ARAL SEA BASIN MANAGEMENT MODEL (ASBmm)

USER'S MANUAL

August 2014

Table of Content

Introduction	3 -
What is ASBmm?	3 -
How to use the Manual?	5 -
Before using ASBmm	6 -
What is required to work with the model?	6 -
How to access the user interface?	6 -
How to enter?	6 -
How to register?	7 -
Desktop	8 -
Creating a project	9 -
Working with the Planning Zone model (PZm)	12 -
How to calculate the total water requirements of a planning zone for transboundary network?	, 14 -
How to calculate the productivity of irrigated agriculture?	15 -
How to calculate an amount of investments needed to improve the irrigation efficie	ncy in
planning zone?	15 -
Working with the Water Allocation model (WAm)	15 -
How to enter the water needs of the Aral Sea and what these needs can have an imp on?	oact 16 -
How to activate (deactivate) Kambarata 1, Roghun and any other new HEPS in the r	nodel? - 16 -
How to set up HEPS operation regime (energy generation or energy-irrigation) and	what
these regimes can have an impact on?	17 -
How to enter the electricity prices and what these prices can have an impact on?	17 -
How to enter upward (downward) trends of irrigated areas in the model?	18 -
Which indicators describe operation regimes of reservoir hydrosystems with HEPS?	20 -
Working with the Socio-Economic model (SEm)	21 -
How to enter the population growth trends in the model and what these trends can	have
an impact on?	21 -
How to enter the costs of hydropower generation and what these costs can have an	
impact on?	23 -
Which economic indicators are used to estimate the operation of HEPS and their im	pact
on water supply of different users in river basins?	24 -
Which socio-economic indicators are used to assess production and losses of output	: in
irrigated agriculture and processing sector?	24 -
How to fill in the food basket for the region and set the norm of calories per person?	25 -
Which indicators estimate food security in the basin?	26 -
Viewing the results	27 -
Output forms of ASBMM	27 -
Evaluation of the flow regulation by reservoir hydrosystem with HEPS and the wate	r
balance of river basins	27 -
Socio-economic assessment of the development of the region	29 -
Comparison of the results	31 -
Viewing the information about the project	33 -

Introduction

The Aral Sea basin as a single system ensuring water supply and well-being in the six countries, including Afghanistan, has been an object of water cooperation, first, within the former USSR and then among 5 independent states for many years. A wise decision to keep cooperation among the countries as declared by the Heads of five Central Asian States in relevant Agreements 1993 and 1994 was of great importance for maintenance of peaceful and joint management of water resources in transboundary Amudarya and Syrdarya Rivers. By acknowledging the Interstate Water Commission under umbrella of the International Fund for Saving the Aral Sea and its regulations that were founded on previous experience of water allocation, the States preserved the status quo of the basin's water sector.

These fundamental documents paved the way for hard work of water-management and governmental bodies in our countries in order to keep conflict-free, coordinated water management to the benefit of all the countries.

In this context, if you are a journalist, student or a novice in hydrology, hydraulic engineering or energy and you would like to get more knowledge about characteristics, issues and prospects of developments in the Aral Sea basin, ASBmm will serve you.

In addition, ASBmm is a helpful tool if you are a professional in the area of water and energy resources management and you are interested in assessment of alternative water development scenarios in riparian countries of the Aral Sea basin, taking into account socio-economic, environmental, energy and climatic factors, optimization and trade-off solutions.

What is ASBmm?

The ASBmm Version 2011, which is available on-line on http://www.asbmm.uz/, was developed jointly by IHE-UNESCO and SIC ICWC. The main objective is to develop an Internetbased platform in support for regional dialogues and desk-top studies in Central Asia, ensure free access to integrated analysis of the Aral Sea basin development scenarios.

It is expected that the analytical Internet-based platform on water-energy sectors in the CA countries would enhance web-functions of the CAREWIB Project¹ by involving user's initiative and creative work in analysis (forecasting) of the water-related situation. The users need to have an opportunity to build their own alternatives regarding flow regulation, water allocation, and, at the same time, need assistance in scientific analysis in order to have a comprehensive view on those processes and events that are typical for some structures and sites of the water-management network (river basin).

^{1 «}Central Asian Water Information Base (CAREWIB)» aims at improving information support of water and environmental sectors in the Central Asian countries. The Project was implemented by SIC ICWC, UNECE, and Zoi environment network with active participation of EC IFAS and ICSD. The Project was financed by the Swiss Agency for Development and Cooperation (SDC) until 2012. Currently, this information system is supported by the Uzbekistan's Ministry of Agriculture and Water Resources.

The analytical Internet-platform is to be used by a wide audience. The ASBmm user webinterface allows the user to interact with PC and offers a number of capabilities, such as model and data customization, user scenario building, iteration model runs, and result interpretation. The simulation results can be viewed through Internet in tabular and graphic forms, as well as visualized in a mapping block.

Integrated ASBmm model is a software product consisting of a number of information modules and computer programs:

- ~ Socio-economic model (computation of indicators per economic sector),
- Model for water allocation and flow regulation by reservoir hydrosystems (water and energy balances, etc.),
- Planning zone model (computation of agricultural production, water supply and water balance of irrigated land),
- Models of the Aral Sea and aquatic ecosystems lakes in Prearalie, Arnasay lake (computation of water demand, water balance; assessments of ecosystem productivity, production losses),
- ~ Database,
- Control routine,
- ~ User WEB-interface.

The set of models is designed for those working in the water sector, agriculture, environmental and governmental institutions and dealing with prospective planning and development strategy building. By using this set of models, the user can: get assessments of the proposed solution and project options depending on availability of water, land and other natural resources; see consequences from these proposed options for social, ecological, and economic conditions of particular zones and countries; and compare the proposed solutions and projects with sustainable development indicators. For transboundary water projects the models make it possible to assess an impact of actions undertaken in one country on water availability and environment in neighboring countries and further may serve as a tool for coordination of mutually acceptable decisions.

The models are oriented to solve practical tasks and demonstrate advantages of an integrated approach since they consider in their structure the main characteristics of integrated management. The primary objective of integrated management is to coordinate elements, levels, and sectors of water use in a certain order, while assigning common aims and criteria (social, ecological, economical). As a result, a consensus should be reached for meeting both national and regional interests. An important element of such consensus is maintaining balance between water supply and water demand of economic sectors and ecosystems at various hierarchical levels and for different periods of time.

The set of models was designed to answer the "what if" questions. How much water the countries would demand in the future if they develop exclusively on the basis of their own potentials and capacities? And what if the countries are integrated into a single economic space, assuming specialization (in food production, energy generation, etc.) and coordination of water management in order to achieve regional well-being and security?

So that the models "could answer" such questions, they have the feature of economic analysis. Moreover, there is an assumed relationship between territorial and basin management levels. It is not effective to simulate only a river channel without a link to irrigated lands (planning zones). And vise versa, the solutions that are made at territorial level should be surely checked at basin level, with account of regional restrictions and requirements, mainly environmental ones.

The built-in socio-economic block and indicators showing dynamics of certain planning zones offer new features, such as assessment of country economic development options, demographic situation, and investment policies, identification of the needs of economic sectors, and analysis of the future in terms of sustainable development. The models can assess water conservation measures and optimal cropping patterns proceeding from available investments. Connection of the Prearalie model enhances the set of models in part of accounting of environmental requirements and evaluation of how stable is the environmental situation in the Aral Sea coastal area (Prearalie)².

Every state in the region has its own national interests and issues regarding water resources management. However, there are challenges that are key and common for most of the states. Those include avoidance of critical situations that could be caused by natural factors (drought) and ineffective management. The range of criteria applied in the models allows finding trade-offs that exclude, for example, conflicts between irrigation and hydropower. Potential effects and damages in economic sectors and relevant compensations can be estimated as well.

How to use the Manual?

This manual provides the user with the instructions on how to work with ASBmm and view the results through the user interface. The user interface for ASBmm can be accessed through Internet. The interface is located on a special web-site (<u>http://www.asbmm.uz/</u>).

The desktop of the ASBmm interface includes a guide in form of a diagram of interconnected blocks by "navigating" among which the user can:

- Create a user's project,
- Open the project (already created),
- Customize the model (select task, combination of scenarios),
- Run one model or a few models in cycle (depending on task selected),
- Select a method for the evaluation of the results (integrated assessment, assessment by water body, comparison of the results for one Project or for two selected Projects),
- View the results of calculations and save them,
- ~ Go to the Main page.

Given manual explains how to carry out each of the above listed procedures.

² The Prearalie and Aral Sea Block is under finalization.

Before using ASBmm

What is required to work with the model?

In order to work with ASBmm, you need a PC and internet access.

How to access the user interface?

The user interface is available on http://www.asbmm.uz/.

How to enter?

The main interface window of the model looks as follows:

- (1) On the ASBmm web-site the user can use the toolbar and get the following information:
 - "PROJECT DESCRIPTION" information about the Project and brief description of ASBmm
 - "HELP" help information about the models and iteration procedures;
 - "NEWS" news related to ASBmm

- "HISTORY" information about development of the set of models, existing versions and future plans on its improvement;
- "FAQ" a list of questions that may arise while the user operates ASBmm and answers to them;
- ~ "DEVELOPERS"- information about the developers of ASBmm
- "FORUM" a space, where the users are invited to give their opinions about the Project, share their calculation results obtained using ASBmm, discuss similar models, the issues and scenarios of the Aral Sea basin development, etc.
- (2) The user may shift between English and Russian languages (Pyc/Eng);
- (3) Brief description of the set of models in form of an information sheet;
- (4) A rolling tape with pictures and short texts has two arrows (left and right). By clicking on an arrow the user can move to another picture with a short explanation on the interface or the modeling set;
- (5) An interactive atlas is located in the middle of the Interface placing a cursor over which opens the map of the Aral Sea basin divided into the five Central Asian states. By clicking on any of the states the user can see the administrative map of this state;
- (6) The lower right corner of the Interface contains a news feed on the project digest;
- (7) There is a "Feedback" on the bottom, by clicking on which the user opens a dialogue window "Contacts", where he/she can answer any question to the project administration and receive the answer to his/her e-mail;

	in and the second second	-16						
HOLE	MOLECT DESCRIPTION	HUP	HEVE:	HETONY	FAIL	DEVELOPING	FORM	增個
ur co	intacts							
rigitaria A	Tantaert limenclas 2010	Demt.						
-								
e ernet								
-	Common qualitions •							
an ager								

(8) The upper right corner contains active hyperlinks, such as login to the user interface (Login to the Interface) and registration for new users (Registration).

How to register?

Interface is one of the main working elements of the system, throught which the user interacts with the system. It is designed in form user-friendly blocks between which the user can switch quickly. Before accessing the interface, the user should register by clicking on "Register" in the upper right corner of the web-page.

Then, the registration window opens, where the user should fill in contact details, create login and password and then click on the "Registration" button:

ASBmm	
Registration	
Your name: Login: consist of letters,	digits and "_" и "-" characters
Your email: Registration	Registration
ENTER TO INTERFACE ASBMM	Your account (login aaa) has created. You can <u>enter now</u>

If registration is successful, a window appears "ENTER TO INTERFACE ASBMM", in which the user is prompted to enter the login and password. Clicking on "Log in" opens ASBmm interface.

Desktop

The desktop is divided into several blocks. In the upper part the user can see logo, language selector, status line and authorization block, using which the user may enter the system and finish work at any time by clicking on "Exit" (9).

The working area (10) located in the central part, occupying most of the page, is designed for the direct work with the program. It is made in a form of a block diagram under one title "System Guide".

Each block represents a stage (status) of the system: setting up the user matrix; editing the user's scenario; viewing the expert's scenario; running calculations; viewing the results; comparing projects. The current stage, which is activated by the user at the moment, is highlighted in green. The completed stages are colored in turquoise. The arrows between the blocks show links between the stages, i.e. where the user can move and which way the user followed from the start. The user can come back to any completed stage by clicking on respective block.

To start working with ASBmm, the user has to create a new project. By clicking on the "Create new project" button, the user should enter the name of new project in the opened window (11) and choose the task to be solved from the list.

For the solution of the 1st task "Asses flow regulation by reservoirs hydrosystems with HEPS and water balance of river basins", the water allocation model (WAM) is used which is a part of ASBmm complex; for the solution of the 2nd task "Assess water requirements per PZ" and the 3rd task "Assess water availability and agricultural output losses in PZ", the planning zone model (PZM) is used; and, for the solution of the 4th task "Socio-economic assessment of regional development", the socio-economic model (SEM) is used.

The user may also select the offered combination of tasks, for which the ASBmm control program forms cycles: cycle 1 - sequential solution of the 1^{st} and 4^{th} tasks (involve WAm and SEm); cycle 2 - sequential solution of the 2^{nd} , 1^{st} , 3^{rd} and 4^{th} tasks (involve PZm, WAm, then

again PZm and SEm). During formation of the cycles, a part of outputs from some models (intermediate results) are used as inputs for other models.

Customizing and working with the models

Project matrix

After creation of the project, the user gets to the page "Select User's Strategy". On this page the user can select (define) the development strategy of the region (basin, planning zone), i.e. customize the model's (s) operation mode, which is a part of the selected project tasks. All information intended for the development strategy selection, grouped in the so-called "Project matrix" (12) presented in the form of a table. Specifying through selection the values of the corresponding parameters/scenarios - basin/planning zone, climate impact, water content of the rivers and scenario of socio-economic development - the user customizes the operation mode of the model.

By clicking on respective scenario, the user gets summary information about it. There is the "DB" icon (13) near the name of each scenario, by clicking on which the user can view all parameters of the selected scenario.

It is important to note that the user has to choose one of pre-determined scenarios for climate impact and flow probability. "Socio-economic development" has several expert scenarios (business as usual, national vision, regional) and a user's scenario, which is created on the basis of "Business as Usual" scenario. If the user's scenario option is chosen, then the "Setup user scenario" button (14) appears on the screen. Clicking on this button brings the user to the form, where the user's values can be entered for each of listed indicators.

Setting up a user's scenario

The user's scenario setup form is an important element of project settings. There the user can set projected conditions (for each indicator) to run calculations.

ASBmm		Helo, aaa Go to the Intro screen +) Ext
Wew scenario		Eve / Eng
Info about project	INDICATORS	2011 CAB BOUNDARIES RECAST
Climate impact: Maximal Flow probability: On existing cycle	+ Environmental demand	18 19
Reports list	±Dann	
You haven't got records yet. Manage reports a		Run calculation

The table of indicators consists of the three following columns:

- (15) Indicators;
- (16) Values of indicators as at 2010 (unit, value);
- (17) Projected values (unit, boundaries [min, max], forecast).

Thus, on the basis of 2010 indicator values the user makes forecast between minimum and maximum boundaries indicated in the table. Double clicking on respective cell allows the user to change the projected value. It is possible to export the entire list of indicators (whole table) to Excel (18), fill it and then import it back. This simplifies filling of data for the user's scenario.

The user can at any time change back the initial values by clicking on "Defaults" (19) at the bottom of the table.

Working with the Planning Zone model (PZm)

PZ model is a flexible tool of the ASBmm set of models. This model performs calculations for assessment of water use and irrigated agriculture productivity in given planning zone, as well as for economic evaluation of some actions (improvement of irrigation network efficiency, development of new lands).

The interface allows the user to work with the selected planning zone independently (water use assessment regime) or in combination with the river model (water availability and agricultural production losses assessment regime). Besides, the user can integrate several zones into a water-management district and operate them in combination with the river model and the socio-economic model.

INDIGATORS	2010	YEAR	BOU	NDAR	IES	FORECAST								
INDICATORS	UNITS	VALUE	UNITS	MIN	MAX	2015	2020	2025	2030	2035				
- Population														
Population in PZ, % of 2010	nillion people	2672.8	%			106.11	112.22	118.33	124.44	130.5				
+ Cropping patterns 20-25 + Cost														
+ Water diversion														
+ CDF														
- Efficiency														
st interfarm canals			unit			0.8	0.8	0.8	0.8	0.8				
of onfarm canals			unit			0.65	0.65	0.65	0.65	0.65				
cost- efficiency dependence	e ration	(interfarm	i canals)											
A1						3636.2	3636.2	3636.2	3636.2	3636				
A2						-1041.4	-1041.4	-1041.4	-1041.4	-1041				
cost- efficiency dependence	e ration	(onfarm c	anals)											
A1						7240	7240	7240	7240	7240				
A2						-4385.1	-4385.1	-4385.1	-4385.1	-4385				
				🗂 <u>Im</u>	port da	ta 🕡	Export d	<u>ata</u>		<u>Defa</u>				

PZ parameters are integrated into six large blocks in the interface:

- (20) Population data on population growth as compared to 2010;
- (21) Cropping patterns change in irrigated areas and cropping patterns in % of irrigated area;
- (22) Cost parameters for calculation of gross production and added value (prices, crop yields, salaries, taxes, self-cost, cost and revenues in associated sectors);
- (23) Water diversion volumes of water diversion for non-irrigation needs (domestic, industrial, rural water supply);
- (24) Collector-drainage flow (CDF) share of CDF in transboundary rivers and re-use of CDF for irrigation out of the total volume of collector-drainage flow in PZ;
- (25) Efficiency average coefficients of efficiency of inter- and on-farm canals in planning zone, system's performance efficiency–rehabilitation specific cost factor.

By using available information and inputting own data, the user can simulate various development options for PZ.

The results of calculations are also grouped in large blocks and have the following structure:

- (26) Water balance;
- (27) Productivity of irrigated agriculture;
- (28) Estimated investments in PZ.

INDICATORS	UNITS		AVERAGE				
INDICATORS	01110	2011	2012	2013	2014	2015	FIVE YEARS
+ PZ water balance ←click to view		Σ	Σ	Σ	Σ	Σ	
+ Productivity of Irrigated Giris Bure							
- Estimated investments in planing zone							
Reconstruction of irrigation network	M\$	1244.1	3.5	3.5	3.5	3.5	251.6
Development of new land for agriculture (\$/y)	M\$	0	0	0	0	0	0.0
Investment on improved water management (MVRM)	M\$	1.7	1.7	1.7	1.7	1.7	1.7
Area of new land developed for agriculture (ha)	\$/ha	1	1	1	1	1	1.0

How to calculate the total water requirements of a planning zone for transboundary network?

To this end, the user has to create new project on Task 2 (29) or 3 (30) or open already existing project.

	Create new project	
1. Name of th	e project:	
2. Choose the	task (help):	
T	Task 1 Assess flow regulation by reservoir Indrosystems with HEPS water balance of river basins	and
T	Iask 2 Assess water requirements per PZ	
-12	Task 3 Assess water availability and agricultural output losses in PZ	30
	Task 4 Socio-economic assessment of regional development	Ŭ
	OK Cancel	close #

Then, the user's scenario should be adjusted and flow and climate scenarios should be selected. The list of input data for calculation of water requirements for transboundary network is shown below:

- Cropping patterns for main crops (% of irrigated area);
- Irrigated area in PZ, % of 2010;
- Water diversion by domestic sector;
- Water diversion by industry, including energy;
- Water diversion by agriculture (excluding crop production);
- Water supply from groundwater;
- Return flow to transboundary rivers;
- ~ CDF re-use in PZ;

~ Efficiency of inter- and on-farm canals.

The result of the calculation is also dependent on water availability and climate change scenario.

How to calculate the productivity of irrigated agriculture?

The same procedure as mentioned for the calculation of water requirements for transboundary network is repeated.

The list of input data for the calculation of productivity is as follows:

- ~ Selling price of irrigated agriculture production, % of 2010;
- Cost of main crop production;
- Yields of main crops;
- ~ Salary costs;
- ~ Taxes;
- ~ Coefficient of added value from irrigated agriculture output processing, unit fraction.

How to calculate an amount of investments needed to improve the irrigation efficiency in planning zone?

The same procedure as mentioned for the calculation of water requirements for transboundary network is repeated.

The following input parameters are used in the calculation of investments:

- ~ Efficiency of inter- and on-farm canals
- ~ Linear dependence ratios of investments in irrigation networks A1 and A2

The amount of investments is calculated as a difference in costs corresponding to specific levels of efficiency.

Working with the Water Allocation model (WAm)

The Water Allocation model (WAm) is a specialized computer tool for modeling the processes of flow regulation for the main rivers in the Aral Sea basin, for distribution of flow between the so-called water-management districts (planning zones) and water ecosystems (wetlands in Prearalie and Aral Sea). The model does the water balance and hydropower generation calculations for the Syrdarya and Amudarya basins, based on water-management scenarios on monthly basis up to 2035.

How environmental water releases for Prearalie can be entered into the model? To this end, the user's scenario form is opened and data is entered using the following path: Environmental demand -> Water supply to Prearalie lakes depending on yearly flow conditions (31).

entra ligeri -											
ENTER - OPEN	IISER SCENARIO 🔸 🦷 RUN								+		
анан <mark>Стенятонияно +</mark> 1	DITAT ACCOUNTS	iii	-	TEBRATE							
									E	- STEF	BACK
Into about project	amin a YADO	2010	YEAR	800	NDARIE	s		F	ORECAS	ST.	
Task to Access flow regulation by . Basing Basin of Syndarya	EDUCATORS	UNITS	VALUE	UNITS	MIN I	MAX	2015	2020	2025	2030	2035
Climate impact: Minimal Flow probability: Dry Development: user	- Environmental demand - Water supply to Prevale in	kes depend	ling on yea	thy thow co	ndtons	_				_	
Reports list	Law water Po75%. Average P=50%	km3/yr	11	km3/yr km3/yr	0.5 5.5	1	0.7	31 1.5	1	1)
You haven't got reports yet. Manage reports a	High-water P+25%	km36r.	2	km3/yr	2	1	1	2	3	-	3
	Entergencial environmental Written supply to Anal from:	water relea	des.								
	Bear uses and HEP3 Basin										

How to enter the water needs of the Aral Sea and what these needs can have an impact on?

Under this procedure, the user should open the user's scenario form and enter the data using the following path: Environmental demand -> Water supply to Aral from the river (32).

ENTER 01%N	USER SCERARIO	n Ate	•	TEGRATE	0	ģ.	10000	uu	h 📖	1	e :
		_				10.5			16	- STEF	BAC
Info about project	NOR A TORF	2010	YEAR	BOU	INDAR	WES		ş	ORECAS	FT:	
Task 1: Assess flow regulation by. Basin: Basin of Syndarya	BUCATORS	UNITS	VALUE	UNITS	1111	MAX	2015	2020	2925	2838	2075
Climate impact: Minimal	- Environmental demand										
low probability: Dry	. Weter supply to Prearale	where designs	fing on yes	why flow o	inditio	30					
evelopment; user	Emergency environments	water relea	111								
Reports list	- Wilder supply to Aral from	the river									
Contraction of the second second second	Law-water Ps75%	ke39r	.45	km3/yr	1	3	1	1.5	2	25	-3
Manage reports a	Average P=50%	km3/yr	3.5	km3/yr	3	4	3.5	3.5	3.5	3.5	.4
	High-water P<25%	km3/yr	\$	kmäłyr	\$	7	5	3	5.5	6	- 5
	+.Reservoirs and HEFS	-									
	1.8820										

How to activate (deactivate) Kambarata 1, Roghun and any other new HEPS in the model?

Under this procedure, the user should open the user's scenario form and enter the data using the following path: Reservoirs and HEPS -> Commissioning year for new HEPS. In order to activate HEPS, enter "1", starting from the five-year period when given HEPS is put into operation, to deactivate HEPS, enter "-1" starting from the five-year period when given HEPS is stopped (33).

ENTER OPEN USER CREATE CUSTOMIZING DIPER	SCENARIO RUN	IF .	•	ETAILED † TEGRATEI		•			Þ EXIT	SHON U	BACK
Info about project		2010	YEAR	BOU	NDAR	ES		F	ORECAS	T	
Task 1: Assess flow regulation by Basin: Basin of Syndarya	INDICATORS	UNITS	VALUE	UNITS	MIN	MAX	2015	2020	2025	2030	2035
Climate impact: Minimal Flow probability: Dry Development: user	Environmental demand Water supply to Prearaile lak Emergency, environmental w	es depend	lina on yes	rly flow or	ndtion	2					
Reports list	+ Weter supply to Anal from th • Reservoirs and HEPS	e river									
You haven't got reports yet.	- Commissioning year							/			
Manage reports x	Kambarata 1	1- yes,0- no	0	1- yes,0- no	0	1	0	0	33	0	
	- Required electricity generation	20									
	+ HEPS regimes									/	
	+ Electricity price										
	+ Basin										

How to set up HEPS operation regime (energy generation or energy-irrigation) and what these regimes can have an impact on?

To this end, the user should open the user's scenario form and enter the data using the following path: Reservoirs and HEPS -> HEPS regimes (34):

- "o" energy mode;
- ~ "1" energy-irrigation mode

The operation regimes of HEPS reservoirs have an impact on water supply in planning zones, electricity generation, and agricultural production and, consequently, on cost effectiveness and productivity of agricultural land.

the electricity prices and what these prices can have an impact on?

To perform this task, open the user scenario's form and use the following path to enter the data: Reservoirs and HEPS -> Electricity price (35). The prices have an impact on the calculation of the cost of electricity generation.

ENTER - OPEN D	SER SCENARIO 🔿 RU	H				1			⊦≡		
		IATE	+ IN	+ TEORATE		4					
Carlos and Share										⊷ STEP	BACK
Info about project	INDICATORS	2010	YEAR	BOU	INDAR	IES		Ŧ	ORECAS	T	
Task 1: Assess flow regulation by. Basin: Basin: of Syndarys	and of the second	UNITS	VALUE	UNITS	610N	MAX	2915	2020	2825	2030	2835
Climate impact: Minimat	+ Environmental demand										
Flow probability: Dry	- Reservors and NEPS										
Development: user	e.Communerstation										
Reports list	+ Required electricity gener	intion									
	+ HEPS regimes					_	-				
You heven't got reports yet	 Bectricity price 				/						
Manage reports a	Sumber	\$3//h	0.03	- se man	0.02	0.07	0.03	35	0.04	0.05	0.08
	witter	\$4/01	0.03	SAND	0.03	0.08	0.03	0.04	0.05	0.05	99
	s.Book				-	<u> </u>				~	

How to enter upward (downward) trends of irrigated areas in the model?

To perform this task, open the user scenario's form and use the following path to enter the data: Basin -> Annual irrigated area growth as compared to previous year, average for five years (36).

Info about project								_			
Name: Task_1_v2 🥒	INDICATORS		YEAR	BOU	NDAR	IES		ŀ	ORECAS	51	
Task 1: Assess flow regulation by Basin: Basin of Syrdarya	l	UNITS	VALUE	UNITS	MIN	MAX	2015	2020	2025	2030	2035
Climate impact: Minimal	+ Environmental demand										
Flow probability: Dry	+ Reservoirs and HEPS										
Development, user	- Basin										
Reports list	+ Annual population growth a	is compare	d to previou	us year, a'	/erage	for five	vears		~		
	- Annual irrigated area growt	h as compa	red to prev	rious year	, avera	ge for fiv	/e years				
You haven't got reports yet. Manage reports »	Kazakhstan	thousand ha	770	unit	0.9	1.02	0.991	1	1.003	1.006	1.05
	kyrgyzstan	thousand ha	340	unit	36	1.02	0.993	1	1.005	1.01	1.015
	Tajjkistan	thousand ha	220	unit	0.9	1.02	1.009	1.01	1.015	1.017	1.0
	Uzbekistan	thousand ha	1970	unit	0.9	1.02	0.998	1	1.005	101	1.05
	+ Coefficient of added value	from incidate	ed agricultu	re output j	proces	sing					

Which indicators describe the water balance of rivers and reservoirs in given basin? The user can get information on those indicators in form of an integrated assessment or by accessing data on water bodies (reservoirs, river reaches). These indicators include:

- Water resources;
- ~ Transboundary resources;
- Water diversion in a basin (Syrdarya or Amudarya);
- Estimated return flow;
- Channel loss;
- Usable water resources (natural resources+return flow-losses);

- Dynamics of water storage in large reservoirs;
- ~ Inflow to and releases from large reservoirs.

After running the calculation (37) on the basis of user's scenario, the user can view the calculation results in the mode of integrated assessment.

	USER SCENARIO -			-				
силла не сивтонилию	INCAS INCIDENTIAL INCIDENTIAL		+ ITECRATE	. 4		110		1
								STEP BACK
Info about project	BIDICATORS	2810	YEAR	BOU	NDARIES		ORECA	st
Task 1: Assess flow regulation by. Basin of Byrdarys	interan torta	UNITS	VALUE	UNITS	MN MAX	2015 2020	2025	2020 2825
Connace impact; schemat New probability: Dry Development: user	Environmental demand Propertypics and HEPS Propertypics							
Reports list	particular.				naa V	Export data		Detaut
You neven T got reports yet. Manado reports a		(Rus	calculati 37	ion 1			

The indicators of river and reservoir water balance can be viewed using the following path: (38) River network, reservoirs and HEPS -> Water resources and their distribution.

(39) River network, reservoirs and HEPS -> Reservoirs -> Dynamics of water storage in large reservoirs at the start of year.

Name: Task_1_v2 Task 1: Assess flow regulation by Desire Desire Order procession	INDICATORS	UNITS		VAL	UES BY Y	EAR		AVERAGE
Climate impact: Minimal	INDEXTORE	onno	2011	2012	2013	2014	2015	FIVE YEARS
Development: user	- River network, reservoire and HPS ←click	to view						
Reports list	+ Water resources and their distribution - Reservoirs		Σ	Σ	Σ	Σ	Σ	
You beyen't dot reports vet	- Reservoirs							
Manage reports »	MAI	Mm3	33121.3	34236.9	36529.3	34432.4	33115.9	34287.2
			30	n them				
	2×"Chardara	Mm3	5200	5200	5200	5200	5200	5200.0
	Toktogul	Mm3	19000	18772.5	19000	18743.5	17848.7	18672.9
	Andijan	Mm3	653.4	1600.4	1589	1610.4	1310.6	1352.8
		Mm3	2380.9	2857.1	3350	1935.8	1939	2492.6
			New	reservoir	s	~		
	≫'Kambarata#1	Win9	0	0	0	0	0	0.0
	+ Inflows and releases		Σ	Σ	Σ	Σ	Σ	
	+ HEPS							
	+ Water ecosystems							

(40) River network, reservoirs and HEPS -> Reservoirs -> Inflows and releases

Name: Task_1_v2 / Task 1: Assess flow regulation by Basin: Basin of Syrdarya	INDICATORS	UNITS		VAL	UES BY 1	ÆAR		AVERAGE	
Climate impact: Minimal			2011	2012	2013	2014	2015	FIVE TEARS	
Flow probability: Dry	River betwork reservoirs and HDS - office	k to view							
Development: user		10 0/04	٣	-	-	_	-		
Reports list	- Reservoirs		2	2	2	2	~	<u> </u>	
You haven't act reports vet	+ Peservoirs								
Manage reports »	- Inflows and releases		Σ	Σ	Σ	Σ	Σ		
Instructure and a second a	/			inflow					
	Toktogul	Mm3	12370.4	13076.1	9819.8	9006.2	8815.4	10617.6	
	25 Kayrakum	Mm3	14232.2	15276	11386.2	11228.3	12289.7	12882.5	1
			f	elease					
	Toktogul	Mm3	12510.7	13124.7	9955.8	9946.7	9975	11102.6	
	.≫Kayranse	Mm3	13789.1	14549.3	12756	11228.3	12289.7	12922.5	
	+ New reservoirs		Σ	Σ	Σ	2	Σ		
	+ HEPS								
	+ Water ecosystems								

Which indicators describe operation regimes of reservoir hydrosystems with HEPS?

The operation of reservoir hydrosystem with HEPS is characterized by the following indicators: (41) Electricity production – via HEPS -> Electricity production – total

Name: Task_1_v2 // Task 1: Assess flow regulation by Basin: Basin of Syrdarya Climate impact: Minimal Flow probability: Dry	INDICATORS	UNITS	2011	VALU 2012	ES BY Y	EAR 2014	2015	AVERAGE FIVE YEARS
Development: user	- River network, reservoirs and HPS $\leftarrow \textit{click}$	to view						
	+ Water resources and their distribution		Σ	Σ	Σ	Σ	Σ	
Reports list	+ Reservoirs							
You haven't got reports yet. Manage reports »	- HEPS - Electricity production - total Mairakkum HEPS	M KWHAyr	⁶⁰ 431	654.9	581	492.6	549.1	576.6
	Maryn HEPS cascade	M KWH/yr	11885.1	12476.6	9554.8	9498.7	9343.7	10551.8
			New	HEPS				
	≫Kambarata 1	M KWHAyr	1299.4	1314.2	1273.2	1136.3	1215.6	1247.7
	the period of electricity in large HEPS (and the second	gainst energy potential exp	<u>y generation</u> ports	n schedule	1			

(42) Deficit of electricity production – via HEPS -> Deficit of electricity in large HEPS (against energy generation schedule)

Name: Task_1_v2 // Task 1: Assess flow regulation by. Basin: Basin of Syrdarya Climate impact: Minimal	INDICATORS	INDICATORS UNITS 2011 2012 2013 2014 2015									
Development: user	- River network, reservoirs and HPS ←c//d	k to view									
	+ Water resources and their distribution		Σ	Σ	Σ	Σ	Σ				
Reports list	+ Reservoirs										
You haven't not reports vet	- HEPS										
Manage reports »	ciectricity production - total										
	- Deficit of electricity in large HEPS (against energy generation schedule)										
	:~~Kairakkum HEPS	M KWHAyr	47.2	1.7	4.6	4.3	4.1	3.9			
	Maryn HEPS cascade	M KWH/yr	136.7	40.1	136.4	164	149.2	125.3			
			Nev	HEPS							
	.≫Kambarata 4	M KWH/yr	304.1	289.3	330.3	467.2	387.8	355.7			
	+ Loss of production (for energy) an	d potential exp	orts								

(43) Loss of production – via HEPS -> Loss of production (for energy) and potential exports

Name: Task_1_y2 // Task 1: Assess flow regulation by Basin: Basin of Syrdarya Climate impact: Minimal	INDICATORS	UNITS	2011	VAL 2012	UES BY 1 2013	'EAR 2014	2015	AVERAGE FIVE YEARS
Flow probability: Dry Development: user	- River network, reservoirs and HPS <i>←clic</i>	k to view						
	+ Water resources and their distribution		Σ	Σ	Σ	Σ	Σ	
Reports list	+ Reservoirs							
You haven't got reports yet. Manage reports »	HEPS Electricity protection - total + Deticit of electricity in large HEPS (electricity)	iqainst energy	equivalent de la companya de la comp	n schedul	<u>e)</u>			
	- Loss of production (for energy) and	l potential exp	orts					
	∼%Kairakkum HEPS	M KVVH/yr	322.9	369	297.2	224	274.7	297.6
	24 Naryn HEPS cascade	M KVVH/yr	76452	8168.1	5311.5	5318.9	5186.4	6328.8
			Nev	v HEPS				
	i≫Kamberata 1	M KVVH/yr	0	0	0	0	0	0.0
	+ Water ecosystems							

Working with the Socio-Economic model (SEm)

Socio-Economic Model (SEM) is software to select and estimate water-management, agricultural and environmental development scenarios for the Aral Sea basin by 2035 based on food safety and efficiency related to national socio-economic development scenarios of riparian countries. The model operates jointly with WAm and PZm.

How to enter the population growth trends in the model and what these trends can have an impact on?

Open the user's scenario form after opening the project (Task 4) and use the following path: WAm parameters -> Basin of Syrdarya -> Basin -> Annual population growth as compared to previous year, average for five years (44).

After entering the data, the same procedure should be repeated for the Amudarya basin using the following path: WAm parameters -> Basin of Amudarya -> Basin -> Annual population growth as compared to previous year, average for five years (45).

Info about project 2010 YEAR BOUNDARIES FORECAST Name: Task 4 v1 🥒 INDICATORS Task 4: Socio-economic assessment. UNITS VALUE UNITS MIN MAX 2015 2020 2025 2030 2035 Basin: Basin of Aral Sea -WAm parameters Planning zone: Tashkent-Chirchik, Tashkent-SyrDarya + Basin of Syrdarya Climate impact: MinimalFlow probability: Drv - Basin of Amudarya Development: user + Environmental d **Reports list** + Reservoirs and HEPS Basin Водохозяйственный район Ферганской долины al nonulation d Ath as compared to previous year, average for five years Manage reports » million 1.014 1.015 1.015 1.015 lyrgyzstar 0.26 unit 45 people million aiikistan 5.745 unit 1.019 1.016 people million menistar 5.109 unit 1.018 people million 1.016 1.016 1.015 1.01 .015 Uzbe 14.008 unit people rowth as compared to previous year, average for five years + Annual irrig + Coefficient of added value from irrigated agriculture output processing + Parameters of planning zone + SEM parameters

Can the user enter the electricity demand trend in the basin countries? How can this be done? To this end, the user should open the user's scenario form after opening the project of given type and use the following paths to access the indicators:

(46) Home consumption: SEM parameters -> Demand for electric power -> Annual growth of home consumption of electric power as compared to previous year, average for five years

(47) SEM parameters -> Demand for electric power -> Annual growth of electricity export as compared to previous year, average for five years

Info about project											
		2010	YEAR	BOU	NDAR	ES		F	ORECAS	т	
Name: Iask_4_v1 Task 4: Socio-economic assessment. Basin: Basin of Aral Sea	INDICATORS	UNITS	VALUE	UNITS	MIN	МАХ	2015	2020	2025	2030	2035
Planning zone: Tashkent-Chirchik, Tashkent-SyrDarya	+ WAm parameters										
Climate impact: MinimalFlow probability: Dry	+ Parameters of planning zone										
Development: user	- SEM parameters		_								
Paparta list	+ Costs								~		
Reports list	+ Annual growth of agriculture	al product (prices as c	ompared t	o previo	ous year	<u>, average</u>	for five y	ears		
Водохозяйственный район Ферганской долины Manage reports »	Demand for electric power <u>+ April a growth of home c</u>	onsumptic	n of electri	c power a	is comp	ared to j	orevious v	/ear, aver	age for fi	<u>ve years</u>	
	- Annual growth of electric	ity export :	as compare	ed to previ	ous yea	ar, avera	ige for fiv	e years			
	Kazakhstan	billion KWh/yr	0	unit	47	1.1	1	1	1	1	1
	Kyrgyzstan	billion kWh/yr	3	unit	1	1.1	1	1	1	1	1 06
	Tajikistan	billion kWh/yr	2	unit	1	1.1	1	1	1	1.12	1.18
	Turkmenistan	billion RVMAyr	0	unit	1	1.1	1	1	1	1	1
	Uzbekistan	billion KWh/yr	0	unit	1	1.1	1	1	1	1	1
	<u>+ Nutrition</u>										

How to enter the costs of hydropower generation and what these costs can have an impact on?

Open the user's scenario form after opening the project (Task 4) and use the following path to access the parameter: Export - SEM parameters -> Costs -> Annual growth of self-cost of hydropower generation as compared to previous year, average for five years (48).

Which economic indicators are used to estimate the operation of HEPS and their impact on water supply of different users in river basins?

The operation of HEPS is estimated against the following indicators:

- Electricity needs per capita;
- Hydropower and thermal power production per capita;
- HEPS revenue per capita;
- Deficit of hydropower production;
- Lost hydropower production benefit (revenue).

These indicators can be accessed through the integrated assessment form of the Task 4: Economic estimation -> Electricity produced by large HEPS and cascades, in terms of value (49).

Which socio-economic indicators are used to assess production and losses of output in irrigated agriculture and processing sector?

The production and losses of output in irrigated agriculture and processing sector are assessed through the following indicators:

- Potential revenue;
- Revenue per capita;
- Revenue per hectare;
- Revenue per one cubic meter of water diverted;
- Loss of revenue;
- Value added in irrigated agriculture and processing sector;
- Losses in irrigated agriculture and processing sector;
- Increase or loss of jobs.

Those indicators can be assessed through the integrated assessment form of the Task 4: Economic estimation -> Production of irrigated agriculture in terms of value (50).

Name: Task_4_v1 // // Task 4: Socio-economic assessment Basin: Basin of Aral Sea	INDICATORS	UNITS		VALU	LUES BY YEAR			AVERAGE		
Planning zone: Tashkent-Chirchik, Tashkent-SyrDarya			2011	2012	2013	2014	2015	FIVE TEARS		
Climate impact: MinimalFlow probability: Dry	+ Reservoir/Basin: Planning zone ←click to	view								
Development: user	+ Results WAm									
Reports list	- Economic estimation									
	- Production of irrigated agriculture in ter	ns of value			-					
Водохозяйственный район Ферганской долины		Potenti	al reven	ue						
<u>Manage reports »</u>	24 Kazakhstan	M\$/yr	1093.3	1039.5	981.8	973.6	965.5	1014.7		
		M\$/yr	722.3	735.4	742.5	752.3	766.3	743.8		
	20 ajikistan	M\$/yr		986.3	1014	1034	1068.2	1012.1		
	- Turkmenistan	M\$/yr	1296.1	1327.8	1354.5	1369.8	1376.1	1344.9		
	Uzbekistan	M\$/yr	6620.8	6833.5	6678.4	6620	6695.1	6689.6		
		Revenue	e per cap	oita						
	.~~Kazakhstan	thousand \$/person	3.3	3.1	2.9	2.8	2.8	зр		
	≪Kyrgyzstan	thousand \$/person	2.3	2.3	2.3	2.3	2.3	.3		
	Atajikistan	thousand \$/person	1.3	1.3	1.3	1.3	1.3	1.3		
		thousand \$/person	2.5	2.5	2.5	2.5	2.4	2.5		
		thousand \$/person	2.3	2.3	2.2	2.2	27	2.2		
	Revenue per hectare									
	24 Kazakhstan	thousand \$/ha	1.4	1.3	1.3	1.3	1.3	1.3		

How to fill in the food basket for the region and set the norm of calories per person?

Open the user's scenario form after opening the project (Task 4) and use the following path to access the parameters:

(51) Food basket: SEM parameters -> Nutrition -> Food calories.

Info about project

(52) Norm of calories per person: SEM parameters -> Nutrition -> Norm of kcal/person/day.

Info about project											
		2010	YEAR	BOU	NDAR	IES		F	ORECAS	т	
Name: lask_4_v1 // // // Task 4: Socio-economic assessment Basin: Basin of Aral Sea	INDICATORS	UNITS	VALUE	UNITS	MIN	МАХ	2015	2020	2025	2030	2035
Planning zone: Tashkent-Chirchik, Tashkent-SyrDarya	+ WAm parameters										
Climate impact: MinimalFlow probability: Dry	+ Parameters of planning zone										
Development: user	- SEM parameters										
Roporto list	<u>+ Costs</u>	/									
Reports list	+ Annual growth of agricultura	l product p	prices as c	ompared t	o previ	ous year	, average	for five y	ears		
Водохозяйственный район Ферганской долины	+ Demand for electric power										
Manage reports »	- Nutrition										
	- Norm of kcal/person/day (regional st	andard)								
	Kazakhstan			KVV	2500	3500	3008	3008	3008	3008	3008
	Kyrgyzstan			K//V	² 52	3500	3008	3008	3008	3008	3008
	Tajikittan			KVV	2500	3500	3008	3008	3008	3008	3008
	Turkmenistan			KVV	2500	3500	3008	3008	3008	3008	3008
	Uzbekistan			KV/V	2500	3500	3008	3008	3008	3008	3008
	+ Food calories, regional st	andard	~					/			

Which indicators estimate food security in the basin?

Food security can be estimated by comparing the norm per person and the estimated indicators of calories in general and by foodstuff items. Those indicators can be assessed through the integrated assessment form of the Task 4: Economic estimation -> The Balance of calories (53).

Task 4: Socio-economic assessment	INDICATORS	LIMITS		VAL	UES BY Y	FEAR		AVERA		
Planning zone: Tashkent-Chirchik, Tashkent-SvrDarva	INDICATORS	UNITS	2011	2012	2013	2014	2015	FIVE Y		
Climate impact: MinimalFlow probability: Dry	+ Reservoir/Basin: Planning zone ⇔c/	lick to view								
Development: user	+ Results WAm									
Reporte list	- Economic estimation									
Керонз іізс	+ Production of irrigated agriculture	in terms of value								
Водохозяйственный район Ферганской долины	+ Electricity produced by large HEP	S and caecades,	in terms of	f value	-					
Manage reports »	+ Indicators									
	- The balance of calories									
			Cal	ories						
	Kazakhstan	KVV	2306.4	2138	1970.2	1902.6	1870	203		
	2 kyrgyzstan	KW	1929.5	1917.9	1892.9	1874.1	1863.4	189		
	^-′Tajikistan	KVV	1075.4	1072.3	1067.6	1056	1055.2	106		
	Turkmenistan	KW	2508.9	2482.7	2446.1	2389.1	2318.3	242		
	2010 Uzbekistan	KVV	2100.8	2111.9	2012.9	1946.6	1918.3	201		
		С	alories w	heat and	rice					
	Ar Kazakhstan	KW	588.4	543	503.1	487	477.8	51		
	^*Kyrgyzstan	KAV	532.2	529.5	524.2	520.2	517.6	52		
	.∼'Tajikistan	K/V	2835	282.2	281.2	279.4	278.6	28		
	:^*Turkmenistan	KVV	936.8	927.6	914	892.3	865	90		
	2 Uzbekistan	KVV	751.2	756.2	/19	695.2	685.8	12		
	a diamatika kan	Calo	ries vege	tables an	d Truits	c 0 2 0 3	FOF F	04		
	A Kurguzetan	MA/	679.6	675.7	685.5	658.1	854.5	64		
	Taikistan	MAY INAV	430.2	429.2	427.7	423.7	423.3	42		
	A Turkmenistan	KAV	352.1	347.5	342.4	335.7	327	34		
	~1 Inhelisten	MA	570.8	571.8	547.4	530.7	520.6	54		
	Calori	es meat, meat-	nrocessir	shoon ne	milk and	I dairy nro	aduce	1		
	-Kaz khstan	KW	613.8	566.5	519.8	500.7	492.5	53		
	Kyrgyzstap	KVV	533	529.8	522	516.2	513.3	52		
	Zajikistan	KWV	166.2	165.8	165.2	163	163.5	16		
						/				

Viewing the results

Output forms of ASBMM

The results of calculations are available in two formats, such as an integrated assessment and the output of water-related information. The integrated assessment presents annual data in five-year periods of forecast. The set of output parameters is determined by type of project. Some of information is available in both annual and monthly dimension. Such data are marked by " Σ " (54). The output forms for each type of project are described below (55).

Evaluation of the flow regulation by reservoir hydrosystem with HEPS and the water balance of river basins

The calculation parameters are grouped into the following categories:

1. Water resources and their distribution (55)

- Water resources;
- ~ Transboundary resources of Syrdarya/Amudarya and tributaries;
- ~ Water diversion in Syrdarya/Amudarya basin;
- ~ Estimated return flow into Syrdarya/Amudarya and tributaries;
- ~ Channel losses;
- ~ Usable water resources (natural resources+return flow-losses).

2. Reservoirs (55)

- ~ Dynamics of water storage in large reservoirs at the start of year;
- ~ Inflows and releases.

3. HEPS (55)

- Electricity generation total;
- Deficit of electricity generation by large HEPS (against energy generation schedule);
- ~ Loss of production (for energy sector) or potential export.

4. Water ecosystems (55)

- Emergency-environmental releases;
- ~ Water availability of Prearalie;
- Water supply to water ecosystems;
- ~ Water supply to the Aral Sea.

Integrated assessment evenue										Pyc / Eng
ENTER OPEN CREATE CUSTOMIZING	USER + EXPERT	SCENARIO	RUN ESTIMATE	→ INTE	TAILED T GRATED	ź			J+[Dat	SHOW
Info about project		Choose 5 year ra	ange: 2011-2015	T						← STEP BACK
Name: Task_1_v2 // Task 1: Assess flow regulation by Basin: Basin of Syrdarya Climate impact: Minimal		INDI	CATORS	UNITS	2011	VALI 2012	UES BY 1	/EAR 2014	2015	AVERAGE FIVE YEARS
Development: user	\sim	- River network, res	servoirs and HPS +-	click to view				(\frown	
Reports list You haven't got reports yet. <u>Manage reports a</u>	55	Water resource Reservoirs HEPS Water ecosystem	es and their distribu 1	ion	Σ	Σ	Σ	Σ	54	
				Detailed res	ults	Compare	results	Exit	14 B 14 D	mort data ata for Analysis

Assessment of water availability and agricultural output losses:

1. Water balance (56)

Water requirements of PZ

- ~ Irrigated agriculture;
- ~ Domestic use;
- Industrial use;
- ~ Rural water supply

Local water resources

- Local rivers and streams;
- ~ Groundwater extraction;
- Reuse from collector drainage in PZ Calculated parameters
- ~ Water demand of PZ from large rivers (transboundary);
- ~ Return flow from PZ to large rivers;
- Potential collector drainage flow formed in PZ

2. Productivity of irrigated agriculture (56)

- ~ Irrigated area;
- Potential agricultural production;
- Loss of agricultural production due to water deficit;
- Agricultural production;
- Cost of agricultural production;
- ~ Net agricultural production;
- Value added in irrigated agriculture;
- ~ Value added in processing sector, including per crop

3. Estimated investments in PZ (56)

- Reconstruction of irrigation network;
- Development of new land for agriculture;
- Investment in improved water management (IWRM);

Area of new land developed for agriculture. \sim

Info about project	Choose 5 year range: 2011-2015 🔻										
Task 3: Assess water availability. Basin: Basin of Syrdarya Planning zone: Tashkent-Chirchik	INDICATORS	UNITS	2011	VAL 2012	UES BY 1 2013	/EAR 2014	2015	AVERAGE FIVE YEARS			
Climate impact: MinimalFlow probability: Dry	PZ water balanceclick to view		5	5	5	5	5				
Development: User 56		Wab	er require	ments o	f PZ						
Reports list	24 Imigated agriculture	Mn3	3677.8	3911	3996.1	4200.1	4526.9	4052.4			
Vou haven't and remarks und	24 Domestic user	Mn3	963.6	964.2	964.9	965.6	966.3	964.9			
You neven t got reports yet.	24Industrial use	Mn3	2078.5	2083.1	2087.7	2092.3	2096.9	2087.7			
	24Rural water supply	Mm3	609.3	609.9	610.6	611.3	612	610.6			
	2177 Ming of reservoirs	Min3	1127.4	1123.2	1023.9	1106.2	1109.0	1114.0			
	24/Total[1]	Mn3	8456.5	8691.4	8683.3	9055.5	\$311.4	8839.6			
		Local v	rater reso	ources in	the PZ						
	20 Reuse from collector drainage (fixed amount assumed)	Mm3	313.5	310.2	320.2	303.8	304.2	310.4			
	2~Groundwater extraction	Mm3	738.5	742.4	746.3	750.2	754.1	746.3			
	240_ocal rivers/streams	Mn3	404	411.9	242.3	208.8	240	301.4			
	24Water releases from reservoirs	Min/3	1127.4	1123.2	1023.9	1106.2	1109.3	1114.0			
	2https:[2]	Mn3	2583.5	2587.7	2332.8	2449	2407.7	2472.1			
	2~[3] Water demand of PZ from Large Rivers (transboundary) [1] - [2]	Min3	5073	6103.7	6350.4	6606.5	6903.7	6367.5			
	22[4] Water supply from Large Rivers for PZ	Mm3	2600	2594.8	2441.2	2436.3	2431.5	2500.8			
56	2018) Return flow from PZ to Large Rivers	Mn3	2137	2118	2190	2080.8	2087.4	2122.8			
	International collector drainage flow formed in PZ	Mm3	2475.8	2443.3	2515.7	2380.2	2377.8	2438.6			
	+ Productivity of irrigated agriculture										
	+ Estimated investments in planing zone										

Socio-economic assessment of the development of the region

Production of irrigated agriculture in terms of value (57) 1.

- Potential revenue; \sim
- \sim Revenue per capita;
- Revenue per hectare; \sim
- Revenue per one cubic meter of water diverted; \sim
- Loss of revenue; \sim
- Value added in irrigated agriculture and processing sector; \sim
- Losses in irrigated agriculture and processing sector; \sim
- Loss of jobs. \sim

Choose 5 year range: 2011-2015 🔻

Info about project	Choose 5 year range: 2011-2015 🔻								
Name: Task_4_v1 // / Task 4: Socio-economic assessment Basin: Basin of Aral Sea	INDICATORS	UNITS	2011	VALU 2012	JES BY 1	YEAR 2014	2015	AVERAGE FIVE YEARS	
Climate impact: MinimalFlow probability: Dry	+ Reservoir/Basin: Planning zone ← c/ick to	view							
Development: user	+ Results WAm								
Reports list	- Economic estimation								
	- Production of irrigated agriculture in terr	ns of value							
Водохозяйственный район Ферганской долины	_	Potentia	al reven	ие					
Manage reports »	24 Kazakhstan	M\$/yr	1093.3	1039.5	981.8	973.6	985.5	1014.7	
(57	24 Kyrgyzstan	M\$/yr	722.3	735.4	742.5	752.3	766.3	743.8	
		M\$/yr	957.9	986.3	1014	1034	1068.2	1012.1	
	22 Turkmenistan	M\$/yr	1296.1	1327.8	1354.5	1369.8	1376.1	1344.9	
	24Uzbekistan	M\$/yr	6620.8	6833.5	6678.4	6620	6695.1	6689.6	
		Revenue	e per caj	oita					
	≫Kazakhstan	thousand \$/person	3.3	3.1	2.9	2.8	2.8	3.0	
	≫Kyrgyzstan	thousand \$/person	2.3	2.3	2.3	2.3	2.3	2.3	
	≫Tajikistan	thousand \$/person	1.3	1.3	1.3	1.3	1.3	1.3	
	24 Turkmenistan	thousand \$/person	2.5	2.5	2.5	2.5	2.4	2.5	
	24 Uzbekistan	thousand \$/person	2.3	2.3	2.2	2.2	2.2	2.2	
		Revenue	per hec	tare					
	≫'Kazakhstan	thousand \$/ha	1.4	1.3	1.3	1.3	1.3	1.3	
	≫fKyrgyzstan	thousand \$/ha	2	2.1	2.1	2.1	2.2	2.1	
	ZZTajikistan	thousand \$/ha	1.4	1.4	1.5	1.5	1.6	1.5	
	24 Turkmenistan	thousand \$/ha	0.7	0.7	0.7	0.7	0.7	0.7	
		Alson and Alson	4 2	4.0	4.0	4 5	4.0	4.0	

Electricity produced by large HEPS and cascades, in terms of value (58) 2.

- Electricity needs per capita; \sim
- Hydropower and thermal power production per capita; ~
- HEPS revenue per capita; \sim
- Deficit of hydropower production; \sim
- Lost hydropower production benefit (revenue). \sim

Info about project Nar

Choose 5 year range: 2011-2015 🔻

Task 4: Socio-economic assessment.	INDICATORS	UNITS		VAL	UES BY 1	ÆAR		AVERAGE						
Planning zone: Tashkent-Chirchik, Tashkent-SyrDarya	INDICK I ONS	GNITS	2011	2012	2013	2014	2015	FIVE YEARS						
Climate impact: MinimalFlow probability: Dry	+ Reservoir/Basin: Planning zone ←clici	to view												
Development: user	+ Results WAm					1	\frown							
Reports list	- Economic estimation						-0							
	+ Production of irrigated agriculture in terms of value													
Водохозяйственный район Ферганской долины	Electricity produced by large HEPS and cascades, in terms of value													
Manage reports »	Electricity needs per capita													
	24 Kazakhstan	M\$/yr	1151.2	1129.7	1108.6	1088	1067.7	1109.0						
	25 Kyrgyzstan	M\$/yr	1767.7	1743.2	1719	1695.2	1641.9	1713.4						
	21 Tajkistan	M\$/yr	939.5	919.7	900.3	881.4	862.8	900.7						
	22 Turkmenistan	M\$/yr	1076.5	1050.3	1024.7	999.7	1081.7	1046.6						
	20 Uzbekistan	M\$/yr	906.5	892.2	898.1	884	870	890.2						
	Hydropower and thermal power production per capita													
	.≫'Kazakhstan	M\$/yr	2010	1971.5	1952.3	1923.4	1888.3	1949.1						
	.≫'Kyrgyzstan	M\$/yr	2746.2	2782.4	2129.5	2053.8	2333.5	2409.1						
	.≫Tajkistan	M\$/yr	1565.6	2143.7	1628.3	1374.6	1337.7	1610.0						
	22 Turkmenistan	M\$/yr	1957.3	1909.6	1863	1817.6	1950.6	1899.6						
	20 Uzbekistan	M\$/yr	1569.5	1560.2	1555	1521.1	1481.7	1537.5						
		HE	PS reven	ue per ca	apita									
	.≫Kazakhstan	M\$/yr	9.1	8.9	8.8	8.6	8.4	8.8						
	i≫%yrgyzstan	M\$/yr	124.9	128.8	99.7	96.6	94.6	108.9						
	,≫'Tajikistan	M\$/yr	51.4	67.4	56.7	47.7	45.8	53.8						
	25 Turkmenistan	M\$/yr	0	0	0	0	0	0.0						
	<i>≫</i> Uzbekistan	M\$/yr	3.8	4.2	3.8	3.4	2.9	3.6						
		Deficit	of hydroj	power pr	oduction									
	≫Kazakhstan	M\$/yr	0	0	0	0	0	0.0						
	.≫%yrgyzstan	M\$/yr	45.5	34.4	63.3	64.5	67.7	55.1						
	.≫Tajkistan	M\$/yr	73.8	51.1	36.1	58.7	70.6	58.1						

Indicators (59) 3.

- Population; \sim
- Water resources per capita; \sim
- Irrigated area per capita; \sim
- Hydropower per capita. \sim

Info about project

Choose 5 year range: 2011-2015 🔻

Name: Task_4_v1 / / Task 4: Socio-economic assessment. Basin: Basin of Aral Sea	INDICATORS	UNITS	2011	VALU	JES BY '	YEAR	2015	AVERAGE FIVE YEARS						
Planning zone: Tashkent-Chirchik, Tashkent-SyrDarya			2011	2012	2010	2014	2010							
Climate impact: MinimalFlow probability: Dry	+ Reservoir/Basin: Planning zone ←c/ick to	view												
Jevelopment: User	+ Results WAm													
Reports list	- Economic estimation													
'	+ Production of irrigated agriculture in ter	ms of value												
Водохозяйственный район Ферганской долины 💋 59	+ Electricity produced by large HEPS and	cascades, in term	ns of valu	ie -										
Manage reports »	- Indicators													
	Population													
_		million people	3.3	3.4	3.4	3.5	3.6	3.4						
	≫Kyrgyzstan	million people	3.2	3.2	3.3	3.3	3.4	3.3						
	,≫Tajikistan	million people	7.7	7.8	8	8.2	8.3	8.0						
	2 Turkmenistan	million people	5.1	5.2	5.4	5.5	5.6	5.4						
		million people	29.1	29.6	30.1	30.5	31	30.1						
		Water re	sources	per capi	ita									
	,≫'Kazakhstan	m3/person	0.1	0.1	0.1	0.1	0.1	0.1						
	24 Kyrgyzstan	m3/person	2.5	2.8	2.2	1.9	1.8	2.2						
	,~∕Tajikistan	m3/person	2.2	2.2	2.1	2	1.9	2.1						
	24 Turkmenistan	m3/person	0.4	0.4	0.4	0.4	0.4	0.4						
	≫Uzbekistan	m3/person	0.7	1.1	0.6	0.3	0.2	0.6						

4. The balance of calories (60)

- ~ Calories;
- Wheat and rice calories;
- Vegetables and fruits calories;
- ~ Meat, meat products, milk and dairy produce calories.

Info about project	Choose 5 year range: 2011-2015 🔻														
Name: Task_4_v1 Task 4: Socio-economic assessment	INDICATORS	UNITS		VAL	UES BY 1	ÆAR		AVERAGE							
Planning zone: Tashkent-Chirchik, Tashkent-SyrDarya	INDICATORS	UNITS	2011	2012 2013		2014	2015	FIVE YEARS							
Climate impact: MinimalFlow probability: Dry	+ Reservoir/Basin: Planning zone ← click to	view													
Development: user	+ Results WAm														
Reports list	Economic estimation + Production of irrigated agriculture in terms of value														
	Production of irrigated agriculture in terms of value														
Водохозяйственный район Ферганской долины	+ Electricity produced by large HEPS and	cascades,	in terms of	value											
Manage reports »	+ Indicators														
(88	- The balance of calories														
			Cal	ories											
\smile	Kazakhstan	KVV	2306.4	2138	1970.2	1902.6	1870	2037.4							
	24 Kyrgyzstan	KVV	1929.5	1917.9	1892.9	1874.1	1863.4	1895.6							
	Zajikistan 🖉	KVV	1075.4	1072.3	1067.6	1056	1055.2	1065.3							
	Zurkmenistan	KVV	2508.9	2482.7	2446.1	2389.1	2318.3	2429.0							
		KVV	2100.8	2111.9	2012.9	1946.6	1918.3	2018.1							
		C	alories w	heat and	rice										
	Kazakhstan	KVV	588.4	543	503.1	487	477.8	519.9							
	≫Kyrgyzstan	RVV	532.2	529.5	524.2	520.2	517.6	524.7							
	21 Tajikistan	RVV	282.8	282.2	281.2	279.4	278.6	280.8							
	24 Turkmenistan	KVV	936.8	927.6	914	892.3	865	907.1							
	≫Uzbekistan	KVV	751.2	756.2	719	695.2	685.8	721.5							
		Calor	ies veget	ables an	d fruits										
	™Kazakhstan	KVV	733.2	674.9	619.2	595.3	585.5	641.6							
	≫Kyrgyzstan	KVV	679.6	675.7	665.5	658.1	654.5	666.7							
	ZZTajikistan	KVV	430.2	429.2	427.7	423.7	423.3	426.8							
	≥ZTurkmenistan	KVV	352.1	347.5	342.4	335.7	327	340.9							
	ZUzbekistan	KWV	570.6	571.8	547.4	530.7	520.6	548.2							

Comparison of the results

ASBMM software allows comparing the results of calculations both within the project (different five years) and between similar projects. The structure of comparison forms inherits the structure of output forms and a set of calculated parameters for the respective project. To view the results of the comparison, perform the following steps:

(61) On the integrated assessment page follow the link - Compare results

🔛 ASBmm						1.4.2	ito, ura Go to Exit	the intro screen
 Integrated assessment 								Exc/Er
	URER SCENAMIO	-	ann.		CON	WILE	÷	- Annie
eustourzeu	OCHLECHION ESTIMATE	+	OWATED	Ĥ				← STEP BACK
Name: Task_Ly1 / Task 4: Doctor economic assessment Task 4: Doctor economic assessment Task 4: Doctor economic assessment	61	15 • J		VALUE	9 B Y Y	EAR		AVERAGE
lanning zone: Tashkers-Chuchk, Tashkers-OyrDarya			2811	2012	riti T	2014	2015	FIVE YEARS
imate impact: MinimaFlow probability: Dry evelopment: user	a financia Rass. Processor	dak ta siye						
	1.013/01.0000							
Reports list	+ Economic institution							
Reports list	+ Economic mitmation						*1	unort. dada ada dur. Acabraia

(62) Choose a method of comparison - Compare five years in one project or Compare similar projects

ASBmm			Hello, ura Go to the Intro screen) Exit
Comparing Institution			Eyc/Eng
ENTER OPEN USE CERSINE CUSTOMIZINO CON	R BEENARIO RUII	IICTAH LIL IIKTEGRAILU	
Info about project	METHOD OF COMPARIS	ON COM	ARED PROJECTS (FIVE YEARS
Task 4: Socio-economic assessment. Basin: Basin of Aral Sea Planning zone: Tashkent-Chirchik, Tashkent-SytDarya Clemate impact: MinimaFlow probability: Dry Development: user	Compare the years in one project (* 6 Compare similar projects	2 (201 View compare results	63

(63) Select Compared projects/ five years

(64) Follow the link - View compared results

Viewing the information about the project

information on water bodies, regimes of which are modeled by the system. This information is available for the project type "Assessment of flow regulation by reservoir hydrosystem with HEP and water balance of river basins" and "Socio-economic assessment of the development of the region." To view this information, the user should follow the link - Detailed results (by project) in the form of an integrated evaluation (65).

Navigation by water objects is possible using the graphical schemes of Syr Darya and Amu Darya river basins (65).

The following reports are available by project: (66) HEPS operation regime

PARAMETER	UNITS	х	XI	XII	I	Ш	ш	IV	v	VI	VII	VIII	DX	VEGETATION	NON VEGETATION	FOR YEAR
Water regime of HEPS																
Water discharge at HEPS, Mm3/month		995	995	707	774	796	950	1105	1018	442	398	774	995	4732	5217	9949
Wastewater from HEPS, Mm3/month		495	495	277	424	516	680	805	718	212	98	334	495	2662	2887	5549
Lost releases for energy, Mm3/month		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deficit of releases for energy generation		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Energy regime of HEPS																
Electricity generation, MkWh		397	390	274	296	302	365	433	405	177	165	319	404	1903	2024	3927
Lost electricity generation through water releases for energy, Mk/Vh		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lost electricity generation through sterile spills		197	194	107	162	196	261	315	285	85	40	137	201	1063	1117	2180
Electricity generation deficit		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

HEPS operation regime. Toktogul HEPS. 2014 year •

(67) Reservoir operation regime

Reservoir operation regime,. Toktogul. 2014 year •

PARAMETER	UNITS	х	XI	XII	I	Ш	Ш	IV	۷	VI	VII	VIII	DX	VEGETATION	NON VEGETATION	FOR YEAR
Inflow to reservoir-actually,min.m3		341.3	286	357.4	221.3	849.9	1696	1882.2	1345.1	864.6	466.3	363.9	332.4	5254.5	3751.9	9006.4
outflow from reservoir-actually, mln.m3		994.5	994.5	707.2	773.5	795.6	950.3	1105	1018.3	442	397.8	773.5	994.5	4731.1	5215.6	9946.7
Capacity of reservoir-actually mln.m3		17019	16310	15960	15408	15462	16208	16985	17312	17735	18744	18334	17672	106782	96367	203149

(68) River water balance

River water balance. Karadarya river. 2014 year •

PARAMETER	UNITS	х	XI	XII	1	Ш	Ш	IV	۷	VI	VII	VIII	DX	VEGETATION	NON VEGETATION	FOR YEAR
Inflow from an upstream reach, Mm3		111	98	108	125	367	575	554	338	212	176	146	128	1554	1384	2938
Lateral inflow from rivers, Mm3		15	18	26	41	86	36	21	15	17	10	16	15	94	222	316
Water diversion in given site, Mm3		2	116	5	18	27	53	382	65	40	10	5	з	505	221	726
Loses in given site, Mm3		78	105	107	109	102	152	163	156	143	143	83	51	739	653	1392
Discharge to a downstream reach, Mm3		118	103	208	407	708	831	569	489	137	230	176	104	1705	2375	4080
Change in water volume (within reservoir site), Mm3		84	29	26	-152	-205	-128	-215	-48	78	89	64	87	55	-346	-291