по охране природы. Конкретно делом охраны природы ведают либо постоянные депутатские комиссии по охране природы, либо комитеты по экологической безопасности парламентов и местных Советов народных депутатов. Их основной задачей является предварительная проработка поступающих в парламент проектов различных природоохранных законов, а также вариантов предлагаемых природоохранных мер. В некоторых парламентах, в частности в федеральном Собрании, образовано несколько подкомитетов и комиссий по различным направлениям природоохранной деятельности: по проблемам экологии человека и населенных пунктов; по общим проблемам экологической безопасности и зонам экологического бедствия; по экологическим проблемам промышленного комплекса; по энергетике и ядерной экологии; по экологическим проблемам сельского хозяйства; по рациональному использованию природных ресурсов; по совершенствованию управления экологической безопасности окружающей среды; по экологическому образованию, воспитанию, информации и гласности сведений о качестве окружающей среды.

По объему и характеру своей специальной компетенции они подразделяются на три вида: комплексные, отраслевые, функциональные. При этом комплексные органы выполняют все задачи или блок природоохранных задач; отраслевые - сосредоточивают внимание на охране и использовании отдельных природных объектов, функциональные - выполняют одну или несколько родственных функций в отношении всех природных объектов.

В настоящее время во многих странах мира (особенно в странах СНГ) имеются специальные министерства или государственные комитеты по охране природы (или экологической безопасности окружающей среды). У нас в соста-
ве Правительства Кыргызской Республики есть Министерство по охране природы и рациональному использованию природных ресурсов является центральным органом государственного управления в области сохранения экологической безопасности окружающей среды и несет всю полноту ответственности за охрану природы, организацию рационального использования и воспроизводства природных ресурсов в нашей республике.

В качестве главных задач на Министерство по охране природы возлагается комплексное управление природоохранной деятельностью в стране, разработка и проведение единой научно-технической политики по охране природы и рациональному использованию природных ресурсов, координация деятельности министерств и ведомств в этой области. В этих целях ведется государственный контроль за использованием и охраной земель, поверхностных и подземных вод, атмосферного воздуха, растительного (в том числе и лесов) и животного мира, охраняемых территорий, а также общераспространенных полезных ископаемых.

Министерство по охране природы готовит и представляет в Правительство Республики предложения по вопросам охраны природы и рациональному использованию природных ресурсов для включения их в соответствующие государственные документы, осуществляет контроль за выполнением соответствующих заданий. Министерство по охране природы разрабатывает предложения по совершенствованию экономического и политического механизма сохранения экологической безопасности территории нашей республики, утверждает экологические нормативы, правила, стандарты, лицензии и другие документы, связанные по регулированию использования природных ресурсов и охране природной среды от загрязнения и других вредных воздействий. Осуществляет государственную экологическую экспертизу генеральных схем развития и размещения производительных сил республики, контроль за соблюдением экологических норм при разработке новых технологий, материалов и веществ, а также проектов на строительство (реконструкцию) предприятий и иных объектов, оказывающих воздействие на состояние окружающей среды и природных ресурсов.

Министерство по охране природы ведет в установленном порядке разрешениями на захоронение (складирование) промышленных, бытовых и иных отходов, на выбросы вредных веществ в окружающую среду, на спе-
циальное водопользование, на пользование животным миром и потребление атмосферного воздуха для производственных нужд, пользование недрами для проведения геологоразведочных работ, утверждает расчетные лесосеки и осуществляет контроль за отводом земель под все виды хозяйственной деятельности.

В функции Министерство по охране природы входит руководство заповедников и государственный контроль за ведением охотничьего хозяйства в республике. Ведется государственный кадастр охотничьего хозяйства в стране, Красная книга Кыргызской Республики о редких и исчезающих видах животных и растений. Министерством по охране природы организуется распространение знаний о природе среди широких слоев населения, проводится работами по воспитанию граждан в духе бережного отношения к природе; предоставлено право налагать запреты на строительство, реконструкцию или расширение объектов промышленного или иного назначения, на проведение работ по эксплуатации природных ресурсов.

При контроле Министерством по охране природы проводятся анализ технологии, лабораторный анализ, контрольные посты, определение концентрации выбросов в водную среду и атмосферу вредных веществ, информирование руководства о состоянии окружающей среды на предприятии, соблюдении законодательства в этой области. Помимо вышепомеченных в последние годы при осуществлении экологической политики Министерством по охране природы меняется подход к планированию и финансированию природоохранных мероприятий. Проходит апробацию новая структура управления, опирающаяся на экономические методы, ресурсосбережение, безотказные технологии и многие другие.

С 1990 года на некоторых предприятиях республики вводится плата за загрязнение и образованы различные фонды сохранения экологической безопасности и природопользования. При этом основными задачами экологических фондов являются: а) финансирование и кредитование программ и научно-технических проектов, направленных на улучшение качества окружающей природной среды, а также обеспечение экологической безопасности населения; б) мобилизация средств на природоохранные мероприятия и программы; в) экономическое стимулирование бережного и эффективного использования природоохранных ресурсов,
внедрение экологически чистых технологий; г) содействие в развитии экологического воспитания и образования.

В качестве сравнения рассмотрим органы управления экологической безопасности населения и среды и их структуры развитых стран: США, России, Японии.

В США государственным органом, отвечающим за охрану природы и экологическую безопасность считается Агентство по охране окружающей среды. Она учреждена в 1970 году и имеет комплексную функциональную, распределительную и региональную структуры. Возглавляет агентство директор, имеющий статус федерального руководителя. Консультационно-аналитический аппарат директора включает комитеты:

- сотрудничество в области управления окружающей средой;
- по связям с общественностью;
- по связи с прессой;
- по экологическому образованию;
- научно-консультационный;
- политики предотвращения загрязнений;
- гражданских прав;
- административного права;
- по экологическим жалобам;
- по экологическим жалобам;
- издательский.

В Агентстве есть управление планирования, организации и анализа деятельности по группе специализированных задач (по воздухе и радиации; предотвращения загрязнения, пестицидам и токсичным химическим веществам; по твердым отходам; чрезвычайным ситуациям). Помимо этих имеются управления: научно-исследовательских и опытно-конструкторских работ; экологического права; международной деятельности; надзора и контроля. Также в составе этих управлений имеются отделы стратегического планирования и управления; глобальных изменений; статистики и информации; экономического анализа; отдельных видов загрязнителей; отдельных областей хозяйственной деятельности. При этом основными объектами окружающей среды являются: пестициды, токсичные вещества, химические вещества, твердые отходы, радон, озон, городские отходы, радиация и многие другие.

При Агентстве по охране окружающей среды США имеется соответствующий исследовательский институт, сеть лабораторий, расположенных в различных регионах,
Национальный центр расследования экологических правонарушений.

В Японии центральным государственным органом по-добного профиля является Агентство по окружающей среде. В своей работе он имеет следующие направления: изучение состояния озонового слоя, проблемы глобального потепления и кислотных дождей, сокращение сбросов загрязненных стоков в Мировой океан, промышленных и коммунальных отходов в реки и озера, изучение состояния тропических лесов и роста пустынь, а также наблюдения за выбросами промышленными предприятиями в новых индустриальных странах. Агентство по окружающей среде совместно с Министерством образования, науки и культуры Японии проводит исследования по следующим проблемам: а) изучение изменений в атмосфере и метеорологической обстановке в Арктике совместно с США, Норвегией и другими странами; б) исследований по "Программе солнечной энергии на Земле", предусматривающей объяснение механизма передачи и трансформирования солнечной энергии; в) изучение внутренних механизмов физических, химических и биологических процессов по программе "Международная программа по изучению геосферы - биосферы". Агентство по окружающей среде длительное время ведет наблюдения и делает обобщения по проблеме окружающей среды. Она внимательно следит за формами и масштабами загрязнения окружающей среды и касается таких важных вопросов, как разрушение озонового слоя, потепление атмосферы и загрязнение Мирового океана.

Министерство охраны окружающей среды и природных ресурсов (Минприроды) России является комплексным и головным органом всей системы специально уполномоченных органов в области охраны окружающей природной среды. Главная функция Минприроды связана с комплексными контролально-инспекционными обязанностями. Непосредственно в ведении ее находится контроль за охраной атмосферного воздуха и природно-заповедных объектов. Минприроды России не относится к числу хозяйственных министерств, оно не ведает управлением использования природных ресурсов. От этого вытекает другая обязанность - функция государственного экологического контроля.

В целом правовой статус минприроды России складывается из следующих функций: координационной, регулятивной, контролильно-инспекционной, разрешительной, ин-
формационной, эколого-просветительной, природно-заповедной, международной. При этом следует отметить, что Минприроды России утверждает нормы и правила использования природных ресурсов, правила ведения хозяйственной деятельности, оказывающей влияние на окружающую среду. Эти нормы и правила имеют обязательное юридическое значение для всех природопользователей независимо от их ведомственной принадлежности и форм собственности.

Вопросы и упражнения

1. Охарактеризуйте правовые основы экологической безопасности окружающей среды и населения.
2. Роль и значение экологической экспертизы проектов.
3. Объясните основные функции природоохранительных органов.

12. СОЦИАЛЬНО-ПОЛИТИЧЕСКИЕ АСПЕКТЫ ЭКОЛОГИИ.

12.1 Экологическая безопасность и проблемы устойчивого развития человеческого общества.

Исходной точкой общественного развития является удовлетворение человеческих потребностей. Экологическая опасность как и военная угроза, энергетическая, демографическая и другие всегда сопутствуют развитию. В философском аспекте безопасность представляет собой систему мер защиты от опасности, и вместе с тем это одна из основных потребностей человека и общества в целом. Человек всегда защищал себя от опасностей: разводил огонь, строил жилище и многие другие. Но если на ранних этапах развития цивилизации опасность исходила в основном от неблагоприятных для человека природных условий, то в современную эпоху положение радикально изменилось. Как только наука и техника стали важнейшими факторами прогресса, так значительно усилилась система защиты. В этом аспекте достижение нулевой опасности или абсолютной безопасности в реальном мире невозможно. Не бывает абсолютно надежных технологических систем, абсолютно безвредных продуктов и т.д. При этом возможно лишь устанавливать и добиваться приемлемых для общества уровней опасности.
В своем развитии общество постоянно (осознанно или интуитивно) сопоставляет выгоды от внедрения новых достижений науки и техники, политических преобразований, социальной политики и других областей своей деятельности с потенциально возможными отрицательными последствиями для безопасности человека, природы, общества и других. В широком смысле слова риск - это количественная мера, (вероятность - там, где можно ее рассчитывать) возможности реализации опасности. Реализация экологической опасности влияет на нормальную жизнедеятельность (здоровье) людей, нарушает сложившийся устойчивый характер течения природных процессов.

Наоборот стабильное развитие по принципу "все остановить как есть", конечно, не повысит уровень экологической безопасности. Если не предпринимать активных действий, то существующие пока еще в потенции опасные процессы в обозримом будущем могут разрушить всю систему. Например, стабилизация нагрузки на природную среду может рассматриваться лишь в качестве промежуточной, но никак не конечной цели развития. Интенсивное развитие по принципу "максимального эффекта с минимальными затратами" уже привело к экологическому кризису.

Для точной характеристики понятия устойчивого развития рассмотрим процесс формирования, развития и ограничения экологической опасности.

Исходный (и конечный) элемент цикла воспроизводства экологической опасности является ситуация. Экологической ситуацией считается локальное и региональное ухудшение состояния среды жизни организмов (человека) вызывающие отрицательные экономическое и социальное последствия. При этом следует отметить, что экологическая ситуация обычно характеризует отношения между субъектом и объектом. В качестве субъекта может выступать человек или человеческое общество, в качестве объекта - природа или экосистемы. Развитие отношения "человек-природа" идет через преодоление противоречий между растущими потребностями субъекта и ограниченными возможностями объекта. Например, развитие противоречия может служить потребность "экономического" человека в дешевом топливе, что приводит к развитию таких процессов добычи угля открытым способом. Открытая добыча приводит к эрозии почвы, то есть к ухудшению ее качественных параметров.
Входе дальнейшего развития ситуации возникает экологическая проблема как диалектический синтез экологических опасностей и требований. Экологической проблемой называются любые явления, связанные с заметными воздействиями человека на природу, обратными влияниями на человека и его экономику. Экологическая проблема возникает в результате развития противоречия между потребностями субъекта (в воспроизводстве определенных условий, средств и целей своей жизнедеятельности) и объектом (заэкономерностями развития природы, ограниченными ресурсами, уровнем существующей технологии). Снять экологическую опасность можно лишь посредством саморазвития, самоизменения субъекта, в единстве с объектом. Примером экологической проблемы это подрыв продуктивности сельского хозяйства, вследствие эрозии почвы. Требованиям могут быть немедленная рекультивация земель, включения мероприятий по культивации в планы, запрещение открытой добычи, выплаты штрафа, компенсационное выделение земли для сельского хозяйства в другом месте и т.д. То есть в данном случае методом превентивной корректировки ситуации был бы запрещение способов открытой добычи угля на плодородных сельскохозяйственных землях. Это практически сняло бы экологическую проблему.

Экологические опасности обладают свойством накопления. То есть повторяющиеся сбои и инциденты, аварии могут перерасти в новое качество - экологический кризис. Экологическим кризисом считается напряженное состояние взаимоотношений между человечеством и природой характеризующееся несоответствием уровня развития производства и ресурсно-экологическим возможностями природы (биосфера). Он обычно характеризуется длительностью временного периода, постоянством действий опасностей. Примерами экологического кризиса являются: загрязнения озера Байкал, зачисление хлопковых полей Средней Азии, и многие другие. Преодоление экологического кризиса в экологическом отношении требует значительных структурных изменений в воспроизводственном цикле (Схема 7 и Рис. 9)

Если экологический кризис своевременно не разрешается, то наступает экологическая катастрофа. При которой система экологической безопасности сходит с устойчивой траектории.
Помимо вышеотмеченных есть понятия “зоны нормального экологического риска”, “зоны повышенного экологического риска”. В частности в экологически нормальных регионах, или зонах нормального экологического риска населения проживает в пределах допустимых норм воздействия, нормально функционирует экологическая система и обеспечивается экологическая безопасность людей (Схема 8). А для траектории имеющие зоны повышенного экологического риска характерны хронические загрязнения окружающей среды и повышенной экологической опасности, сопровождаемые с чрезвычайной экологической ситуацией.
и зоной экологического бедствия. При этом следует отметить, что зонами хронического загрязнения окружающей среды и повышенной экологической опасности считаются траектории городов, районов, регионов и других с устойчивым высоким уровнем заболеваемости населения от загрязнения или иного вредного воздействия, превышающего среднегодовые показатели за последние 3-5 лет.

В рамках выделяются регионы, опасные для возникновения аварий, катастроф, стихийных бедствий. Для этих зон характерны 3 признака: наличие аварийно-опасных предприятий; подверженность местности стихийными бедствиями, резкому изменению метеоусловий и как следствие этого - многократное превышение предельно допустимых воздействий; резкое повышение заболеваемости и смертности людей. Причем по мере нарастания отрицательных признаков названные зоны переходят в категорию зон экологического бедствия либо - в случаях аварий и катастроф - в зоны чрезвычайной экологической ситуации.

Рис. 9. Экологические кризисы и революции (масштаб условный)
Согласно с соответствующих законов во многих странах мира зонами чрезвычайной экологической ситуации объявляются участник территории или водного пространства, в которых в результате разрушительного действия стихийных сил природы, либо имевшей место аварии, катастрофы происходят отрицательные изменения в окружающей среде, угрожающие здоровью человека, состоянию естественных экологических систем, генетическому фонду растений и животных.

СХЕМА 8

Неизбежность потерь в природной среде

Минимальность потерь в природной среде

Экологический риск (допустимый)

Отсутствие вреда здоровью и необратимых изменений в природе

Реальная возможность восстановления потерь

Соразмерность экологического вреда и экологического эффекта

А зонами экологического бедствия объявляются участники территории, где в результате хозяйственной или иной деятельности произошли глубокие необратимые изменения окружающей природной среды, повлекшие за собой существенное ухудшение здоровья населения, нарушения природного равновесия, разрушение естественных экологических систем, деградацию флоры и фауны. В отличие от предыдущей зона экологического бедствия возни-
кает не в результате внезапного катастрофического явления, а является следствием развития деградации природной среды под воздействием хозяйственного развития. Этим различается порядок образования, финансирования этих зон, контроля их правового режима.

Экологической катастрофой считается либо природная аномалия (землетрясения, сели), либо авария технического устройства (АЗС, танкер и другие) которые ведут крайне неблагоприятным экономическим последствиям или массовой гибели населения определенного региона Земли. При этом экологическая катастрофа, как и кризис характеризуется масштабностью и долговременностью события. Но, кроме того, трагические катастрофы затрагивают сразу несколько аспектов: политический, военный, этнический и другие. Последствия ложатся бременем на экономику всей страны, связаны с перемещениями значительных масс населения, гибелью большого количества людей, полным разрушением экосистем. Примерами экологических катастроф являются авария ядерного реактора в Чернобыле, гибель Аральского моря, землетрясение в Армении, Кыргызстане, Японии, исчезновение видов живой природы. Экологическая катастрофа моментально порождает тяжелейшие последствия во всех сферах общественной жизни. Эти последствия либо трудно, либо просто невозможно ликвидировать.

12.2. Глобальные экономические проблемы мира.

Как было указано выше, что современный этап взаимодействия общества и природы характеризуется возникновением определенной напряженности между ними. То есть антропогенно - общественное воздействие уже сегодня выдвинулось в число факторов, существенно корректирующих планетарные процессы. Причем пол мере роста населения Земли и дальнейшего развития научно-технической революции значимость антропогенного фактора будет непрерывно возрастать.

В результате к настоящему времени со всей очевидностью выявились глобальные экологические проблемы мира: охрана окружающей среды от загрязнения, рост численности населения и обеспечения их продуктами, урбанизация, обеспечение промышленности минеральным сырьем и проблемы обеспечения общество с энергиями.

Охрана окружающей человека природной среды является одна из актуальных проблем общих мировых проблем
современности. В условиях НТР масштабы влияния человеческой деятельности на природную среду необычайно возросли и продолжают стремительно нарастать. В ряде случаев они достигают глобального измерения и сопоставимы с общепланетарными масштабами многих естественных процессов или даже превосходят их... В частности до недавнего времени, лет 30-50 назад, объемы и токсичность техногенных выбросов в целом не превышали способность биосферы и их поглощению и нейтрализации. Сегодня же они достигают (а в некоторых промышленных регионах уже достигали) предела возможностей природных экосистем к самоочищению. Например, на воздухе крупных индустриальных районов мира объем сернистых выбросов промышленного происхождения во много раз превосходит количество ее природных соединений. Сернистый ангидрид во влажном соединяясь с водой образует серную кислоту. Она в виде “кислотных дождей” выпадает на землю, губят все живое (растения, животных, человека). Поэтому на повестку дня в настоящее время встает проблема охраны характеристик нашей планеты, изменяемых деятельностью человеческого общества. Это обстоятельство вызывает серьезную и обоснованную тревогу мировой общественности за судьбу природной среды, биосферы, планеты в целом. То есть ухудшение состояния окружающей среды от ее загрязнения и изменения хода естественных процессов Земли сегодня в комплексе запросов общества к НТП вопрос о потребности оптимальной среды обитания человека: в чистом воздухе, в чистой воде, естественных ландшафтах, отсутствие шума и на многих других. Теперь потребность людей в оптимальной (экологически благополучной) среде привносит качественно новое в стратегию НТП. Причем следует отметить, что определенные пути предотвращение загрязнения окружающей среды (очистка вредных отходов промышленных и иных отраслей, создание систем малоотходного и безотходного производства) освещена в предыдущих главах. Важным и необходимым условием для борьбы с загрязнением биосферы является служба слежения за процессами, вызывающими загрязнения и другие изменения окружающей природной среды на Земле, получила название экологического мониторинга. Она организуется как в масштабе всей планеты, так и в отдельных экосистемах.

Одним из основных поводов для беспокойства о будущности человечества является рост численности насе-
дения на земном шаре. В последнее время стало очевидно и то, что рост населения неизбежно влечет за собой возрастания всей ресурсов, соответствующий рост объема производства и вытекающее отсюда усиление всех видов воздействия на природную среду, приходящихся на душу населения. Действительно, исследования демографов показали, что несмотря на отдельные колебания и спады, численности населения на земном шаре в целом, взятая на протяжении значительных промежутков времени, систематически возрастала. По расчетам группы демографов, проведенные по заданию ООН, численность населения Земли в 2000 г. будет 6,3-6,6 млрд. человек.

Чем же объясняется увеличение численности населения на Земле? Основными причинами является “естественные биологические”, “систематические сокращение смертности и увеличение продолжительности жизни”. Последние в свою очередь объясняется улучшением медицинской помощи, улучшением социального условия жизни и повышением эффективности общественного производства на многих странах (особенно развитых странах) мира. Естественный (нерегулируемый) прирост населения свойственно для развивающихся странам Азии, Африки, Латинской Аме- рики.

Если население Земли будет непрерывно возрастать, то, разумеется, рано или поздно ресурсов (особенно пищевых) нашей планеты не хватит даже при сколько угодно эффективном их использовании. Мальтузианская концепция предлагает на решение роста численности путем либо периодических войн, эпидемий, голодом, либо предупредительного сокращения рождаемости. А другие демографы (в основном бывшие советские) считают, что в нынешнем десятилетии достигнут максимальные темпы роста населения на всем земном шаре и в ближайшем будущем (после 2000-2100 года) эти темпы будут снижаться и далее она постепенно стабилизируется. То есть рождаемость будет соответствовать смертности. Действительно во многих развитых странах мира в результате повышением жизненного уровня, рост культуры и урбанизация привели к сокращении рождаемости, то есть так называемой "депопуляции населения".

Обеспечение пищевыми продуктами растущего населения мира представляет собой в настоящее время проблему которая, пожалуй, в наибольшей степени беспокоит
тех, кто задумывается над дальнейшей судьбой
человечества. В целом производства продовольствия в
мире непрерывно возрастает. Но производство продо-
вольствия на душу населения в среднем в мире возрастает
медленнее, чем производство энергии, материалов,
одежды и иной необходимой для жизни человека продук-
ции. При этом следует отметить, что в некоторых разви-
вающихся странах этот рост весьма незначителен, а в от-
дельные периоды сменяется даже падением.

Если в историческом аспекте рассматривать эту про-
блему, то можно отметить что в истории цивилизации
человечества были так называемые переменные этапы
обеспечения населения продовольствием. Например, пере-
ход человечества от охоты и собирательства на землевдо-
ление и скотоводство (неолитическая революция). Именно с
подобными крупными качествами переходами обеспечивались большой объём производства пищевых
продуктов.

Современная статистика свидетельствует: более 1
млрд. человек хронически голодают, каждые сутки 35 тыс.
человек планеты умирают от голода. Количество погибших
в обеих мировых войнах меньше числа умерших от голода
только за последние два года. В настоящее время Средняя
и юго-восточная Азия, Индия, Африка, Экваториальная
часть Латинской Америки называют "великим поясом го-
лода". На этих странах неблагоприятные экологические по-
следствия, неустойчивые экстенсивные пути сельскохозяй-
ственного производства постепенно к резкому снижению
плодородия к резкому снижению плодородию почв. То есть
во многих странах мира происходит значительное истоще-
ние земельных ресурсов путем глубоких эрозийных про-
цессов. Помимо этого для развивающихся стран характери-
стично примитивное (отсталое) ведение сельского хозяйства в
условиях быстрого роста их населения.

С экологической точки зрения одной из важных мер в
de деле обеспечения устойчивого снабжения населения про-
doвольствием является организация международных цен-
tров продовольственной помощи на постоянной основе.
Наличие таких центров позволит стимулировать цены на
мировом рынке, то есть, даст возможность равного доступа
к продуктам питания. Следующий путь достижения
стойчивости продовольственного обеспечения это постеп-
енное развитие производства продовольствия развива-
ющимися странами на своей основе с применением

156
современных достижений НТП возделывания, переработке, хранение сельскохозяйственных культур. Это позволит вы- работать культуру рационального природопользования в сельском хозяйстве, снизить миграцию из сельской мест- ности в города. Такая политика необходима еще и поэтому, что развитые страны, производя излишки сельскохозяй- ственных продуктов, истощают землю.

Существуют и другие возможности производства про- довольствия. Так, интересные перспективы открывают раз- витие микробиологической промышленности, которая уже имеет успехи в производстве кормов для животных. Воз- можно изготовление так называемой синтетической пищи из непищевых продуктов. Таким образом следует отметить, что современные типы развития НТП, передовая технология выращивания сельскохозяйственных культур, экологизация сельскохозяйственного производства и наконец имею- щиеся пищевые ресурсы (органический мир океана) позво- ляет удовлетворить потребности в питании населения в несколько десятков миллиардов человек Земли.

В настоящее время один из актуальных проблем явля- ется урбанизация. Под урбанизацией понимают процесс концентрации населения и производительных сил в горо- дах. Процесс урбанизации тесно связан ростом численности населения и научно-технической революцией. Интенсивность этого процесса резко усилилась во второй половине ХХ века. То есть начиная с 1950 года темпы роста городского населения опережают темпы роста сельского населения. В частности общая площадь урбанизированной территории Земли была в 1980 году 4,69 млн.м². Ожи- дается, что в 2070 году она достигнет 19 млн.км² (12,8 % всей и более 20 %) жизнеспособной территории суши. К 2030 году практически все население мира будет жить в поселениях городского типа. В целом урбанизация - сложное и многостороннее явление, обусловленное индустриализацией, НТП, соци- ально-культурным ростом и изменением образа жизни на- селения. Значительное влияние оказывает урбанизация на отношение между обществом и природой. В частности с экологической точки зрения концентрация населения, про- мышленности, строительства на ограниченных приводит к изменению всех основных элементов природной среды: воздушного бассейна, почвенного и растительного покрова, грунтового и поверхностных вод.
С экономической точки зрения увеличения населения городов приводит к расширению занимаемой территории. Причем рост их площади происходит, прежде всего, за счет окружающей их сельскохозяйственных земель, застраивающихся и превращающихся в городские кварталы. Застойка прилегающих к городу земель приводит к необходимости поставки продовольствия из более отдаленных от него сельскохозяйственных районов. Это относится и к другим видам снабжения городского населения.

Современный крупный город оказывает двойственное влияние на человека, его жизнедеятельность и адаптационные возможности. С одной стороны, город представляет человеку ряд экономических, социально-бытовых и культурных преимуществ, что положительно сказывается на его развитии адаптации. С другой стороны, человек, отдаляясь от природы, попадает в среду с отрицательными факторами: большой плотностью населения, повышенным режимом жизненным воздухом, шумом, длительным передвижением к месту работы и т.д.

Таким образом на современном этапе урбанизация является одной стороной из очагов возникновения опасных и причем самых разнообразных последствий как экономического, так и экологического характера.

Следующим глобальным экологическим проблемам относятся обеспечение промышленного производства минеральным сырьем. Как правило, минеральное сырье играет огромную роль в народном хозяйстве, в первую очередь в промышленности. Полезные ископаемые дают 75% сырья для химической промышленности, на продукции недр работают почти все виды транспорта, самые разнообразные отрасли промышленности. Особенно высокого уровня потребность в минеральных ресурсах достигла в период НТР. При этом темпы использования имеющихся запасов полезных ископаемых продолжают нарастать. Например, за последние 20 лет потребление нефти возросло в 4 раза, природного газа - в 5, бокситов - в 9. То же самое происходит с жилетными рудами, фосфатами и другими минералами. Таким образом общие запасы минерального сырья на Земле неизбежно уменьшаются.

Процесс сокращения запасов минеральных ресурсов на нашей планете будет и дальше параллельно развито НТП. И это несмотря на то, что в результате интенсивной геологической разведки в разных регионах мира открываются и будут открываться новые минерального сырья. То
есть даже при наличии таких экономических факторов, как увеличение стоимости ресурсов по мере уменьшения их запасов, уже сейчас, по-видимому складывается ситуация, когда запасы некоторых (острого дефицитных) минеральных ресурсов: золота, цинка, свинца, алюминия, меди и других недостаточны для удовлетворения спроса на них. Поэтому при существующем темпе расширения производства ближайшие годы мировое промышленное производство будут иметь нехватки серебра, урана, меди,, олова многих других. По исследованиям американских и западных ученых к 2050 году источники (месторождения) еще нескольких причем остро дефицитных минералов (свинец, молибден, никель, цинк, вольфрам) будут истощены, если сохраняется существующие темпы их потребления.

В целом проблема обеспечения промышленности минеральным сырьем со всей остротой встает на повестку сегодняшнего дня. Одна из основных причин нехватки минеральных ресурсов с тем, что человечество берет из недр Земли во много раз больше, чем их использует. То есть потери ценных ресурсов минеральных ресурсов происходят при его добыче, обработке и транспортировке. Например, масштаб потери при шахтной добыче теряется от 20 до 40% каменного угля, от половины до двух третей добываемой нефти и еще больше строительного камня. Значительные потери и при обработке сырья. Например, при обогащении руд цветных металлов потери достигают: серебра - до 80%, цинка - 40-70%. Большой объем потери минеральных ресурсов происходит при транспортировке добытого или уже переработанного сырья.

Таким образом для решения проблемы с минеральным сырьем необходимы более действительны меры по его охране. Охрана невозобновляющего минерального ресурса должна пойти по пути рационального использования, с тем чтобы его запасы в биосфере как можно дольше не истощались. Для этого необходимо прежде всего свести до минимума потери сырья при его добыче, обработке, транспортировке, а также в широком аспекте применять так называемые "вторичного сырья". К последним относятся: металлоломы черных и цветных металлов, макулатуры, синтетические предметы и другие. Например, 100 млн.т. металлолома позволяют сэкономить 200 млн.т. угля, 40 млн.т. топлива и многих других.

Одной из важных глобальных экологических проблем человечества обеспечение ее энергией. Она считается
наиболее актуальным и значительным из всех ранее рассматриваемых экологических проблем. Такие как от нее в конечном счете зависит положительное разрешение каждой из них. Бурное развитие НТР требует быстрого роста затрат энергии. Поэтому в настоящее время выработка ее удваивается каждые 8-10 лет. По прогнозу некоторых ученых и специалистов, потребность в энергии ближайшие 5-6 лет увеличится от 3 до 5 раза. Фактически производство энергии быстро возрастает, как в расчете на душу населения, так и в абсолютной мере. Еще быстрее растет потенциальная возможность выработки энергии, обусловливаемая наличием уже известных энергетических ресурсов и применяемых в данное время способов их использования. Тем не менее современный темп роста производства, его технический уровень, производительность труда в большей мере определяются именно возрастающим уровне использования энергии, то есть энергетических ресурсов (горючие полезные ископаемые, ядерное топливо и другие).

Могут ли возникнуть затруднения в энергетических ресурсах? Не является ли "энергетический кризис" наших дней проявлением уже возникшего противоречия между ростом потребностей общества и ограниченностью энергетических ресурсов? К вышеотмеченным вопросам, которые волнует человечество определяется бурным ростом производства энергии, осуществляемые в основном на базе использования угля, нефти и природного газа, в свою очередь, привел, и к быстрому росту добычи этих видов топлива. К сожалению их запасы, еще недавно считавшиеся неисчерпаемыми, в последнее время все чаще обращают на себя внимание человечества своей "конечностью" и возможностью уже относительно быстрого истощения. Такие обстоятельства заставили в последнее время произвести более точную оценку энергетических ресурсов земного шара и, прежде всего, запасов горючих ископаемых. С другой стороны обострение энергетического кризиса в настоящее время определяется также неравномерностью в распределении запасов энергетических ресурсов (в основном топливных) в мире и их расходовании различными сторонами.

Таким образом непрерывный рост потребления энергии ставит перед человечеством проблему ее новых источников. Среди них можно назвать геотермальную энергию, солнечную энергию с прямым использованием, сол-
неучную энергию с косвенным использованием, энергию ветра и морских волн, термоядерную энергию. Помимо них имеется другой очень важный путь - это повышение эффективности получения, преобразования им использования энергии.

12.3. Глобальное экологическое прогнозирование и модели развития человечества.

В настоящее время во всех странах мира разрабатываются социально-экономические, научно-технические прогнозы, а также экологические прогнозы. Экологическое прогнозирование направлено на предсказание возможного поведения экосистем или биосферы, определяемого естественными процессами и воздействием на них человечества. При этом объектом прогнозирования взаимосвязи в системе "хозяйство-природа-человек", а методами и исходной информацией является комплекс социальных, эколого-экономических данных интересующих нас районов или земная поверхность в целом. Экологические прогнозы могут быть глобальными, региональными и локальными (местными).

Глобальные экологические прогнозы в отличие от региональных и локальных прогнозов не привязаны к контрольному региону, а ориентированы преимущественно на изучение временных эволюционных тенденций развития Земли, точнее ее биосферы как сферы обитания и производственно-хозяйственной деятельностью человека. Таким образом, объектом глобального экологического прогнозирования служат все происходящие природные, экономические и социальные процессы на Земле. Целью глобального экологического прогнозирования является поиск общей глобальной стратегии оценки состояния Земли и ее сохранности.

Таким образом в процессе глобального экологического прогнозирования основное внимание исследователей сосредоточено главным образом на последствиях хозяйственной деятельности человека, ресурсных и демографических проблемах, возникающих и развивающихся на естественном природно-экологическом фоне, особенно на фоне климатических глобальных изменений.

Появление глобальных прогнозов (точнее прогнозные модели развития человечества) связано с попытками решения глобальных проблем (некоторые из них экологические выше отмечены)-совокупности жизненно важных
проблем человечества, от решения которых зависит социальный прогресс в современную эпоху: предотвращение мировой термоядерной войны и обеспечение мирных условий для развития народов; преодоление возрастающего разрыва в экономическом уровне и доходах на душу населения между развитыми и развивающимися странами, сдерживание стремительного роста населения в развивающихся странах и устранение опасности "депопуляции" в развитых капиталистических странах, предотвращение катастрофического загрязнения окружающей среды, обеспечение дальнейшего экономического развития человечества необходимыми возобновимыми и невозобновимыми ресурсами и другими.

Эти жизненно важные проблемы (некоторыми из них экологические) приобрели планетарный характер вследствие резкого обострения неравномерности социально-экономического и научно-технического прогресса, а также возрастающей интернационализации всей общественной деятельности. Но глобальные проблемы порождены не столько колоссальными военно-техническими средствами воздействия человечества на окружающую среду и размахом его хозяйственной деятельности, которая стала сопоставима с геологическими и другими планетарными естественными процессами, а прежде всего стихийностью общественного и производства.

Практически со второй половины 60-х годов экологические проблемы во многих развитых странах мира вошли в ряд глобальных проблем современности и стали объектом глобального прогнозирования и моделирования. А последнее представляет собой один из методов прогнозирования. Применения метода моделирования связано с тем, что большинство глобальные проблемы взаимосвязанные между собой и носят как правило системный характер. То есть глобальное моделирование настоящее время более конкретно и комплексно дает возможность исследователю в рамках единой модели рассматривать и прогнозировать основные экономические, демографические и экологические процессы глобального развития.

К настоящему времени разработано свыше десяти глобальных прогнозов, в большинстве из них применен метод глобального моделирования. Самыми известными являются работы Дж.Форестера "Мировая динамика" (1970 г.), Д.Медоуза с соавторами "Глобальные ограничения и новый взгляд на развитие" (1974 г.), В.Леонтьева "будущее миро-
вой экономики" (1977 г.), Э.Пестеля "За пределами роста" (1987 г.) и другие. Рассмотрим некоторые из них. В модели развития мира Д.Медоуза соавторами выделены два типа развития модели и мира. При первом типе, сохранении соответствующих тенденций мирового развития, избежна целая серия региональных катастроф, которые произойдут значительно раньше, и постепенно захватят всю планету. Произойдет быстрое исчерпание всех известных ресурсов, усиление разрыва между "богатыми" и "бедными", непре- кращающийся рост населения резко обострит проблему продовольствия, таким образом данная модель развития человечества является по всей сути и содержания песси- мистическим.

Другая модель В.Леонтьева является наиболее обосно- ванным из существующих ныне прогнозов. Ее выводы не содержат глубокого пессимизма заключений Д.Медоуза и, признанная наличие достаточно сложных проблем, показы- вают, что они вполне или частично преодолимы. Природные ресурсы известных на Земле, достаточно для обеспечения мирового экономического развития на обо- зримые перспективы, хотя стоимость добычи ресурсов значительно возрастает. При этом загрязнения окружаю- щей среды не станет причиной гибели человеческой циви- лизации. По мнению В.Леонтьева если выделяется 0,5 - 4% мирового валового национального продукта на борьбу с загрязнением, проблема может быть частично или полно- тью решена.

Таким образом, глобальное моделирование помогает исследовать закономерности этого развития, определить пути решения настоящих и будущих проблем, чем способ- ствует дальнейшему успешному прогрессу человечества.

12.4. Экологическая политика и стратегия окру- жающей Среды.

Основная часть усилий по сохранению и улучшению окружающей среды должна предприниматься на нацио- нальном уровне, но работа сфера человеческой деятель- ности может быть успешной только при сочетании нацио- нальных мероприятий с коллективными действиями госу- дарств на основе международного сотрудничества в област- ти экологии. Необходимо расширение сотрудничества между странами в этой новой сфере деятельности, которая требует мобилизации огромных материальных и интеллек- туальных ресурсов всех стран мира. Поскольку компоненты
природы (биосферы) используется совместно несколькими странами, сохранении их экологических условий требует создания надежного механизма международного регулирования и экологической охраны.

Таким образом международный характер экологических проблем, с решением которых связывают выживание человечества, выявил новые насущные вопросы, затрагивающие международные отношения. Прежде всего это разработка международного управления и глобального мониторинга окружающей среды, включая использование космических средств, вопросов экологической безопасности и ее последствий для ослабления международной напряженности и преодоления конфликтов. Появилась необходимость выборки эффективных, основанных на равноправие международных процедур и механизмов, которые обеспечивали бы рациональное использование ресурсов планеты как общечеловеческого достояния.

Международное сотрудничество по отдельным аспектам защиты биосферы берет свое начало еще в XIX веке, но вплоть до середины XX в. оно касалось в основном охраны отдельных видов животных, растений, ландшафтов и осуществлялось преимущественно по инициативе, и в рамках отдельных правительственных (особенно научных) организаций. К началу 70-х годов стало очевидным, что почти повсеместно в мите в отношениях между обществом и природой возникли качественные изменения, которые представляют потенциальную угрозу появлению необратимых изменений в биосфере земли, нарушению главных механизмов “жизнеобеспечение” на нашей планете. Задача сохранения и улучшение окружающей среды приобрела глобальный характер, что обусловила необходимость ее решения в общепланетарном масштабе.

В частности международно-правовые принципы охраны окружающей среды выработаны совместными усилиями членов международного сообщества-государств и международных организаций и конференций. Они в кратком виде формулируются следующим образом: 1) приоритетность экологических прав человека; 2) суверенитет государства на природные ресурсы в своей территории; 3) не допустимость экологического благополучия одного государства за счет экологического вреда другого; 4) экологический контроль на всех уровнях; 5) свободный обмен международной экологической информацией; 6) взаимопомощь государств в чрезвычайных экологических обстоятельствах; 7)
разрешение эколого-правовых споров минеральными. По-
мимо этих и государству рекомендуется разрабатывать
совершенные экологическое законодательство, нормативы
и стандарты и качества окружающей среды и обеспечивать
их соблюдения. А также государства обязуется компенси-
ровать экологический ущерб от загрязнения и разрабаты-
вать сотрудничество в целях разработки мер международ-
ной ответственности за негативные последствия эколо-
гического ущерба.

Страны мира должны организовать охрану так назы-
ваемого международного объекта, к ним относятся: воз-
душный бассейн, космос, разделяемые природные ресур-
сы, мировой океан, Антарктида (схема 9)

СХЕМА 9

Международные объекты охраны окружающей природной среды

Воздушный бассейн Космос

Мировой океан

Разделяемые природ-
ные ресурсы (моря,
реки и другие) Антарктида

Таким образом международное сотрудничество играет
всюю в изучении некоторых и разрешении некоторых
lobalных экологических проблем. Она осуществляется
под эгидой ООН. ООН на своих сессиях и в специализиро-
ванных комитетах неоднократно обсуждала проблему эко-
логической безопасности сохранения природы и населения.
В частности в 1972 г. в Стокгольме состоялось конферен-
ция ООН по вопросам окружающей человека среды. По
решению этой конференции 1973г. начало действовать
специализированное учреждение "Программа ООН по
окружающей среде" (ЮНЕП). Она призвана осуществлять
координацию и оказывать помощь в реализации усилий государств и различных международных организаций, направленных на решение важнейших проблем охраны окружающей среды и разумного использования природных ресурсов (схема 10).

СХЕМА 10

Международные природоохранные организации

<table>
<thead>
<tr>
<th>ООН</th>
<th>Генеральная Ассамблея</th>
</tr>
</thead>
<tbody>
<tr>
<td>Экономический социальный совет</td>
<td></td>
</tr>
</tbody>
</table>

ЮНЕСКО	Программа ООН по окружающей среде (ЮНЕП)	ФАО
MCOP	ИМО	
ВОЗ	МАГАТЭ	ВМО

ЮНЕСКО - Организация Объединенных наций по культуре, науке, образованию.
MCOP - Международный союз охраны природы ресурсов.
ВОЗ - Всемирная организация Здравоохранения.
МАГАТЭ - Международное агентство по атомной энергии.
ФАО - Сельскохозяйственная и продовольственная организация.
ИМО - Международная морская организация.
ВМО - Всемирное метеорологическая организация.

166
Специализированные учреждения ООН также включают вопросы охраны природы, экологической безопасности среды в сферу своей деятельности. В частности, ЮНЕСКО при ООН большое внимание уделяет природоохранному просвещению, изучению, состояния окружающей среды, рациональных методов использования природных ресурсов. В 1968 г. в Париже была созвана Международная конференция ЮНЕСКО по рациональному использованию и охране ресурсов биосферы, принявшая обширную программу действий, впоследствии названную "Человек и биосфера".

Сложными проблемами обеспечения человечества пищевыми продуктами, сохранения и улучшения почв, лесными и морскими биологическими ресурсами занимается организация по вопросам продовольствия и сельского хозяйства (ФОА). Состояние здоровья людей на Земле и демографические проблемы является предметом заботы Всемирной организации здравоохранения (ВОЗ). В решении проблем окружающей среды принимают участие Все- мирная метеорологическая организация (ВМО), научный комитет по проблемам окружающей среды (СКОПЕ) Международного совета научных союзов и многие другие международные организации.

Один из пионеров и основателей мирового природоохранного движения является Международный союз охраны природы и природных ресурсов (МСОП). Она была создана в 1948 г. по инициативе ЮНЕСКО. В организационном отношении МСОП представляет своеобразное объединение стран, а также государственных, общественных и международных организаций. При активном участии МСОП XIV Генеральная Ассамблея ООН приняла всеобъемлющего документа по экологической безопасности мира - Всемирной стратегии охраны природы. Основное направление деятельности МСОП является создание и ежегодно обновляемая Красная и Зеленая Книга о состоянии популяций редких и исчезающих видов животных, растений, сведения об уникальных и редких ландшафтах земного шара. Постоянное внимание МСОП уделяет сохранению среды обитания диких животных, учреждению и действенной охране заповедников и национальных парков, улучшению законодательства по охране природы, разработке экологических принципов для долгосрочного планирования, для осуществления крупных программ и проектов преобразования природы. Несмотря на все меры по сохранению и улучшению окружающей среды, предпринимаемые на национальном и
международном уровнях, отрицательное воздействие человека на глобальные процессы природы продолжают на возрастаемом темпе. Учитывая, что в оставшиеся годы нашего столетия прирост населения земного шара продолжают нарастающем темпе и в связи обязательным увеличением нагрузки на глобальные экологические системы биосферы, Генеральная Ассамблея ООН в 1993 г. приняла решение о подготовке социального прогноза "Доклад о глобальных перспективах в области охраны окружающей среды до 2000 года и на последующий период".

Стратегия на будущее не может строиться без анализа современной ситуации и произошедшего в прошлом сохранения окружающей среды.

При атмосферном загрязнении на мировом масштабе некоторый прогресс был осуществлен за счет уменьшения выбросов диоксида серы, взвешенных частиц, свинца, но серьезные проблемы продолжают существовать в связи с выбросами больших объектов так называемых "печеных" газов (окислы углерода, закись азота, озон и метан) и ухудшение качества воздуха, особенно в урбанизированных районах.

При загрязнении воды определенный прогресс был достигнут за счет уменьшения локальных объектов загрязнения. Но качество вод на планете под угрозой, и идет растущее перемешивание морских и пресных вод. Земельные воды находятся под нарастающей угрозой как от эксплуатации, так и от неконтролируемого загрязнения. Для морских вод происходит снижение загрязнения от некоторых органических отходов, тяжелых металлов и радиоактивных стоков, но значительные сбросы остаются в средиземноморском регионе, Северном и Балтийском морях.

При деградации почвенного покрова продолжают сверх меры интенсивное использование нитратов и чрезмерное применение химических удобрений (пестицидов и гербицидов), осушение и работы по расчистке под пашни вызывают ухудшение, загрязнение, окисление, опустынивание и эрозии почвы в многих районах мира. При этом применение минеральных удобрений в сельском хозяйстве с 1970 по 1990 гг. увеличилась 60-70%.

При сохранении природы (экологической безопасности) заключена десятки международных соглашений и сохранении уникальных объектов природы, однако давление человека (нагрузка) на месте обитания животных, растений, уникальных природных объектов неуклонно воз-
растает. Интенсивное сельское хозяйство является одним из самых важных причин сохранения биологического разнообразия в природе. Происходит ощутимое давление со стороны рекреационного развития и связанного с ним роста числа вилл дает начало ухудшению ситуации во внутриконтинентальных и горных регионах.

При урбанизации окружающей среды с целью удовлетворения запросов современной компенсации и транспорта с желанием обеспечить хорошее качество существующей среды устойчиво растут, имея при этом переусложненность, загрязнение, шум, ухудшение (порчи) улиц, общественных мест, архитектурного населения и общий потерю комфортности.

При управлении отходами началась активная деятельность по отходам в целом, токсичным и опасным отходам, заграничной перевозки отходов. Однако процессы по рециркулированию и повторному использованию отходов пока находятся пока в значительной стадии в большинстве мест. Недостатки в технологиях по переработке отходов создают угрозу не только окружающей среде, но и также неожиданное развитие организации международного сотрудничества в области переработки отходов. Причем объем городских отходов в мере в каждые пять лет увеличивается в среднем на 13-15%.

Таким образом, с учетом вышеназванных ожидаются некоторые тенденции развития при сохранении экологической безопасности, если их не сдерживать, могут иметь определенные негативные последствия для качества окружающей среды в целом. То есть наступило время, когда экологическая политика человечества должна реализовываться в целом механизме с учет новых ее стратегий. Общая цель новой стратегии экологической политики человечества это повышение благосостояния всех людей на Земле. При этом человечество провести так называемый ограниченное использование терпимым уровнем изменения окружающей среды. Именно благодаря этого человечество может достичь стабилизированного развития. Она подразумевает, что: а) будет призвано, что продолжающаяся человеческая деятельность и дальнейшее экономическое и социальное развитие зависят от качества окружающей среды; б) по мере истощения природных материалов поток веществ через стадии производства, потребления и использования должен быть управляем так, чтобы облегчить или поддержать их оптимальное повторное использование,
избегая утечки предотвращая истощение запасов нату-ра́льного ресурса; в) поведенческие тенденции граждан должны отразить понимание того, натура́льные ресурсы закончились и потребление одной личности (использование этих ресурсов) не должно происходить за счет другого; потребление одного поколения не должно происходить за счет последующих.

Использование стратегии стабилизированного разви-тия потребует значительных изменений практически во всех направлениях деятельности, в которые включено общество. Это требует, чтобы защита окружающей среды была включена в разработку и выполнение других программ не просто ради окружающей среды, но и ради продолжения эффективного действия этих программ самим по себе.

Ведущими принципами при разработке стратегии дея-тельности являются предупредительный подход и разделя-ние ответственности.

Определяющими экологическими проблемами остают-ся изменение климата, окисление, водное загрязнение, деградация и эрозия почв, управление отходами и т.д. Од-нако, стратегия действий должна создавать новое взаимо-действие между правительством, предприятиями, обще-ственностью и экономическими секторами (промышленность, энергетика, транспорт, сельское хозяй-ство, туризм). Она может быть сделано эффективно в пре-делах структуры сообщества по экологической безопас-ности среды и населения.

Таким образом проблема окружением среды должен стать важным аспектом международных отношений и внеш-ней политики государств. При этом международное эконо-мическое сотрудничество должно решать две взаимосвязанные важные задачи - уменьшение экологической опас-ности и международной в современном мире.

Вопросы и упражнения

1. В чем сущность экологической безопаснос-ти и устойчивого развития человеческого развития общества.

2. Охарактеризуйте такие понятия как "экологическая ситуация", "экологическая проблема", "экологический кри-зис", "Экологическая катастрофа".

3. Охарактеризуйте глобальных экологических проблем мира.

4. Пути решения глобальных экологических проблем в мире.
5. Значение глобального экологического прогнозирования и модели развития человечества.
6. Основные формы проведения экологической политики стран мира.
7. Охарактеризуйте суть и содержание стратегии сохранения окружающей среды на Земле.

13. СОВРЕМЕННЫЕ ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ В КЫРГЫЗСТАНЕ И ВОЗМОЖНЫЕ ПУТИ ИХ РЕШЕНИЯ.

13.1. Масштабы и степени антропогенного воздействия и на природу.

Значительная приподнятость территории нашей Республики, расчлененность рельефа, большие амплитуды высот (до 4-5 тысяч метров), чередование городовых хребтов и межгорных впадин и многие другие природные особенности в целом предопределили исключительное разнообразие, контрастность и сложность ее ландшафтов. При этом следует отметить, что довольно четко проявляется и выделяется высотная тональность распространения ландшафтов. Для так называемых межгорных впадин (Чуйская, Приферганская, Таласская, Средненарынская, Кочкорская, Джумгальская, Иссык-Кульская и многие другие) характерны в целом засушливые и сухие пустынные, степные природные экосистемы. Территория их в настоящее время используется при возделывании различных сельскохозяйственных культур. В результате чаще всего днища Чуйской, Приферганской, Таласской впадины почти полностью превращены в так называемые культурные (развивающиеся главным образом социально-экономическими закономерностями) культурно-преобразованные экосистемы. А земледельческая освоенность таких впадин, как Кочкорская, Джамбульская, Атбашинская, Тогуз-Тороуская и других в среднем составляет от 30-50% их территорий. Таким образом в настоящее время значительной степени хозяйственной освоенности имеют в основном более шире используемые на различных отраслях народного хозяйства (особенно в сельском хозяйстве) территории-днища межгорных равнин, долин и прилегающие к ним низкие горные склоны. Она сопровождается сокращение ареалов есте-
ственных экосистем. Последнее как правило является местом обитанием и распространением сохраняющиеся до сегодняшнего дня животных, растений и многих микроорганизмов. На преобразованных и изменяемых экосистемах постепенно уничтожается естественный растительный покров и вместе с ним обитающие различные организмы. На таких территориях также изменяется водный режим поверхностных и подземных стоков. При этом особенно отрицательные влияния на экосистему имеют так называемые комплекс антропогенных факторов. К ним относятся: увеличивающиеся из года в год плотность проживающего населения; степень концентрации поголовья сельскохозяйственных животных; размещение и полностью промышленных, строительных, транспортных, горнодобывающих и других объектов; наличие пахотных, сенокосных и других угодий; протяженностью железных, автомобильных дорог; линий электро передач; ирригационных каналов и других транспортных коммуникаций; увеличивающиеся из года в год объемом внесение минеральных удобрений, пестицидов, гербицидов и многих других ядовитых химических веществ. Помимо вышеуказанных определенной степени отрицательные влияния оказывали различные вредные выбросы, отходы, стоки и другие виды загрязнений от промышленных, энергетических, коммунально-бытовых и других источников.

13.2. Экологические состояние и проблемы на территории Кыргызской Республики.

Для территории нашей Республики характерно с разной степенью и масштабностью экологическое состояние. Сравнительно отрицательное экологическое неблагополучное состояние имеются в тех районах, где велась и ведутся интенсивные работы. Объектами последних как правило, является оптимальной степенью пахотно-пригодные равнинные участки, горные долины, место добчи полезных ископаемых и многие другие. Об этом свидетельствуют следующие факты. В частности в пределах Чуйской области в результате неэффективным и нерациональным (с хозяйственной точки зрения) многолетним использованием в сельском хозяйстве примерно 140-150 тыс.га пахотных земель стали засоленными, а 60-70 тыс.га земель превратились на солончаки. На территории этой же области в настоящее время имеются более 70 тыс.га поврежденные к различной степени эрозии активно обраба-
тываемых земель в сельском хозяйстве. На территории Таласской области имеются примерно 50-60 тыс.га средних и сильносеменных зерновых земель. Она составляет около 40-45% от всей площади пахотных земель. Площадь имеющие повышенное заселение на территории Таласской области составляет около 19 тыс.га. Такие данные имеются и по территории других областей нашей Республики. Все эти данные являются результатом много летних бессистемных эксплуатаций земельных ресурсов, повышение уровня внесения минеральных удобрений и других химических средств.

Загрязнены с различными отходами (в том числе токсичными) реки Чуй, Ак-Бура и их притоков, где на их долю не расположены крупные города нашей Республики: Бишкек и Ош. Источниками загрязнения воды на этих реках является: промышленные сточные воды, коммунально-бытовые отходы, а также загрязненные орошаемые воды. Кроме вышеназванных на значительной степени и масштаба загрязнения вредными веществами имеют различные участки (акватории) озера Иссык-Куль (Балыкчинский, Покровский, Жыргаланский, Тюпский заливы и прибрежные части в районе поселка городского типа Каджы-Сай, Ак-Булак, города Чолпон-Ата и многие другие). Значительной степени загрязнения воды наблюдаются на низовьях, реки Нарын (ниже г.Таш-Кумыра), Кар-Дарья (ниже г.Узген), Исфайрам-Сай (ниже г.Кызыл-Кия), Шахимардан (ниже пгт.Кадым-Жай) и многие другие на Южной части Кыргызстана.

Очагами экологически неблагополучных районов являются на местах добые уголь (Кок-Янгак, Таш-Кумыр, Кызыл-Кия, Алмальк, Сулюкта, Жыргалан, Каджы-Сай, Мих-Куш); руды ртути (Сыма, Чошай, Терек-Сай, Сумсар, Хайдаркан); сурьмы (Кадым-Жай, Улуу-Тоо); золота (Макмал, Кум-Бел, Солтом-Сары) и других. Здесь имеются отвалы, хвостохранилища, насыпи пустых (полученные при вскрытии полезных ископаемых) горных пород и огромные карьеры. Именно на этих местах вероятность токсичного, ядовитого и других видов загрязнения гораздо больше.

Довольно повышенный уровень загрязненности атмосферного воздуха (во многих случаях значительно больше нормы ПДК и ПДВ) с различными химическими веществами окрестности городов Бишкека, Ош, Каракола, Токмок, Карасулы, Таш-Кумыра, Кызыл-Кия и других. К этому способствуют имеющиеся в этих городах крупные энергетические
предприятия (ТЭЦ, котельные заводов и фабрик) и другие. В частности Бишкекская ТЭЦ в среднем многолетнем разрезе ежедневно выбрасывает на воздушную среду 20-25 т. золы и различные соединения оксидов углерода, азота, среди и других химических веществ. Периодически на воздушной среде города Бишкеа наблюдается значительные большие нормы выбросов чем установленные на ПДК и ПДВ. В частности в феврале 1991 г. отмечены выбросы воздуха большие нормы ПДК в 2 раза углерода, в 2,3 раза двуокиси азота, в 2,5 раза окислы азота.

Кроме того на равнинных - интенсивно освоенных в сельскохозяйственном производстве территориях, животный мир полностью истреблен. То есть на экосистемах таких районов почти нарушен естественный круговорот веществ и они функционируют только при помощи искусственного орошения, обогащения питательных элементов и других видов хозяйственной деятельности человека.

Наряду с равнинными территориями на различной степени с экономической точки зрения нарушенность и измененность имеют склоны горных хребтов. Они в экономическом отношении подвергались преимущественно эксплуатационному экономическому сельскохозяйственному использованию. В отличие от равнинных - интенсивно освоенных территорий в пределах склоновых экосистемах негативная экологическая обстановка наблюдается в линейной или очаговой форме. К линейным экологически неблагополучным местам относятся нарушенные или измененные участки при строительстве дорог, ирригационных каналов, линий электропередач и другие. А к очаговым - отрицательные состояния сбитых и полубитых пастбищ, вырубленных лесов и т.д. Причем значительное число очаговых форм приходится на наиболее доступные, урожайные и высокопродуктивные пастбища (особенно в луговое луговостепенного пояса ландшафтов). Такие экологические неблагополучные места (экосистемы) имеются на каждом административном районе в нескольких урочищах или дорогах рек. Они образовались в результате многолетних ветренных больших сельскохозяйственных животных на одних и тех же пастбищах. Здесь наблюдаются постепенное снижение урожайности кормовых трав, увеличиваются количество (сорных) видов растений, деградируются все более доступные участки пастбищных экосистем, проявляются эрозия почвенного покрова.

174
Еще одним ухудшающим фактором экологической обстановки отдельных регионов нашей Республики является исчезновение некоторых видов животных и растений.

Таким образом в результате многолетнего хозяйственного использования природных ресурсов, вследствие загрязнения атмосферного воздуха, воды и почвенного покрова, активного преобразования естественно - сохраняющихся систем возникли экологические проблемы характерные для всей территории Кыргызстана: повышающие из года в год объемы и масштабы загрязнения воздуха; загрязнения с различными ядохимикатами пахотных земель; постепенное увеличение урбанизированно-селитебных территорий; увеличивающие из года в год площади эродированных пахотных земель и другие.

Помимо вышеназванных для отдельных районов Кыргызской Республики свойственны так называемые региональные экологические проблемы: проблемы у озера Иссык-Куля с определенной степенью загрязнение ее воды и прибрежных территорий; сохранность уникальных орехово-плодовых лесов на юге Республики; загрязнение сточных вод рек Чуй, Ак-Буура, низовья Нарына, Кара-Дарья и других; строительство так называемых экологически "грязных" производств на местах добычи золота, олова, ртути, сурьмы, полиметаллических руд; районы захоронения остатков радиоактивных веществ - Мин-Куш, Майли-Сай, Каджи-Сай; районы где периодически проявляются оползнево-селевые процессы - основном юго-западные Приферганье и многие другие.

13.3. Некоторые пути решения экологических проблем территории Кыргызстана.

С целью решения некоторых экологических проблем Жогорку Кенеш Кыргызской Республики приняты специальные документы природоохоронного характера. К ним относятся: закон об охране природы и рационального использования природных ресурсов; закон об охране атмосферного воздуха от загрязнения; закон об охране земельных ресурсов; закон об охране земельных ресурсов от почвенной эрозии; закон об охране растительного и животного мира. Имеются также соответствующие законодательные акты и нормы дополняющие вышеуказанные законы. В свое время было принято так называемые “экологические программы" - документ об экологической безопасности природной среды, населения и хозяйственной деятельности на
базе отдельных районов, городов и областей нашей Республики. Наша Республика принимает активное участие во всех работах, направленных на экологическую безопасность сохранения Аральского моря. На специальных документах и нормальных актах и положений различных министерств имеются предотвращения загрязнения атмосферного воздуха, воды почвенного проекта, деградации пастбищ. С целью улучшения экологической обстановки постоянно проводится специальные наблюдения за уровнем загрязнения озера Иссык-Куль и крупных рек (Чуй, Аладин, Ала-Арча, Кара-Балта, Ак-Буура, Шахимардан, Кара-Дарья, Талас и другие). Во многих городах работают специальные очистные сооружения с применением механических, химических и биологических методов очистки загрязненной воды. На крупных городах: Бишкек, Ош, Токмок, Кара-Балта, Джалал-Абад, Каракол и другие функционируют специальные пункты наблюдения за состоянием атмосферного воздуха и водной среды. Для охраны и восстановления травостоя деградированных пастбищ в течение многих лет проводились специальные системы пастбищеобороотов. Огромное значение в настоящее время придается воспроизводству лесов и кустарников как водоохранному и водо-регулирующему компоненту экосистемы Тянь-Шаня. При этом особое внимание обращается за состоянием естественного воздействия и сохранностью уникальных орехово-плодовых лесов на юге Кыргызстана, и пищевых и еловых лесов северной части Республики, а также арчевых лесов на склонах Туркестанского и Алайского хребтов.

С целью сохранения ареалов обитания, местонахождения редких и исчезающих видов животных и растений организованы, организуются специальные охраняемые территории (заповедники, национальные природные парки, заказники, памятники природы). В настоящее время на территории нашей Республики функционируют 6 государственных заповедников. В них (полностью изъятия из хозяйственного использования) охраняется вся естественная природа - экосистема как своеобразный участок в пределах Кыргызской Республики.

Самый заповедник при этом является: Иссык-Кульский, с площадью около 100 тыс.га, охватывает нескольких участков прибрежной части акватории озера. Он организован по Постановлении Совета Министров Кыргызской Республики в декабре 1948г. Основная задача Иссык-Кульского заповедника является сохранение и охрана мес-
тонахождения редких водоплавающих птиц (индийский гусь, красная лысуха и других), а также контроль промысел рыб.

Сары-Челекский биосферный заповедник организован в 1960г. на юго-восточном склоне Чаткальского хребта, на базе одноименном живописном озере. Он охватывает уникальные орехово-плодовые и елово-пихтовые леса южной части Кыргызстана. Основная задача заповедника это сохранение в естественном виде ее территории (экосистемы) для обитания редких и исчезнувших видов животных, а также для проведения полномасштабных научных исследований по международной программе.

Беш-Аральский заповедник организован на пределах Чаткальской долины в виде отдельных обособленных участков. Последнее связано с ареалом обитания очень редкого и исчезающего вида животного - красного сурка Мензбира. Так как последний внесен на Красную книгу Международного Союза охраны природы, как редкий исчезающий вид животного планеты. Причем Чаткальская долина и прилегающие к ним склоны гор является единственным районом в мире местообитания красного сурка Мензбира. Поэтому основной целью Беш-Аральского заповедника является сохранение ареала обитания этого животного.

Нарынский заповедник организован на территории северного склона одноименного хребта, примерно 40-50 км к востоку от города Нарын. Район заповедника сравнительно густой и хорошо сохранившийся массив еловых лесов. Основная задача этого заповедника является охрана и сохранение местообитания становившимся редкими и исчезнувшими видами животных - тянь-шаньская косуля (марала). Так густых еловых северного склона Нарын-тоо.

В 1994г. по Постановлениям Правительства Кыргызской Республики организованы Эртеш-Сарышатский (на территории Иссык-Кульской области) и Каратаал-Жапырыкский (на территории Нарынской области) заповедники. Основная задача этих заповедников является охрана и сохранения местообитания становившиеся редкими для территории Кыргызстана: горного архара, горного козла и других животных.

На территории нашей Республики имеется 2 национальных природные парки (Ала-Арча, Кара-Шоро). Ала-Арчинский национальный природный парк расположен на пределах одноименной, очень живописной долины близ города Бишкек. Основной задачей ее является организация
так называемого организационного использования (в основном для рекреации и туризма), сочетанием с охраной естественного состояния лесных, луговых и других экосистем. Карасукский национальный природный парк организован только в 1994 г. на основе уникального урочища елово-аргельных лесов и месторождений минерально-термальных вод.

Помимо вышеназванных на пределах нашей Республики имеются около 40 заказников (территории имеющие ограниченное использование и охрану). Основная задача их заключается в охране и сохранении место распространения и ареала обитания редких и исчезающих видов животных и растений. Заказники подразделяются на ботанические, охотничьи, лесные, гидрологические и комплексные с учетом их направленности охраняемых объектов.

Памятниками природы считаются сохранившиеся до настоящего времени уникальные природные объекты на территории природные объекты на территории Кыргызстана. Ими являются: пещеры - Ала-Мышкыр, Чил-Устун, Чил-Майрам, Большая баритовая, Канигут; скалы - Джети-Огуз, Карта-Жыгач; водопады - Барскоон, Арстанбай, Абшир-Сай, Когучкон-Сугат и многие другие. Они охраняются для рекреационных, познавательных целей нынешнего и будущего поколения людей.

Несмотря на вышеперечисленные мероприятия административного, собственно природоохранительного характера по сохранению экологической природы, и хозяйственной деятельности Кыргызской Республике предстоит решения как общих, так и региональных экологических проблем. Самыми главными из них это по мере возможности предотвращения атмосферного воздуха и водной среды, организация и проведение более эффективных природоохранных работ сохранения озера Иссык-Куль, уникальных орехово-плодовых лесов. При этом необходимо проведения полномасштабных работ по экологической экспертизе, экологическому мониторингу действующих и вновь сооружаемых крупных народнохозяйственных объектов, такие как "Кум-Тор", "Джеруй", "Макмал" и других.

Вопросы и упражнения

1. Расскажите масштабы и степени антропогенного воздействия на природу Кыргызстана.

2. Охарактеризуйте экологическое состояние и вытекающие из них экологические проблемы.
3. Отметьте некоторые пути решения экологических проблем на территории Кыргызстана.

ЗАКЛЮЧЕНИЕ

В пределах студентам учебном пособии даны общие представления об одной из важных и актуальных научных дисциплин - экологии, истории ее становления и связи с различными научными дисциплинами, а также ее и различных аспектов. Из-за увеличения масштабов техногенной деятельности человека, особенно в последнее столетие, намечается глобальные изменения в биосфере, которые могут привести к необратимым процессам и, в конце концов, к невоспримимым условиям существования человечества. Это связано с развитием промышленности, энергетики, транспорта, сельского хозяйства, и другими словами, основных видов деятельности, направленных на удовлетворение потребностей человечества. Возрастает объективное противоречие между потребностями человечества, которые по прогнозам будут возрастать из-за роста населения и приобщение к плодам цивилизации миллиардов жителей развивающихся стран, и ресурсами нашей планеты.

Такого же рода противоречия, первой в более острой форме наблюдается в отдельных регионах, где сконцентрированы промышленные предприятия и станции, произво-дящих электроэнергии. В решении экологических проблем в неблагополучных районах нашей Республики большую роль играет общественные мнения. Последняя как правило получается при помощи экологических знаний и образованием населения и повышением экологического культурного уровня. Именно они помогают в определенной мере разрешения многих экологических проблем. При этом можно несколько моментов наиболее существенных, достаточно очевидных и чрезвычайно важных для построения экологического. Прежде всего - это усвоение простой истины: любая деятельность человека оказывает влияние на окружающую среду, изменения условия существования для живых организмов, и естественно, человека. Естественно, что деятельность человека по разному влияет на окружающую среду и не обязательно отрицательным образом. Поэтому необходимо иметь общее представления о механизме воздействия на окружающую среду. Среди этих механизмов
наиболее эффективной - поступления в биосферу отходов, образующихся в результате деятельности человека.

Отсюда следует вывод: при разработке новых технологий, увеличение их масштабов необходимы оценки локальных и глобальных изменений параметров окружающей среды, приемлемости таких изменений в решении вопросов о допустимых объемах поступления "отходов" в окружающую среду и предельно допустимых концентрациях. Оценки и выводы о допустимости внедрения в хозяйственную деятельность новых технологий могут сделать специалисты, понимающие необходимость существования предельно-допустимых концентраций в окружающей среде.
<table>
<thead>
<tr>
<th>Термин</th>
<th>Определение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Антропогенное загрязнение</td>
<td>загрязнение, возникающее в результате хозяйственной деятельности людей.</td>
</tr>
<tr>
<td>Абиссаль</td>
<td>экологическая зона обитания организмов в океане (море) лежащая ниже предела проникновения солнечных лучей.</td>
</tr>
<tr>
<td>Азональность</td>
<td>региональное или локальное измение компонентов природы и связанные с ними условия организмов обитания организмов, скрывающие появление свойств зональности.</td>
</tr>
<tr>
<td>Амфибореальное</td>
<td>районы (ареалы) распространения организмов на холодных водах умеренного пояса Атлантического и Тихого океанов Северного полушария.</td>
</tr>
<tr>
<td>Абиотический фактор</td>
<td>факторы неживой среды: свет, температура, влага, воздух и другие.</td>
</tr>
<tr>
<td>Антропогенный фактор</td>
<td>факторы обусловленные в результате хозяйственной деятельности: распашка, сенокошение, рубка леса, выпас скота и другие.</td>
</tr>
<tr>
<td>Аменсализм</td>
<td>процесс подавления одного организма другим без обратного отрицательного воздействия со стороны подавляемого.</td>
</tr>
<tr>
<td>Автотрофы</td>
<td>организмы, синтезирующие из неорганических соединений органические вещества при помощи энергии Солнца.</td>
</tr>
<tr>
<td>Адаптация</td>
<td>эволюционное приспособление организмов к изменяющимся условиям среды обитания.</td>
</tr>
<tr>
<td>Безотходная технология</td>
<td>технология, дающая теоретически достижимый минимум отходов всех видов.</td>
</tr>
<tr>
<td>Термин</td>
<td>Определение</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Биосфера</td>
<td>нижняя часть атмосферы, вся гидросфера и верхняя часть литосферы Земли, населенная живыми организмами.</td>
</tr>
<tr>
<td>Биотические факторы</td>
<td>факторы о совокупности влияний жизнедеятельности одних видов организмов на другие виды.</td>
</tr>
<tr>
<td>Биполярное</td>
<td>районы (ареалы) распространения организмов на умеренно-холодных водах океанов Северного и Южного полушария, но отсутствующие в тропических и экваториальных водах.</td>
</tr>
<tr>
<td>Бенталь</td>
<td>донная часть моря (океана), служащая средой обитания организмов.</td>
</tr>
<tr>
<td>Биоценоз</td>
<td>сообщество нескольких взаимосвязанных видов организмов, живущие на какое-либо участке суши.</td>
</tr>
<tr>
<td>Возмещение вреда окружающей природной среде</td>
<td>восстановление потерь в природной среде, затраты на воспроизводство природных ресурсов, на оздоровление окружающей природной среды.</td>
</tr>
<tr>
<td>Восстановление природных ресурсов</td>
<td>организационно-технические, экономические меры по восполнению природных ресурсов или усилению полезных свойств природных объектов, утраченных в результате антропогенного воздействия или стихийных сил природы.</td>
</tr>
<tr>
<td>Вред окружающей природной среды</td>
<td>негативные изменения состояния окружающей природной среды, выражавшиеся в загрязнении окружающей природной среды, истощении ее ресурсов, разрушении экологических систем, нарушении обмена веществ и энергии, гармонического развития общества и природы.</td>
</tr>
<tr>
<td>Выброс вредных веществ</td>
<td>выход во внешнюю среду (в атмосферный воздух) загрязняющих веществ от какого-либо источника загрязнения.</td>
</tr>
<tr>
<td>Высотная поясность -</td>
<td>закономерное изменение компонентов природы и связанные с ними условия обитания организмов от подножия до водораздела гор (по склону).</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Гетеротрофы -</td>
<td>организмы, способные питаться готовыми органическими веществами и неспособные синтезировать органические вещества из неорганических.</td>
</tr>
<tr>
<td>Гомеостаз -</td>
<td>состояние организмов, сохраняющие внутреннее динамическое равновесие путем постоянной функциональной саморегуляции.</td>
</tr>
<tr>
<td>Деградация окружающей природной среды -</td>
<td>разрушение или существенное нарушение экологических связей в природе, обеспечивающих обмен веществ и энергии внутри экосистем, между природой и человеком, вызванное деятельностью человека, проводимой без учета закона развития природы.</td>
</tr>
<tr>
<td>Емкость окружающей природной среды -</td>
<td>естественная способность окружающей природной среды претерпевать социально-экономическую нагрузку (хозяйственную, демографическую и др.) без существенного нарушения выполняемых жизнеспособных функций.</td>
</tr>
<tr>
<td>Жертва -</td>
<td>организмы, подвергающиеся к прямому нападению с другими организмами как объект питания.</td>
</tr>
<tr>
<td>Заказник -</td>
<td>территория, в пределах которого (постоянно или временно) запрещены отдельные виды и формы хозяйственной деятельности для обеспечения охраны одного или многих видов организмов.</td>
</tr>
</tbody>
</table>
Заповедник - особо охраняемые законом территории исключающая любую хозяйственную деятельность с целью сохранения в нетронутом виде природных комплексов (экосистем).

Загрязнение - увеличение концентрации вредных физических, химических, биологических веществ сверх недавно наблюдавшегося количества.

Зональность - закономерное изменение компонентов природы и связанные с ними условиями обитания организмов по широтному направлению.

Зоны повышенного экологического риска - часть территории (города, области региона), для которой характерны хронический повышенный уровень загрязнения окружающей природной среды, устойчивая повышенная антропогенная нагрузка на окружающую природную среду, угроза дефицита пресной воды, снижение плодородия почв, истощение растительного покрова, исчезновение видов животных, оскудение рыбных запасов, повышенный уровень заболеваемости населения.

Зоны чрезвычайной экологической ситуации - официально объявленная государством часть территории (город, область, регион), на которой четко обозначались признаки процесса разрушения экологических систем природы, глобального загрязнения окружающей природной среды, истощения водных, земельных и др. ресурсов, где установлено резкое увеличение заболеваемости и смертности, превышающее во много раз средние показатели.
<table>
<thead>
<tr>
<th>Название</th>
<th>Определение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Зоны экологического бедствия</td>
<td>официально объявленные государством части территории (город, область, регион), на которых обозначались признаки полного разрушения экосистем природы, глобального загрязнения атмосферного воздуха, водоемов, почв, полного истощения водных, растительных, животных ресурсов и установлен высокий уровень заболеваемости и смертности населения.</td>
</tr>
<tr>
<td>Кислотные осадки (дожди)</td>
<td>дождь или снег, подкисленные из-за растворения в атмосферной влаге промышленных выбросов (SO₂, NO₂, HCl и другие).</td>
</tr>
<tr>
<td>Красная книга</td>
<td>книга, где имеются список редких и исчезающих видов животных и растений.</td>
</tr>
<tr>
<td>Консументы</td>
<td>организм, питающийся органическим веществом (все животные и часть микроорганизмов).</td>
</tr>
<tr>
<td>Криптофиты</td>
<td>организмы (растения), у которых почки возобновления находятся на ее подземных органах (луковицах, клубнях).</td>
</tr>
<tr>
<td>Комменсализм</td>
<td>одностороннее использование одного вида организмов остатками пищи или продуктами выделения, без приношения ему вреда.</td>
</tr>
<tr>
<td>Ксерофил</td>
<td>организм, приспособленный к жизни в условиях недостатка воды (влаги).</td>
</tr>
<tr>
<td>Круговорот веществ</td>
<td>многократное участие веществ в процессах, протекающих между компонентами природы.</td>
</tr>
<tr>
<td>Лицензия на загрязнение</td>
<td>оплачиваемое разрешение на выброс определенного количества вредных веществ жидких или газообразных отходов определенного состава.</td>
</tr>
</tbody>
</table>
Литораль - экологическая зона обитания организмов в океане (море), соответствующему к материковому склону (от 200-500 м до 1000-1500 м от поверхности).

Малоотходная технология - технология, позволяющая получить минимум твердых, жидких, газообразных и тепловых отходов и выбросов.

Мониторинг окружающей среды (экологический) - наблюдения за состоянием окружающей среды и предупреждения о создающихся критических ситуациях, вредных или опасных для человека.

Мутуализм - форма совместного обитания организмов, которые не могут существовать друг без друга.

Мезофил - организм, обитающий на средних условиях увлажнения воздуха и почвы.

Нектон - организмы, способные к активному передвижению в толще воды на значительные расстояния.

Нарушение окружающей среды - любое изменение природных условий, превышающее или не превышающее биологические или социально-экономические способности человека к адаптации.

Норма загрязнения - предельная концентрация вещества, поступающего или содержащегося в среде, допускаемая нормативными актами.

Озоновая “дыра” - значительное пространство в озоносфере планеты с заметно пониженным (до 50%) содержанием озона.

Окружающая природная среда - естественная среда обитания человека, биосфера, служащая условием, средством и местом жизни человека и других живых организмов.
Отвалы - насыпи, образуемые в результате размещения отходов на специально отведенных площадях.

Отходы - непригодные для производства данной продукции сырье, его не-употребляемые остатки или возникающие в ходе технологических процессов вещества и энергия, не утилизированные в данном прои-водстве.

Охрана природы - комплекс международных, государственных и региональных административно-хозяйственных, политических и общественных мероприятий, направленных на сохранение, рациональное использование и воспроизводство природы Земли в интересах людей.

“Парниковый эффект” - увеличение температуры и влажности в замкнутом пространстве, связанное с тем, что в атмосфере накапливаются углекислый и другие газы, которые препятствуют длинноволновому тепловому излучению с поверхности Земли.

Плата за загрязнение среды - денежное возмещение предприятиями социально-экономического ущерба, наносимого хозяйству и здоровью людей от загрязнения среды.

Плата за природные ресурсы - денежное возмещение природопользователем затрат на изыскание, сохранение, восстановление, изъятие и транспортировку используемого природного ресурса, а также усилий общества в будущем по возмещению или равноценной замене этих ресурсов другими.
<table>
<thead>
<tr>
<th>Термин</th>
<th>Определение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Предельно допустимые выбросы (ПДВ)</td>
<td>выбросы вредных веществ в атмосферу, устанавливаемые для каждого источника загрязнения атмосферы при условии, что приземная концентрация этих веществ не превышает ПДК.</td>
</tr>
<tr>
<td>Предельно допустимая концентрация (ПДК)</td>
<td>нормативное количество вредного вещества в окружающей среде, которое при постоянном контакте или при воздействии за определенный промежуток времени практически не влияет на здоровье человека и не вызывает неблагоприятных воздействий у его потомства.</td>
</tr>
<tr>
<td>Природные ресурсы</td>
<td>природные явления и объекты, используемые для потребления, способствующие созданию материальных богатств, воспроизводству трудовых ресурсов, поддержанию условий существования человечества и повышающие качества жизни.</td>
</tr>
<tr>
<td>Природопользование</td>
<td>совокупность всех форм эксплуатации природно-ресурсного потенциала и мер по его сохранению.</td>
</tr>
<tr>
<td>Природоохранные мероприятия</td>
<td>все виды хозяйственной деятельности предприятий, направленные на уменьшение и ликвидацию отрицательного воздействия на окружающую среду, сохранение, улучшение и рациональное использование природно-ресурсного потенциала страны и региона.</td>
</tr>
<tr>
<td>Потоки энергии</td>
<td>приход энергии Солнца и космических лучей на поверхность Земли, усвоение ее в ходе фотосинтеза растениями, далее передача от одного трофического уровня организмов к другому в биосфере.</td>
</tr>
<tr>
<td>Слово</td>
<td>Определение</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Природный национальный парк -</td>
<td>охраняемый участок природных экосистем, отличающихся своеобразием и живописностью, используемых для рекреационных целей.</td>
</tr>
<tr>
<td>Планктон -</td>
<td>совокупность пассивно плавающих в толще воды организмов, не способных к самостоятельному передвижению на значительные расстояния.</td>
</tr>
<tr>
<td>Пелагиаль -</td>
<td>толща моря (океана), служащая средой обитания организмов, не связанных с дном океана.</td>
</tr>
<tr>
<td>Популяция -</td>
<td>совокупность организмов одного вида, населяющих определенное пространство (участок территории).</td>
</tr>
<tr>
<td>Продуценты -</td>
<td>организм (растения), образующий из неорганических элементов органические вещества.</td>
</tr>
<tr>
<td>Ресурсосберегающая технология -</td>
<td>производство и реализация продукции с минимальным расходом вещества и энергии на всех этапах производственного цикла и с наименьшим воздействием на человека и природные системы.</td>
</tr>
<tr>
<td>Редуценты -</td>
<td>организмы (бактерии и грибы) преобразующие органические остатки в неорганические вещества (минералы, горные породы и другие).</td>
</tr>
<tr>
<td>Рекультивация земель -</td>
<td>комплекс мероприятий, направленных на восстановление продуктивности нарушенных земель, а также на улучшение окружающей среды.</td>
</tr>
<tr>
<td>Санитарно-защитная зона -</td>
<td>полоса, отделяющая промышленное предприятие или загрязненный участок от населенного пункта.</td>
</tr>
<tr>
<td>Смог -</td>
<td>сочетание пылевых частиц и капель тумана (могут быть газообразные загрязнители или кристаллы льда).</td>
</tr>
</tbody>
</table>
Сточные воды - воды, отводимые после использования в бытовой, производственной и сельскохозяйственной деятельности человека или прошедшие через какую-то загрязненную территорию.

Среда обитания - совокупность абиотических и биотических условий жизни организма.

Сукцессия - последовательная смена биоценозов, преимущественно возникающих на одной и той же территории в результате влияния природных факторов или воздействия человека.

Толерантность - способность организмов приспособиться к отклонениям экономических факторов среды.

Терофиты - организмы (травянистые растения), переживающие неблагоприятный период среды в виде семян.

Управление охраной окружающей среды - обеспечение выполнения норм и требований, ограничивающих воздействие производственных процессов и выпускаемой продукции на окружающую среду, и рациональное использование природных ресурсов, их восстановление и воспроизводство.

Ущерб от загрязнения среды - фактические и возможные убытки народного хозяйства, связанные с загрязнением окружающей среды.

Урбанизация - рост и развитие городов, процесс повышения роли городов в развитии общества.

Устойчивость экосистемы - способность экосистемы сохранять свою структуру и функциональные особенности при воздействии внешних факторов.
<table>
<thead>
<tr>
<th>Термин</th>
<th>Определение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хемофиты</td>
<td>организмы синтезирующие органическое вещество из неорганических за счет энергии окисления аммиака, сероводорода и других веществ в воде и почве.</td>
</tr>
<tr>
<td>Хищник</td>
<td>организмы, питающиеся или поедающиеся другими организмами как объект питания.</td>
</tr>
<tr>
<td>Фанерофиты</td>
<td>организмы (растения), у которых почки возобновления расположены высоко над землей.</td>
</tr>
<tr>
<td>Экология</td>
<td>наука, изучающая об общих законо-мерностях взаимоотношений организмов между собой и окружающей средой.</td>
</tr>
<tr>
<td>Экосистема</td>
<td>любое сообщество живых существ и его среда обитания, образующие единую функциональную систему или комплекс.</td>
</tr>
<tr>
<td>Экологическая ниша</td>
<td>совокупность множества параметров среды обитания, определяющие условия существования того или иного вида организмов.</td>
</tr>
<tr>
<td>Экологическая ситуация</td>
<td>напряженное состояние взаимоотношений между человечеством и природой, характеризующее несоответствием уровня развития производства и ресурсно-экологическими возможностями биосферы.</td>
</tr>
<tr>
<td>Экологический кризис</td>
<td>локальное или региональное ухудшение состояния среды жизни организмов, вызывающие отрицательное экологические, и социальное последствия.</td>
</tr>
<tr>
<td>Экологическая катастрофа</td>
<td>природная аномалия (землетрясения, сели) или аварии технического устройства (АЭС, танкер и др.), экономическим последствиям или массовой гибели населения определенного региона Земли.</td>
</tr>
<tr>
<td>Экологический фактор -</td>
<td>Любое условие среды, способное оказывать прямое или косвенное влияние на существования живых организмов.</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Экологизация -</td>
<td>процесс неуклонного и последовательного внедрения систем технологических, управленческих и других решений, позволяющих повышать эффективность использования естественных ресурсов с улучшением или сохранением качества природной среды.</td>
</tr>
<tr>
<td>Экологическая проблема -</td>
<td>любые явления, связанные с заметными воздействиями человека на природу, обратными влияниями природы на человека и его экономику.</td>
</tr>
<tr>
<td>Экологическое проектирование -</td>
<td>конкретное экологическое решение какой-то проблемы, связанной со строительством или любым другим значительным вмешательством в среду жизни и функционирования хозяйства (например, зона строительства БАМа).</td>
</tr>
<tr>
<td>Экологическое прогнозирование -</td>
<td>предсказание возможного поведения экосистем, определяемого естественными процессами и воздействием на них человечества.</td>
</tr>
<tr>
<td>Экологическая экспертиза проектов -</td>
<td>оценка воздействия на среду жизни, природные ресурсы и здоровье людей комплекса хозяйственных работ в масштабах избранного региона.</td>
</tr>
<tr>
<td>Экологический паспорт предприятия -</td>
<td>комплексный документ, содержащий характеристику взаимоотношений предприятия с окружающей средой.</td>
</tr>
<tr>
<td>Экологическая лицензия -</td>
<td>документ, закрепляющий право получения ценной бумаги, которые дают права на выбросы конкретного загрязняющего вещества на конкретный промежуток времени.</td>
</tr>
<tr>
<td>Экологическая политика</td>
<td>проведение международно-правовых, политических и внешне-экономических акций с учетом экологических ограничений в социально-экономическом развитии.</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Экологическое развитие</td>
<td>форма социально-экономического развития общества, учитывающая экологические ограничения и направленная на обогащение ресурсов среды жизни.</td>
</tr>
<tr>
<td>Экономика природопользования</td>
<td>раздел экономики, изучающий вопросы экономической оценки природных ресурсов и оценки ущербов от загрязнения окружающей среды.</td>
</tr>
<tr>
<td>Экологическая безопасность</td>
<td>состояние защищенности жизненно важных экологических интересов человека и прежде всего прав на чистую, здоровую, благоприятную для жизни окружающую природную среду.</td>
</tr>
<tr>
<td>Экологическая культура</td>
<td>использование окружающей природной среды на основе познания естественных законов развития природы с учетом ближайших и отдельных последствий изменений природной среды под влиянием человеческой деятельности.</td>
</tr>
<tr>
<td>Экологическая модель</td>
<td>образец, схема гармонизации экономических и экологических интересов во взаимодействии общества и природы в глобальном, национальном, региональном, локальном масштабах.</td>
</tr>
<tr>
<td>Экологические интересы</td>
<td>объективно существующие общественные потребности людей в чистой, здоровой и благоприятной для жизни окружающей природной среде, обеспечивающие биологический ритм жизни.</td>
</tr>
</tbody>
</table>
Экологические права человека - право на чистую, здоровую, благоприятную для жизни окружающую природную среду, право на использование природной среды для удовлетворения своих экономических, эстетических и духовных потребностей.

Экологические приоритеты - закрепленные в правовых нормах преимущества в охране природных объектов перед охраной других. Различаются отраслевые, межотраслевые и общие.

Экологические фонды - внебюджетные фонды, создаваемые за счет отчислений с предприятий, других источников для решения природоохранных задач, восстановление потерь в природной среде.

Экологический императив - приказ, требование по соблюдению правил охраны окружающей природной среды, невыполнение которого влечет применение мер ответственности.

Экологический мониторинг - наблюдение и контроль за состоянием окружающей природной среды и изменением ее в процессе хозяйственного развития, система сбора, обобщения оценки и передачи информации о реальных или ожидаемых вредных последствиях.

Экологический риск - допущение вероятности причинения вреда природной среде ради достижения экологического или экономического эффекта. Нормальный экологический риск основанное на знании и правильном использовании законов развития природы допущение вероятности причинения вреда при условии отсутствия серьезных необратимых последствий, реальной возможности воспроизводства потерянных природных ресурсов, достижении
Экологическое право - норма права, содержащая экологический императив, запреты, обязанности, разрешения в области взаимодействия общества и природы.

Эколого-правовая норма - норма права, содержащая экологический императив, запреты, обязанности, разрешения в области взаимодействия общества и природы.
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА:

 - Федоров Е.К. Экологический кризис и социальный прогресс. - Л.: 1977.

196
Шакирбеков Д.Ш. "Охрана природы", в кн: Таласская область, КЭ, 1996.
Шакирбеков Д.Ш. "Охрана природы (геоэкологическое состояние)". в кн: Иссык-Кульская область, КЭ, 1966.
Османалиев А. Экономическая эффективность капитальных вложений в мелиорацию земель. - Фрунзе. 1975.
ОГЛАВЛЕНИЕ

Предисловие... 3
1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭКОЛОГИИ 5
 1.1. Предмет и задачи экологии ... 5
 1.2. Теоретико-методологические основы экологии 7
 1.3. История развития экологической науки 8
 1.4. Экология в системе естественных, гуманитарных,
 экономических, технических, сельскохозяйственных,
 медицинских и других наук 10
Вопросы и упражнения.. 11
2. ОРГАНИЗМ И ОКРУЖАЮЩАЯ СРЕДА И ИХ
 ВЗАИМООТНОШЕНИЯ.. 12
 • 2.1. Окружающая среда .. 12
 2.2. Организмы ... 12
 2.3. Взаимоотношение организмов с окружающей средой 15
 2.4. Экологический фактор .. 17
 2.5. Климатические факторы ... 18
 • 2.6. Вода в качестве экологического фактора 19
 2.7. Солнечный свет ... 21
 2.8. Эдафические факторы .. 21
 • 2.9. Рельеф земной поверхности 23
 2.10. Биотические факторы .. 23
 2.11. Антропогенные факторы ... 25
Вопросы и упражнения.. 26
3. ОБЩИЕ ЗАКОНОМЕРНОСТИ РАЗВИТИЯ ПРИРОДЫ
 ЗЕМЛИ И В ЕЕ СФЕРАХ.. 27
 3.1. Понятия о земных сферах ... 27
 3.2. Биосфера ... 29
 3.3. Эволюция биосферы и основные этапы ее развития 32
 3.4. Значение учения В.И. Вернадского о биосфере 36
Вопросы и упражнения.. 38
4. ЗАКОНОМЕРНОСТИ РАЗВИТИЯ И РАСПРОСТРАНЕНИЯ
 ОРГАНИЗМОВ НА СУЩЕ И ОКЕАНЕ 38
 4.1. Развитие организмов на суше 38
 • 4.2. Весьма своеобразны существование организмов
 морей и океанов ... 42
 4.3. Распространения живых организмов на суше и океане 44
Вопросы и упражнения.. 48
5. ПОТОКИ ЭНЕРГИИ И КРУГОВОРОТА ВЕЩЕСТВ В ПРИРОДЕ 49
 5.1. Потоки энергии в природе и ее значения
 для живых организмов .. 49
 5.2. Круговороты веществ в природе 52
 5.3. Круговорот воды ... 53
 5.4. Круговорот кислорода ... 55
 5.5. Круговорот углерода .. 57
 5.6. Круговорот азота .. 58

198
6. УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВЫХ ОРГАНИЗМОВ
 В БИОСФЕРЕ... 60
 ° 6.1. Популяция.. 60
 ° 6.2. Биоценоз.. 62
 ° 6.3. Экосистема... 63
 Вопросы и упражнения.. 65
7. ЧЕЛОВЕК И СРЕДА ЕГО ОБИТАНИЯ... 65
 ° 7.1. Экологические особенности эволюции человека
 (происхождение и становление)... 65
 ° 7.2. Источник воздействия человеческого общества
 на природу... 69
 ° 7.3. Научно-технический прогресс и его последствия............ 72
 ° 7.4. Современные масштабы и формы воздействия
 человеческого общества на процессы круговорота
 веществ в природе.. 74
 Вопросы и упражнения.. 80
8. ПРИРОДНЫЕ РЕСУРСЫ, ИХ РАЦИОНАЛЬНОЕ
 ИСПОЛЬЗОВАНИЕ И СВЯЗАННЫЕ С НИМИ
 ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ... 80
 ° 8.1. Понятие о природных условиях и природных ресурсах. 80
 ° 8.2. Энергетические ресурсы и связанные с ним
 экологические проблемы.. 83
 ° 8.3. Земельные ресурсы, их сельскохозяйственное
 использование и связанные с ними экологические
 проблемы.. 87
 ° 8.4. Минерально-сырьевые ресурсы и экологические
 проблемы при их добыче и использовании....................... 91
 ° 8.5. Атмосферный воздух, его загрязнения и связанные
 с ним экологические проблемы.. 95
 ° 8.6. Водные ресурсы, их загрязнения и вытекающие
 из них экологические проблемы.................................... 99
 ° 8.7. Ресурсы растительного и животного мира,
 экологические проблемы при их использовании.............. 101
 Вопросы и упражнения.. 106
9. МЕДИЦИНСКИЕ АСПЕКТЫ ЭКОЛОГИИ.. 107
 ° 9.1. Окружающая среда и здоровье человека....................... 107
 ° 9.2. Влияние загрязнения атмосферы на здоровье
 человека и эколого-гигиенические нормы их
 использования... 108
 ° 9.4. Почва и пестициды, их влияние на здоровье человека.114
 ° 9.5. Радиоактивное загрязнение и ее влияние
 на здоровье человека... 116
 ° 9.6. Санитарно-гигиенический контроль за уровнем
 загрязнения окружающей среды.................................. 118
 Вопросы и упражнения.. 121
10. ЭКОНОМИЧЕСКИЕ АСПЕКТЫ ЭКОЛОГИИ 122
 10.1. Размещение производства и сохранение
 экологической безопасности Среды 122
 10.2. Влияние промышленных предприятий
 на окружающую среду .. 124
 10.3. Отходы производства и их эколого-экономические
 пути обезвреживания .. 126
 10.4. Экологические рычаги регулирования
 производственной деятельности предприятий:
 экологический паспорт, экологическая лицензия,
 оценка экологического риска аварий 128
Вопросы и упражнения ... 134
11. ПРАВОВЫЕ АСПЕКТЫ ЭКОЛОГИИ И УПРАВЛЕНИЯ
 ЗА СОХРАНЕНИЕМ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ
 ОКРУЖАЮЩЕЙ СРЕДЫ ... 134
 11.1. Правовые основы сохранения экологической
 безопасности окружающей среды и населения 134
 11.2. Экологическая экспертиза проектов и ее значение... 137
 11.3 Органы управления за сохранением экологической
 безопасности окружающей среды 142
Вопросы и упражнения ... 147
12. СОЦИАЛЬНО-ПОЛИТИЧЕСКИЕ АСПЕКТЫ ЭКОЛОГИИ 147
 12.1 Экологическая безопасность и проблемы устойчивого
 развития человеческого общества 147
 12.2. Глобальные экономические проблемы мира 153
 12.3. Глобальное экологическое прогнозирование и
 модели развития человечества 161
 12.4. Экологическая политика и стратегия окружающей
 среды .. 163
Вопросы и упражнения ... 170
13. СОВРЕМЕННЫЕ ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ
 В КЫРГЫЗСТАНЕ И ВОЗМОЖНЫЕ ПУТИ ИХ РЕШЕНИЯ.. 171
 13.1. Масштабы и степени антропогенного воздействия
 на природу .. 171
 13.2. Экологические состояние и проблемы на
 территории Кыргызской Республики 172
 13.3. Некоторые пути решения экологических проблем
 территории Кыргызстана 175
Вопросы и упражнения ... 178
ЗАКЛЮЧЕНИЕ .. 179
ИСПОЛЬЗУЕМЫЕ ТЕРМИНЫ И ПОНЯТИЯ 181

Тираж 1000 экз. Цена договорная.
Набор, верстка печать ООО "Полиглот".
г. Бишкек, ул. Абдумумунова, 193.