14. Водное хозяйство

Литература:

1. И. Хамидов, З. Бобомуродов, Е. Хамидова «Экология» Ташкент - 2009
2. И. Нигматов, Х. Абдураимова. Проблемы Аравийского моря. Журнал «Мухофаза + » № 3, Ташкент 2012 г
3. Материалы интернета: google.ru

Научные основы и обоснование размещения сети мониторинга подземных вод горных массивов, предгорных зон, конусов выноса малых рек

Тайлаев Абдурахмон Абдурашимович, старший преподаватель;
Бердинаева Диляра Шамироовна, ассистент;
Караев Гулом Рустамович, ассистент;
Камалова Шахназа Мелидовна, ассистент
Джизакский политехнический институт (Узбекистан)

Мониторинг подземных вод — это система наблюдений за оценки и прогнозирования, пространственно-временных изменений состояния объекта (группы объектов), процессов и т.д. под воздействием естественных и антропогенных факторов.

Для различных типов месторождений подземных вод, под инноватор мониторинг, подразумевается система наблюдений и сбор информации, оценки и прогнозирования пространственно-временных изменений состояния месторождение вод под воздействием антропогенных и природных естественных факторов.

Как известно, объектом мониторинга подземных вод является участок недр, в пределах которого осуществляется оценка состояния подземных вод, т.е. различная типы месторождений подземных вод. Подземные воды формируются и циркулируют в различных литологических-структурных условиях, образуя различное геологическое типы месторождений подземных вод.

Кроме этого на состояние подземных вод оказывают влияние различные факторы — это эксплуатация, отбор подземных вод, источники загрязнения, источники пополнения и др.

Именно в этом плане необходимо построить целый и задач мониторинга, т.е. изучения и прогнозирования состояния подземных вод естественных и нарушенных техногенными факторами условия.

Поэтому научной основой для обоснования размещения наблюдательной сети мониторинга являются закономерности формирования и расходования подземных вод в различных геологических типах месторождений подземных вод.

Рассматриваемая нами территория характеризуется наличием основных типов месторождений питьевых и технических подземных вод, каждое из них имеет разное сочетание природных ресурсов, их использование и величину натурной нагрузки, а также ответственную реакцию на природные и антропогенные воздействия. Это предопределяет необходимость использования принципа дифференциации как методического подхода для учета разнообразия природных и техногенных факторов при размещении пунктов региональной наблюдательной сети.

Для размещения опорной наблюдательной сети по изучению режима грунтовых вод необходим анализ геоморфологического строения территории, естественные гидрогеологические условия и их изменения под влиянием хозяйственной деятельности человека с учетом размещения ирригационно-дренажных систем.

Первые предложения о размещении наблюдательной сети для изучения режима грунтовых вод дал Б.Д. Рукашов, который отмечал, что «Размещение сети на основе гидрогеологического районирования, причем густота сети станций в пределах каждого гидрогеологического района и очередность их организации определяется актуальностью изучения режима подземных вод для развития народного хозяйства данной территории».

О.К. Линге (1934 г.) предлагала размещать сети так, чтобы они охватывали гидрогеологические зоны — поглощения, выклинивания и т.д. М. Лиман (1938 г.), обобщая материалы по режиму грунтовых вод Узбекистана, рекомендовал располагать сети по гидрогеологическим районам. В основу этого районирования должны быть положены литология водоносных пород, глубина залегания грунтовых вод и др.

Наблюдателями предлагается охватывать все выходные районы, создавая основную сеть в виде створов, нормального к рекам. Нижнее пределы основные полоожения рекомендации М. Лимана по размещению сети:

а) в основе разбивки сети наблюдательных пунктов в пределах аллувиальных равнин, и низовьев речных бассейнов и предположенных вариантов с плоскими условиями естественного дренирования следует принять створы в пределах каждого пункта, располагать наблюдательные точки по грунтовым стройкам, охватить различные участки;

б) пункты стационарной сети в пределах аллувийных равнин и низовьев речных бассейнов с небольшими естественным дренажом желательно располагать по строителям, охватывающим области питания, транзита и разгрузки подземных вод.
Н.А. Плотников (1939 г.) предлагал размещать наблюдательную сеть, исходя из гидрогеологических условий района с учетом перспективности водоносных горизонтов в развитии народного хозяйства. Желательно расшифровать гидрогеологическую сеть с охватом всего водоносного горизонта. Но в ряде случаев целесообразно изучать лишь часть этого горизонта. Сеть размещается по площади и по горизонтам с учетом потребности изучения режима этих площадей и горизонтов для народного хозяйства. Режим изучается в сезонном и многолетнем разрезе не менее 25 лет. В результате должна быть установлена природа закономерности режима подземных вод от естественных и искусственных факторов, влияющих на него. Это закономерность должна быть выявлена как для отдельных водоносных горизонтов, так и для типов подземных вод, объединения последних по геологическим условиям и комплексу факторов, влияющих на режим подземных вод.

В.А. Гейц и Н.В. Рогаевская предлагали разместить опорную наблюдательную сеть по створам, соединяющим с направлением движения подземных вод, используя геоморфологическое, гидрогеологическое и гидрогеолого-геоморфологическое сопоставление территории с разрезом освещения всех участков с характеристиками гидрогеологическими и воднохозяйственными условиями.

В инструкции по организации и производству наблюдений за режимом подземных вод, разработанной В.Н. Полышем, под общей редакцией М.Б. Альтовского предложено сеть в профильных районах располагать на основании промежуточных условий района. По мнению А.В. Лебедева (1955 г.), наблюдательную сеть следует размещать для решения балансовых поисков по уравнению Г.Н. Каменского в конечных разностях.

А.А. Кипенин и В.С. Ковалевский для изучения естественного режима грунтовых вод рекомендуют производить размещение наблюдательной сети на основе классификационной схемы, предложенной Г.Н. Каменским (1953 г.).

В отдельных работах предлагается сначала организовать сеть с большим числом пунктов, чем потребуется для опорной сети в дальнейшем. На основании данных наблюдений за несколько лет организуется постоянная сеть, для которой выбираются наиболее характерные пункты.

Д.М. Каш (1961 г.) предлагает размещать опорную сеть в опорных пунктах на основе гидрогеологического сопоставления опорных пунктов по условиям применения вертикального дренирования, выполненными геологическими упрощениями. Он считает, что опорную сеть следует располагать по гидрогеологическим «районам» в дренированных массивах, «полосастом» и «ручейни» в неоднородных или слабодренированных районах, а в неизученных районах выбрать ее из специально созданной широкой сети после 1-2 наблюдений.

Н.Н. Хохобиев, С.А. Абдулаев (1971 г.) предлагает иной принцип размещения наблюдательной сети мониторинга, основанный на следующем:

1. На основе анализа геоморфологического строения территории;
2. На основе анализа формирования естественных потоков грунтовых и субгрунтовых вод;
3. На основе анализа условий формирования природно-грунтовых вод и искусственных водоемов системы;
4. На основе гидрогеологического районирования территории по условиям применения вертикального дренирования;
5. Размещение наблюдательных сетей для изучения режима межежевых напорных вод междуречных отложений;
6. Размещение аномальных наблюдательных пунктов для изучения режима трещинных вод палеозойских образований;
7. Размещение аномальных наблюдательных пунктов на спец. объектах т.е. спец. сеть.

Ковалев Ю.С., исследует принципы размещения сети мониторинга на месторождениях пресных подземных вод с учетом формирования структуры их потенциальных эксклюзивационных запасов, предлагает два вида наблюдательной сети — фоновые и специализированные. При этом предполагается, что принципы размещения определяются общими задачами мониторинга, этапами задачами является:

- обеспечение рациональности использования и охраны месторождений подземных вод как источника питьевого и технического водоснабжения;
- Соположение влияние изменения состояния подземных вод, их оценка прогнозировании этих измени, предупреждение и выдача рекомендации по нейтрализации негативных процессов, информационное обеспечение экологического гидрогеологического изучения месторождений подземных вод.

В случаях месторождений пресных подземных вод предлагает исследование двух негативных процессов:

- процесса загрязнения подземных вод;
- процесса истощения эксплуатационных ресурсов.

Разработанная методика ведения Государственного мониторинга подземных вод (Мальков А.А., Борисов В.А. (2006 г.), предлагает размещение наблюдательной сети, основные на типах месторождений питьевых и технических подземных вод на основании следующих принципов:

a) географические;
b) проходческость;
v) комплексность;
г) дифференцированность;
д) периодичность.

Как видно из обзора, размещение сети предлагается производить, базируясь на совмещении различных принципов, в первую очередь на основании:

1. Принцип размещения сети на основе классификации режима грунтовых вод. При этом следует отметить, что к настоящему времени научно-обоснованной и обоснованной классификации режима грунтовых вод нет, хотя их число превышает двадцать. В связи с этим этот
Структурно-гидрогеологический анализ формирования подземных вод в месторождениях Нурата-Туркестанского региона

Грибоедова М.А. Бахромов, кандидат географических наук;
Таймаков Абдурахман Абдуллаевич, старший преподаватель;
Бердяева Н.А. Абдумалик, ассистент;
Крикунов Ираид, ассистент
Джизазский геологический институт (Узбекистан)

Проблема изучения формирования ресурсов подземных вод Нурата-Туркестанского горного массива становится наиболее актуальной. Так как горные массивы, преграда реки и месторождений пресных подземных вод осложнены гидрологическими и разрывными структурами являются единственно местом, где всплывает источники речного взвесенного водоснабжения населяющих пунктов, расположенных здесь.

Установлено, что обе увлажнение территории определяет потенциальную возможность накопления ресурсов подземных вод в виде активного водообмена, а реализация этой возможности зависит от коллекторских свойств водоимещающих пород. Коллекторские свойства пород в большей степени определяются разрывной поясовыми линейными структурами, произошедших здесь в третичном времени.

В горных массивах и предгорных равнинах происходит формирование, накопление, транзит и разгрузка подземных вод. Протекание различных этапов этого процесса определяется геолого-структурными, литологическими и тектоническими боками.

В настоящее время техническое водоснабжение на подземных водах приходит в движение сложных гидрогеологических условий в пределах различных генетических типов месторождений подземных вод. Для комплексного, рационального использования и охраны ресурсов пресных