Interactive map of the best practices

on the use of water, land and energy resources,
as well as the environment of Central Asia

Comparison of practices

Название практики Using drip irrigation systems in combination with soil mulching with polyethylene film Water-charging irrigation for rangelands used for growing forage crops
Category Water resources Water resources
Tool Drip irrigation system Irrigation technique and technology
Field of application
  • Use of water resources
  • Use of land resources

• Use of water resources
• Use of land resources

Usability of practice for adaptation to climate change Moderate High
Implemented by K-DEN Farm

Used by

Country: Kazakhstan

Province: Almaty region

District: Alakol District

Other settlement: Yntaly Rural District (320 km away from Taldykorgan (region center))

Country: Kazakhstan

Province: Jambyl Region

District: Talas District

Other settlement: Village of Sadu Shakirov

Local specifics

Foothill area

The site is located in the desert foothill plain in South-ern Kazakhstan (internal drain area) at the very end of Sharuashlyk Irrigation Canal.

Practice usage period

Start date: 01.01.2008

End date: 31.12.2010

Start date: 01.05.2008

End date: 30.04.2009

Problem solved through this practice

After disintegration of large agricultural enterprises (state farms), the maintenance of inter- and intra-farm irrigation systems – that were earlier on the balance of state farms – appeared to exceed the technical capacity of small-scale private and owner-operated farms.  Due to this reason, in the majority of agricultural districts the tray irrigation networks got out of order.  The wear of the lion’s share of hydraulic engineering facilities in Alakol District reached nearly 70% leading to water losses associated with crops watering – the analysis showed that 40% of water was lost to filtration and evaporation.  In its turn, that resulted in ineffective and irrational use of water resources and contraction of irrigated land area.  For example, whereas in 2003 water intake for irrigation amounted to 195 mln m3, in 2009 it decreased to 114.8 mln m3 (41.1% drop).

Issue: Low efficiency of irrigation water due to wear of hydraulic engineering facilities/installations (tray irrigation system).

Acute water shortage; land degradation in the village of Sadu Shakirov; abandoned irrigated arable lands used only for year-round cattle grazing.

For a long time, the irrigation canal was not operation-al and, thus, became dilapidated. The situation in the area was aggravated by climate change impacts (de-creased quantity of early spring, summer and winter precipitation, increased average annual temperature, spring and autumn frost bites and summer droughts).

Tools used in the practice

Drip irrigation in combination with soil mulching with polyethylene film

Method of autumn and winter water-charging irrigation

Description of the practice and its results

Drip irrigation combined with filming has been widely adopted around the world in vegetable and cucurbits cultivation.  Thanks to long moisture preservation and proper thermal balance achieved under film, deployment of this technology allows reducing the overall need for irrigation water and receiving earlier and higher crop yields.

Actions:

The K-DEN Farm was offered to apply drip irrigation through film cover on the area of 5 hectares in Yntaly Rural District.  The technique was adapted for project site by Doctor of Engineering R.I. Vagapov. The recommended technology is the most available to local farmers and ensures significant saving of irrigation water.

Necessary resources:

1) seeds of vegetable and cucurbit crops;

2) polyethylene film;

3) equipment (DT-75 tractor, seeder, cultivator);

4) labor for preparatory works, sowing and harvest campaigns;

5) expert consultations and training.

Results:

Financial and economic:

The yield of vegetable and cucurbit crops increased twofold compared to two previous years allowing the farm to receive the profit of $12,000/ha in spite of the fact that the whole yield was sold at low price to the local population of Eastern Kazakhstan and Almaty Regions.  In particular, the productivity of vegetable crops amounted to 350-400 dt/ha, and cucurbits – 400 dt/ha.

Technical:

Water saving made 220,040 m3.

Actions:
1) Reconstruction of the canal, stop-gates and field irrigation networks (rehabilitation of irrigation furrows),
2) Setting up artificial pastures with forage crops

Results:

Financial and economic:
Using water-charging irrigation for rangelands allowed increasing their productivity from 3.5 to 5 dt/ha and receiving 60 tons of herbage for cattle and sheep and goats from non-cultivated land.

Technical:
1) 12 km of the canal and 5 stop-gates to regulate water releases restored,
2) 5 km of irrigation furrows built,
3) Cultivated pastures with forage crops created (soil preparation, alfaalfa planting, coordination of irrigation norms),
4) Fields are prepared during the summer-fall period, and watered during late fall or early spring.

Lessons learnt and recommendations made

Lessons learnt:

The practice of drip irrigation in combination with the application of polyethylene film has increased the efficiency of water use and crops productivity as well as reduced labor needs.

Recommendations:

The widespread deployment of water-saving technologies requires the presence of effective financial incentives for at water consumers.

  • Domestic tools (outcomes of research by domestic R&D organizations),
  • Foreign tools (transfer of foreign experience)

Lessons learnt:
Application of water-charging irrigation allowed in-creasing water availability and, as the result, productivity of agricultural crops.

Application of water-charging irrigation demonstrated the efficiency of water use and allowed local popula-tion to go through winter without losing livestock.

Recommendations:
The method can be used in areas/communities where along with crop growing the population is also involved in livestock breeding.

Source of practice

Traditional tools transferred from generation to generation that proved their efficiency in modern conditions

Readiness for implementation

1. Cost of implementation: High

2. Approximate cost of investment per 1 ha:

3. O&M costs: High

4. Expert support: Not needed

1. Cost of implementation: High

2. Approximate cost of investment per 1 ha:

3. O&M costs: High

4. Expert support: Not needed

Brief information on the project

Project title: Integrated preservation of globally significant wetlands as dwelling places of migrating birds.

Project duration: May 2008-Sept 2010.

Project goal and objectives: assessment of agro-economic and environmental efficiency of technology of sprinkling irrigation on vegetable crops; establishment of optimum watering regimes for vegetable crops based on mist sprinkling irrigation.

Project beneficiaries: peasants (farmers) and agricultural producers.

Project implementer: K-DEN Farm

Project title: Fall and early spring Irrigation of arable land and pastures as an adaptation mechanism of ra-tional water use in Southern Kazakhstan

Duration: May 1, 2008 – April 30, 2009

Project goal and objectives: reduce land degradation due to climate change by way of rational use of irriga-tion water. The project was implemented to prevent loss of cattle due to forage shortage during alternating droughty years.

Project beneficiaries: local population.

Project implementer: Kogal LLC

Funding source GEF/UNDP, K-DEN Farm Kogal LLC
Information sources

K-DEN Farm,

Mr. Afrikan Konstantinovich Kim, farm head

(ph.: +7 701 227 27 49, +7 701 672 85 85)

1) UNDP Compilation “Climate change adaptation: ex-amples from Uzbekistan and Kazakhstan”, Tashkent 2012;
2) pandia.org

Contacts of a person, who filled this form

SIC ICWC

SIC ICWC

Form submission date 30.03.2018 29.03.2018

Partners