Archive for Nursery

Oceanography, Biological

Biological oceanography is a field of study that seeks to understand what controls the distribution and abundance of different types of marine life, and how living organisms influence and interact with processes in the oceans.

Biological oceanographers study all forms of life in the oceans, from microscopic plants and animals to fish and whales. In addition, biological oceanographers examine all forms of oceanic processes that involve living organisms. These include processes that occur at molecular scales, such as photosynthesis , respiration, and cycling of essential nutrients , to largescale processes such as effects of ocean currents on marine productivity.  Read more

Aquaculture

Aquaculture, a type of agriculture, is the practice of cultivating aquatic animals and plants in managed aquatic environments. Aquaculture in salt-water or marine environments is called mariculture. Fish culture, or pisciculture, refers to the husbandry of finfish . The most popular aquaculture species are finfish grown in fresh waters, accounting for over 40 percent of total aquaculture production (U.S. Department of Agriculture, 1998).

Ancient and Modern Aquaculture

Aquaculture has a long history, but for much of the world it remains somewhat of a novelty, being practiced less than agriculture or capture fisheries .

Although carp ponds are rooted in antiquity, they are still popular today, and enthusiasts worldwide maintain associations devoted to these fish. Shown here are colorful koi, originally bred from the common grass carp, swimming in a pond at a Japanese garden and teahouse. Carp have religious and cultural significance in Asia and other parts of the world. Read more

Trapped Sunlight Cleans Water

High energy costs are one drawback of making clean water from waste effluents. According to an article in the journal Biomicrofluidics, which is published by the American Institute of Physics, a new system that combines two different technologies proposes to break down contaminants using the cheapest possible energy source, sunlight. Microfluidics — transporting water through tiny channels — and photocatalysis — using light to break down impurities — come together in the science of optofluidics.

“These two technologies have been developed in parallel but there have been few efforts to employ the natural synergy between them,” says author Xuming Zhang of the Hong Kong Polytechnic University. “Our results showed a dramatic improvement in the efficiency of the photocatalyst.” Read more