Многолетний опыт строительства и эксплуатации закрытого дренажа показал, что для обеспечения его эффективной и надежной работы во многих группах обязательно применение защитных фильтров. Практика осушения переувлажненных земель, а также специальные исследования позволили сформулировать требования, которым должны удовлетворять защитные фильтры горизонтальных дрен [3].

Анализ этих требований показывает, что для различных по составу грунтов требуются различные фильтры. С точки зрения защиты дрен от загрязнения, увеличения водопоглощющей способности, химической и биологической стойкости, а также хранения окружающей среды надежными фильтрами являются правильно подобранные гравийные смеси.

Следует отметить, что процессы механизированной укладки гравийных фильтров в зоне осушки пока не разработаны. Кроме того, применение их предполагает использование высокопроходимых транспортных средств для доставки гравия к трансам дрен и коллекторов, которые в настоящее время располагаются в обширных районах. Эти обстоятельства обусловливают крайне ограниченное применение гравийной смеси в качестве защитных фильтров дрен.

При современных способах строительства дренажа и низком качестве керамических дренажных труб (ГОСТ 8411—74) наиболее подходящими фильтрующими материалами можно считать рулонные стеклохолсты марок ВВ-Т, ВВ-Г, ВВ-К, ВВ-М, ВВ-АМ, фильтры из синтетических волосков (нитрон, полиэтилен и др.), полотно нетканое и усиленное, полотно нетканое клееное мелкорванное (НКМ), полотно нетканое клееное мелкорванное (НКМ), полиэтиленовый холст (ПЭхолст). Наиболее применение в мелиоративном строительстве по лучили стеклохолсты. Остальные материалы применяют эпизодически и в незначительных количествах, так как сырье для производства этих фильтров дефицитно, а стоимость их значительно выше стоимости стеклохолстов. В ближайшее десятилетие при годовой потребности мелиоративного строительства в фильтрах в объеме 200 млн. м² наиболее доступными и экономичными останутся стеклохолсты.

В БелНИИМиВХе исследования рулонных фильтров (стеклохолстов, стеклотканей, стекловаты) проводятся с 1961 г. За этот период проведен комплекс полевых, лабораторных и теоретических исследований, позволивших выявить достоинства и недостатки этих материалов, их надежность, долговечность, влияние на окружающую среду, возможность механизированной укладки. На основе результатов исследований разработаны методы и способы защиты дрен от загрязнения в различных гидрогеологических условиях [3].

Полевые исследования проводились на участках опытно-производственных участках общей площадью более 1 000 га, построенных в различных условиях: на пойме, сулинках, супесчаных землях, пучинотошных, подтопляемых песках. Молекула строительства дренажа и до настоящего времени на участках ведутся наблюдения за осуществлением действием дренажа и состоянием защитных фильтров. За весь период наблюдений состояние осушенных земель было удовлетворительным. Раскопки дренажа, проведенные в 1977 г., показали, что за период эксплуатации дренажа, загрязненный стеклохолстами толщиной 0,5—0,8 мм, не загрязняется, стеклохолсты сохраняют высокие защитные и фильтрационные характеристики (табл. 1).

Приведенные данные позволяют сделать вывод о надежности, долговечности и высоких защитных и фильтрационных свойствах стеклохолств. Однако прочность их для механизированной укладки недостаточна. Как правило, защита дренажных труб тяжелыми фильтрующими материалами производится вручную рабочим-трубоукладчиком, находящимся в бункере экскаватора (тран-
Таблица 1

Характеристики стеклохолстов (ВГ-т), бывших в эксплуатации

<table>
<thead>
<tr>
<th>Название объекта</th>
<th>Толщина (мм)</th>
<th>Коэффициент ускорения</th>
<th>Эксплуатация</th>
</tr>
</thead>
<tbody>
<tr>
<td>Совхоз «10 лет БССР» (13 лет эксплуатации)</td>
<td>0,48</td>
<td>500...600</td>
<td>198</td>
</tr>
<tr>
<td>То же</td>
<td>0,50</td>
<td>500...600</td>
<td>120</td>
</tr>
<tr>
<td>Колхоз «Северное» (10 лет эксплуатации)</td>
<td>0,46</td>
<td>450...550</td>
<td>95</td>
</tr>
<tr>
<td>Колхоз «Заря» (3 года эксплуатации)</td>
<td>0,53</td>
<td>500...600</td>
<td>173</td>
</tr>
<tr>
<td>То же</td>
<td>0,49</td>
<td>500...600</td>
<td>95</td>
</tr>
<tr>
<td>Совхоз «Заречье» (7 лет эксплуатации)</td>
<td>0,41</td>
<td>500...600</td>
<td>110</td>
</tr>
</tbody>
</table>

шес). Условия труда рабочего крайне неблагоприятные: непосредственное соприкосновение со стеклохолстом, большая зашемленность воздуха от установки подвесных слоев грунта, повышенная влажность. Это, безусловно, сказывается и на качестве защит. Кроме того, при такой технологии производства стеклохолстов невозможно обработать верхний слой грунта, обеспечивая его увлажнение, а это снижает прочность защитного материала в 2...4 раза (по сравнению с таким же слоем). В результате, при дальнейшем образовании стеклохолстов ВГ-т, ВГ-т неизбежны ослабления экскаваторов, что снижает их работоспособность на 7...10 %. В связи с этим научными организациями проводится большая работа по созданию новых рулонных защитных фильтрующих материалов, позволяющих вести механизированную укладку дрен и защитных фильтров.

Одним из основных параметров фильтров, от которого зависит защитные, прочностные, технологические и стоимостные показатели, — их толщина. Однако при ее установлении возникают противоречия, обусловленные требованиями к фильтрам. С одной стороны, большая толщина обеспечивает лучшую защитную и водозащитную способность дрен и прочность фильтров, с другой — значительно увеличивает их стоимость и жесткость, что создает определенные неудобства в работе с ними.

Анализ результатов наших исследований, а также исследователей Прибалтики и Украины позволяет сделать вывод о том, что для надежной защиты дрен при заложении толщины защитного фильтра должна быть не менее 0,5 м [1, 2, 4, 5].

В БелНИИМВХе разработаны способы расчета дренажа с различными фильтрующими материалами, учитывающими их фильтрационные характеристики и параметры [3]. Для определения расстояния между дренами при установившейся фильтрации рекомендуется известная зависимость:

\[B = 4 V \sqrt{\frac{H_T}{q} - L_H} \]

где \(L_H \) — общее фильтрационные сопротивления (по вскрытия БССР и характеру вскрытия БССР), \(m \); \(H_T \) — расчетный напор, \(m \); \(q \) — интенсивность инфильтрационного питания, м/сут; \(T \) — расчетная проводимость материала, м2/сут; \(T = K_T + m + t + m \).

Для дрен, расположенной на водоупоре — \(L_H = 1,14; m_1 = 1,14 m_0 \cdot D + 0,363 m_0 \cdot F \), а выше водоупора — \(L_H = 0,73 m_2 \cdot l_{2} \cdot D + 1,06 m_0 \cdot l_{0} \cdot D + 0,381 m_2 \cdot 2 m_0 \cdot I \), где \(F \) — фильтрационные сопротивления гончарных дрен, учитывающие параметры защитных фильтров.

При сплошной обвертке (обсыпке) дренажной трубы

\[F \Phi = \frac{K_{G} - 1}{K_{F}} \ln \frac{D + 28}{D} + \frac{K_{G} \ln S_{1} + 1}{\pi K_{F}} \ln \frac{S_{1}}{S_{2}} \]

где \(K_{G} \) — коэффициент фильтрации грунта, м/сут; \(K_{F} \) — коэффициент фильтрации фильтра, м/сут; \(D \) — диаметр трубы, м; \(t_1 \) — ширина стыкового зазора между трубами, м; \(S_{1} \) — длина дренажной трубы, м.

В таблице 2 приведены результаты расчетов по приведенным зависимостям для дрен, расположенной на водоупоре \(m_2 = 0 \) и выше водоупора, при следующих данных: \(D = 0,072 \) м; \(t = 1,5 \) м; \(H_T = 1 \) м; \(m_0 = 0 \); \(m_2 = 10 \) м; \(q = 0,005 \) м/сут.

Анализ расчетных величин, приведенных в табл. 2, показывает, что увеличение толщины защитного фильтра от 0,5 м до 2 м практически не влияет на расстояние между дренами. Увеличение слоя фильтрующего материала до 30 мм вызывает лишь незначительное увеличение расстояний меж-

Таблица 2

Результаты расчетов по зависимостям (1)...(2)

<table>
<thead>
<tr>
<th>Соотношение водопропи-</th>
<th>Расстояние между</th>
<th>Толщина фильтра (t_{f})</th>
<th>Фильтрационные сопротивления (m)</th>
<th>(K_{G})</th>
<th>(K_{F})</th>
<th>(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Условия</td>
<td>фильтра</td>
<td>(m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,03</td>
<td>10</td>
<td>10</td>
<td>42,58</td>
<td>42,58</td>
<td>42,58</td>
<td>42,58</td>
</tr>
<tr>
<td>0,1</td>
<td>10</td>
<td>10</td>
<td>42,64</td>
<td>42,64</td>
<td>42,64</td>
<td>42,64</td>
</tr>
<tr>
<td>0,5</td>
<td>10</td>
<td>10</td>
<td>42,58</td>
<td>42,58</td>
<td>42,58</td>
<td>42,58</td>
</tr>
<tr>
<td>0,7</td>
<td>10</td>
<td>10</td>
<td>42,64</td>
<td>42,64</td>
<td>42,64</td>
<td>42,64</td>
</tr>
<tr>
<td>0,9</td>
<td>10</td>
<td>10</td>
<td>42,69</td>
<td>42,69</td>
<td>42,69</td>
<td>42,69</td>
</tr>
<tr>
<td>1,1</td>
<td>10</td>
<td>10</td>
<td>42,74</td>
<td>42,74</td>
<td>42,74</td>
<td>42,74</td>
</tr>
<tr>
<td>При отсутствии фильтра</td>
<td>4,9</td>
<td>7</td>
<td>30,8</td>
<td>30,8</td>
<td>30,8</td>
<td>30,8</td>
</tr>
</tbody>
</table>
ду дренами. Отсутствие защитного фильтра ведет к уменьшению расстояния между дренами в 1,4 раза, значительному увеличению стоимости осушения. С точки зрения водозахватной способности дренажа толщина защитного фильтра может быть принята также в пределах 0,5 мм.

Исследования технологии строительства дренажа показали, что для механизированной укладки прочность полосы фильтра шириной 5 см на разрыв должна быть не менее 10 кг. Для этого необходимо либо увличить ее толщину, либо армировать стеклохолст в продольном направлении.

Согласно опытным данным, прочность и жесткость армированных стеклохолстов BB-K и BB-AM позволяют применять их для механизированной обертки гончарных дрен. Однако стеклохолсты BB-K толщиной 0.3...0.4 мм отличаются большой неравномерностью в прочности (имеют участки толщиной 0,15...0,2 мм). В таких местах под действием нагрузки от грунта они прорывается. Стеклохолсты BB-AM средней толщиной 0,7 мм имеют минимальную толщину 0,5 мм, которая обеспечивает необходимую прочность. Следовательно, требования к механизированной защите дрен от залива отвечают армированные стеклохолсты толщиной не менее 0,7 мм.

Выведенные расчеты и показатели позволили разработать технические требования к параметрам дренажных фильтров на стеклохолсте марки BB-AM:

- Разрывная нагрузка в сухом состоянии на полосу шириной 5 см, кг не менее 10
- Толщина средняя, мм 0,7 ± 1
- Диаметр волокна средний, мкм 16
- Масса 1 м², г не более 100
- Содержание связующего, % 13 ± 2

Применение в качестве фильтрующего материала стеклохолста BB-AM обеспечивает хорошие защитные и фильтрационные свойства (Kф > 200 м/сут), а также возможность полной механизации работ при защите гончарного дренажа диаметром 50 мм. При водной потребности стеклохолста для защиты дрен от залива в 200 млн. м² в зоне осушения производство стеклохолстов BB-AM потребует примерно на 40 млн. руб. меньше капиталовложений по сравнению с производством стеклохолстов BB-AM. Экономия за счет уменьшения стоимости материала составит около 36 млн. руб. в год.

Литература

1. Граудинш А. А. и др. Пластмассы в строительстве дренажа. М.: Колес, 1977.
5. Скрынников О. В. Опыт строительства и эксплуатации пластмассового дренажа в глубоких торфяниках при высоком залегании уровня грунтовых вод. Мелиорация и водное хозяйство, вып. 37. К.: Урожай, 1976.